Radiant Heat Fluxes
Radiant Heat Fluxes
<wikitex>As was seen in Sea-Ice_Model#Thermodynamics, the model thermodynamics requires fluxes of latent and sensible heat and longwave and shortwave radiation. We follow the lead of Parkinson and Washington in computing these terms.</wikitex>
Shortwave Radiation
<wikitex> The Zillman equation for radiation under cloudless skies is: $$
Q_o = {S \cos^2 Z \over (\cos Z + 2.7) e \times 10^{-5} + 1.085
\cos Z + 0.10}
$$ where the variables are as in the table below. The cosine of the zenith angle is computed using the formula: $$
\cos Z = \sin \phi \sin \delta + \cos \phi \cos \delta \cos H\!A .
$$ The declination is $$
\delta = 23.44^{\circ} \times \cos \left[ (172 - {\rm day \, of \, year})
\times 2 \pi / 365 \right]
$$ and the hour angle is $$
H\!A = (12 \, {\rm hours - solar \, time}) \times \pi / 12 .
$$ The correction for cloudiness is given by $$
SW\!\!\downarrow = Q_o ( 1 - 0.6 c^3) .
$$ The cloud correction is optional since some sources of radiