FJORD TIDAL CASE: Difference between revisions
No edit summary (change visibility) |
|||
Line 39: | Line 39: | ||
Create a file named <span class="red">fjord.h</span> and copy-paste the cpp definitions below: | Create a file named <span class="red">fjord.h</span> and copy-paste the cpp definitions below: | ||
<span class="green">/* | <span class="green">/* | ||
** | ** | ||
Line 49: | Line 50: | ||
<span class="blue">#define</span> UV_COR <span class="green">/* use to turn ON or OFF Coriolis term */</span> | <span class="blue">#define</span> UV_COR <span class="green">/* use to turn ON or OFF Coriolis term */</span> | ||
<span class="blue">#define</span> UV_QDRAG <span class="green">/* use to turn ON or OFF quadratic bottom friction */</span> | <span class="blue">#define</span> UV_QDRAG <span class="green">/* use to turn ON or OFF quadratic bottom friction */</span> | ||
<span class="blue">#define</span> UV_VIS4 <span class="green">/* use to turn ON or OFF harmonic horizontal mixing */</span> | |||
<span class="blue">#define</span> MIX_S_UV <span class="green">/* momentum mixing on s-surfaces */</span> | |||
<span class="blue">#define</span> DJ_GRADPS <span class="green">/* use if splines density Jacobian (Shchepetkin, 2000) */</span> | <span class="blue">#define</span> DJ_GRADPS <span class="green">/* use if splines density Jacobian (Shchepetkin, 2000) */</span> | ||
<span class="blue">#define</span> TS_U3HADVECTION <span class="green">/* use if 3rd-order upstream horiz. advection */</span> | <span class="blue">#define</span> TS_U3HADVECTION <span class="green">/* use if 3rd-order upstream horiz. advection */</span> | ||
<span class="blue">#define</span> TS_C4VADVECTION <span class="green">/* use if 4th-order centered vertical advection */</span> | <span class="blue">#define</span> TS_C4VADVECTION <span class="green">/* use if 4th-order centered vertical advection */</span> | ||
<span class="blue">#define</span> | <span class="blue">#define</span> SOLVE3D <span class="green">/* use if solving 3D primitive equations */</span> | ||
<span class="blue">#define</span> SPLINES <span class="green">/* use to activate parabolic splines reconstruction */</span> | <span class="blue">#define</span> SPLINES <span class="green">/* use to activate parabolic splines reconstruction */</span> | ||
<span class="green">/* */</span> | |||
<span class="blue">#define</span> | <span class="blue">#define</span> ANA_SMFLUX <span class="green">/* use if analytical surface momentum stress */</span> | ||
<span class="blue">#define</span> | <span class="blue">#define</span> ANA_STFLUX <span class="green">/* use if analytical surface temperature flux */</span> | ||
<span class="blue">#define</span> | <span class="blue">#define</span> ANA_SSFLUX <span class="green">/* use if analytical surface salinity flux */</span> | ||
<span class="blue">#define</span> ANA_BSFLUX <span class="green">/* use if analytical bottom salinity flux */</span> | |||
<span class="blue">#define</span> ANA_BTFLUX <span class="green">/* use if analytical bottom temperature flux */</span> | |||
<span class="blue"># define</span> | |||
<span class="blue"># define</span> | |||
<span class="blue">#define</span> MASKING <span class="green">/* use if analytical masking is enabled */</span> | <span class="blue">#define</span> MASKING <span class="green">/* use if analytical masking is enabled */</span> | ||
<span class="blue">#define</span> EAST_FSCHAPMAN <span class="green">/*use if free-surface Chapman condition*/</span> | <span class="blue">#define</span> EAST_FSCHAPMAN <span class="green">/* use if free-surface Chapman condition*/</span> | ||
<span class="blue">#define</span> EAST_M2FLATHER <span class="green">/*use if 2D momentum Flather condition*/</span> | <span class="blue">#define</span> EAST_M2FLATHER <span class="green">/* use if 2D momentum Flather condition*/</span> | ||
<span class="blue">#define</span> EAST_M3RADIATION <span class="green">/*use if 3D momentum radiation condition*/</span> | <span class="blue">#define</span> EAST_M3RADIATION <span class="green">/* use if 3D momentum radiation condition*/</span> | ||
<span class="blue">#define</span> EAST_TRADIATION <span class="green">/*use if tracers radiation condition*/</span> | <span class="blue">#define</span> EAST_TRADIATION <span class="green">/* use if tracers radiation condition*/</span> | ||
<span class="blue">#define</span> ANA_FSOBC <span class="green">/*use if analytical free-surface boundary conditions*/</span> | <span class="blue">#define</span> ANA_FSOBC <span class="green">/* use if analytical free-surface boundary conditions*/</span> | ||
<span class="blue">#define</span> ANA_M2OBC <span class="green">/*use if analytical 2D momentum boundary conditions*/</span> | <span class="blue">#define</span> ANA_M2OBC <span class="green">/* use if analytical 2D momentum boundary conditions*/</span> | ||
{{note}} The last 6 cpp definitions are the responsible for the analytical tidal forcing.<br> | {{note}} The last 6 cpp definitions are the responsible for the analytical tidal forcing.<br> | ||
{{warning}} If your open boundary is not EAST... change EAST_FSCHAPMAN, EAST_M2FLATHER, EAST_M3RADIATION and EAST_TRADIATION to represent your open boundary (e.g. WEST__FSCHAPMAN for a west open boundary... etc.). | {{warning}} If your open boundary is not EAST... change EAST_FSCHAPMAN, EAST_M2FLATHER, EAST_M3RADIATION and EAST_TRADIATION to represent your open boundary (e.g. WEST__FSCHAPMAN for a west open boundary... etc.). |
Revision as of 21:59, 22 April 2008
![]() April 21, 2008 |
There are a few ways to setup tidal forcing in ROMS (...learn more about tides in ROMS). This tutorial will explain the simplest way, which is to prescribe (analytically) tidal variations in sea-surface height at a open boundary (this uses a FLATHER/CHAPMAN combination).
I learned this trick from hetland in this forum post (at the bottom).
RESTRICTIONS: This technique is ONLY applicable in cases with one relatively narrow open boundary (say < 10 km). In this cases, the tidal height along the open boundary is essentially uniform and can be prescribed analytically.
PREREQUISITES: This tutorial assumes that you have (1) downloaded ROMS, (2) installed it in your computer (or cluster), and (3) tested it by compiling and running one of the included test cases. If you haven't done all the above, check the "Getting Started" and "Tutorials" WikiROMS sections.
Geographical Preamble
This application is for Ship Harbour, an estuarine fjord in Nova Scotia, Canada. Click here to see the location in Google. Tides are semidiurnal and tidal range is 1.4 m on average and 2 m on spring tides. Ship Harbour is a long embayment (~7 km) with an open (EAST) boundary of ~1 km, therefore it is an ideal candidate for the type of analytical tidal forcing taught in this tutorial. For now I will only include tidal forcing, however, there is a river at the uppermost end of the estuary, which discharges freshwater at an annual average rate of 18 m3 s-1. I plan to write another tutorial on how to add a river, but for now is only tides.
Grid Generation
The first step to set up a realistic application is to set up a realistic grid. There are several software packages to generate ROMS grids; SEAGRID and GRIDGEN being the most popular ones. I used the much-less-fancy EASYGRID, which is a bit easier to get up and running.
DOWNLOAD HERE to get the GRID and INITIALIZATION files required for this tutorial. Alternatively, you can create your own grid and initialization files for this tutorial using the grid-generation software of your choice. You can download the bathymetry and coastline data for Ship Harbour Fjord HERE.
NOTE: I also wrote a tutorial for grid generation using EASYGRID. The output of that tutorial are the grid and initialization files used in this tutorial (see above). So if you want to start from scratch, you should begin with the EASYGRID tutorial.
Compiling ROMS with tides
Before we compile ROMS, we need to create a header (.h) file with the appropriate cpp definitions that turn ON the analytical tides. Also, we need to modify some analytical Fortran files, where we are going to specify how create the analytical tide.
Creating header (.h) file
Create a file named fjord.h and copy-paste the cpp definitions below:
/* ** ** Options for Tidal Fjord. ** ** Application flag: FJORD ** Input script: ocean_fjord.in */ #define UV_ADV /* use to turn ON or OFF advection terms */ #define UV_COR /* use to turn ON or OFF Coriolis term */ #define UV_QDRAG /* use to turn ON or OFF quadratic bottom friction */ #define UV_VIS4 /* use to turn ON or OFF harmonic horizontal mixing */ #define MIX_S_UV /* momentum mixing on s-surfaces */ #define DJ_GRADPS /* use if splines density Jacobian (Shchepetkin, 2000) */ #define TS_U3HADVECTION /* use if 3rd-order upstream horiz. advection */ #define TS_C4VADVECTION /* use if 4th-order centered vertical advection */ #define SOLVE3D /* use if solving 3D primitive equations */ #define SPLINES /* use to activate parabolic splines reconstruction */ /* */ #define ANA_SMFLUX /* use if analytical surface momentum stress */ #define ANA_STFLUX /* use if analytical surface temperature flux */ #define ANA_SSFLUX /* use if analytical surface salinity flux */ #define ANA_BSFLUX /* use if analytical bottom salinity flux */ #define ANA_BTFLUX /* use if analytical bottom temperature flux */ #define MASKING /* use if analytical masking is enabled */ #define EAST_FSCHAPMAN /* use if free-surface Chapman condition*/ #define EAST_M2FLATHER /* use if 2D momentum Flather condition*/ #define EAST_M3RADIATION /* use if 3D momentum radiation condition*/ #define EAST_TRADIATION /* use if tracers radiation condition*/ #define ANA_FSOBC /* use if analytical free-surface boundary conditions*/ #define ANA_M2OBC /* use if analytical 2D momentum boundary conditions*/
The last 6 cpp definitions are the responsible for the analytical tidal forcing.
If your open boundary is not EAST... change EAST_FSCHAPMAN, EAST_M2FLATHER, EAST_M3RADIATION and EAST_TRADIATION to represent your open boundary (e.g. WEST__FSCHAPMAN for a west open boundary... etc.).
Modify ana_fsobc.h
You will have to edit the file ana_fsobc.h (located in trunk/ROMS/Functionals) to tell ROMS to estimate surface height analytically when running the FJORD case. Below is a snippet of the end of the file... you have to ADD the green code.
#elif defined TEST_CHAN IF (WESTERN_EDGE) THEN cff=0.0_r8 DO j=JstrR,JendR BOUNDARY(ng)%zeta_west(j)=cff END DO END IF IF (EASTERN_EDGE) THEN cff=-0.4040_r8*MIN(time(ng)/150000.0_r8,1.0_r8) DO j=JstrR,JendR BOUNDARY(ng)%zeta_east(j)=cff END DO END IF #elif defined WEDDELL IF (WESTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period val=0.53_r8+(0.53_r8-0.48_r8)/REAL(Iend+1,r8) phase=(277.0_r8+(277.0_r8-240.0_r8)/REAL(Iend+1,r8))*deg2rad DO j=JstrR,JendR BOUNDARY(ng)%zeta_west(j)=fac*val*COS(omega-phase) END DO END IF IF (EASTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period val=0.53_r8+(0.53_r8-0.48_r8) phase=(277.0_r8+(277.0_r8-240.0_r8))*deg2rad DO j=JstrR,JendR BOUNDARY(ng)%zeta_east(j)=fac*val*COS(omega-phase) END DO END IF #elif defined FJORD IF (WESTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period val=0.53_r8+(0.53_r8-0.48_r8)/REAL(Iend+1,r8) phase=(277.0_r8+(277.0_r8-240.0_r8)/REAL(Iend+1,r8))*deg2rad DO j=JstrR,JendR BOUNDARY(ng)%zeta_west(j)=fac*val*COS(omega-phase) END DO END IF IF (EASTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period val=0.53_r8+(0.53_r8-0.48_r8) phase=(277.0_r8+(277.0_r8-240.0_r8))*deg2rad DO j=JstrR,JendR BOUNDARY(ng)%zeta_east(j)=fac*val*COS(omega-phase) END DO END IF #else IF (EASTERN_EDGE) THEN DO j=JstrR,JendR BOUNDARY(ng)%zeta_east(j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=JstrR,JendR BOUNDARY(ng)%zeta_west(j)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=IstrR,IendR BOUNDARY(ng)%zeta_south(i)=0.0_r8 END DO END IF IF (NORTHERN_EDGE) THEN DO i=IstrR,IendR BOUNDARY(ng)%zeta_north(i)=0.0_r8 END DO END IF #endif RETURN END SUBROUTINE ana_fsobc_tile
Modify ana_m2obc.h
You will have to edit the file ana_m2obc.h (located in trunk/ROMS/Functionals) to tell ROMS to estimate currents analytically when running the FJORD case. Below is a snippet of the end of the file... you have to ADD the green code.
#elif defined WEDDELL IF (WESTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period minor=0.0143_r8+(0.0143_r8+0.010_r8)/REAL(Iend+1,r8) major=0.1144_r8+(0.1144_r8-0.013_r8)/REAL(Iend+1,r8) phase=(318.0_r8+(318.0_r8-355.0_r8)/REAL(Iend+1,r8))*deg2rad angle=(125.0_r8+(125.0_r8- 25.0_r8)/REAL(Iend+1,r8))*deg2rad DO j=JstrR,JendR val=0.5_r8*(angler(Istr-1,j)+angler(Istr,j)) BOUNDARY(ng)%ubar_west(j)=fac*(major*COS(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & SIN(omega-phase)) END DO DO j=Jstr,JendR val=0.5_r8*(angler(Istr-1,j-1)+angler(Istr-1,j)) BOUNDARY(ng)%vbar_west(j)=fac*(major*SIN(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & COS(omega-phase)) END DO END IF IF (EASTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period minor=0.0143_r8+(0.0143_r8+0.010_r8) major=0.1144_r8+(0.1144_r8-0.013_r8) phase=(318.0_r8+(318.0_r8-355.0_r8))*deg2rad angle=(125.0_r8+(125.0_r8- 25.0_r8))*deg2rad DO j=JstrR,JendR val=0.5_r8*(angler(Iend,j)+angler(Iend+1,j)) BOUNDARY(ng)%ubar_east(j)=fac*(major*COS(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & SIN(omega-phase)) END DO DO j=Jstr,JendR val=0.5_r8*(angler(Iend+1,j-1)+angler(Iend+1,j)) BOUNDARY(ng)%vbar_east(j)=fac*(major*SIN(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & COS(omega-phase)) END DO END IF #elif defined FJORD IF (WESTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period minor=0.0143_r8+(0.0143_r8+0.010_r8)/REAL(Iend+1,r8) major=0.1144_r8+(0.1144_r8-0.013_r8)/REAL(Iend+1,r8) phase=(318.0_r8+(318.0_r8-355.0_r8)/REAL(Iend+1,r8))*deg2rad angle=(125.0_r8+(125.0_r8- 25.0_r8)/REAL(Iend+1,r8))*deg2rad DO j=JstrR,JendR val=0.5_r8*(angler(Istr-1,j)+angler(Istr,j)) BOUNDARY(ng)%ubar_west(j)=fac*(major*COS(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & SIN(omega-phase)) END DO DO j=Jstr,JendR val=0.5_r8*(angler(Istr-1,j-1)+angler(Istr-1,j)) BOUNDARY(ng)%vbar_west(j)=fac*(major*SIN(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & COS(omega-phase)) END DO END IF IF (EASTERN_EDGE) THEN fac=TANH((tdays(ng)-dstart)/1.0_r8) omega=2.0_r8*pi*time(ng)/(12.42_r8*3600.0_r8) ! M2 Tide period minor=0.0143_r8+(0.0143_r8+0.010_r8) major=0.1144_r8+(0.1144_r8-0.013_r8) phase=(318.0_r8+(318.0_r8-355.0_r8))*deg2rad angle=(125.0_r8+(125.0_r8- 25.0_r8))*deg2rad DO j=JstrR,JendR val=0.5_r8*(angler(Iend,j)+angler(Iend+1,j)) BOUNDARY(ng)%ubar_east(j)=fac*(major*COS(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & SIN(omega-phase)) END DO DO j=Jstr,JendR val=0.5_r8*(angler(Iend+1,j-1)+angler(Iend+1,j)) BOUNDARY(ng)%vbar_east(j)=fac*(major*SIN(angle-val)* & & COS(omega-phase)- & & minor*SIN(angle-val)* & & COS(omega-phase)) END DO END IF #else IF (EASTERN_EDGE) THEN DO j=JstrR,JendR BOUNDARY(ng)%ubar_east(j)=0.0_r8 END DO DO j=Jstr,JendR BOUNDARY(ng)%vbar_east(j)=0.0_r8 END DO END IF IF (WESTERN_EDGE) THEN DO j=JstrR,JendR BOUNDARY(ng)%ubar_west(j)=0.0_r8 END DO DO j=Jstr,JendR BOUNDARY(ng)%vbar_west(j)=0.0_r8 END DO END IF IF (SOUTHERN_EDGE) THEN DO i=Istr,IendR BOUNDARY(ng)%ubar_south(i)=0.0_r8 END DO DO i=IstrR,IendR BOUNDARY(ng)%vbar_south(i)=0.0_r8 END DO END IF IF (NORTHERN_EDGE) THEN DO i=Istr,IendR BOUNDARY(ng)%ubar_north(i)=0.0_r8 END DO DO i=IstrR,IendR BOUNDARY(ng)%vbar_north(i)=0.0_r8 END DO END IF #endif RETURN END SUBROUTINE ana_m2obc_tile
Tidal Forcing
Dummy text... No real information here yet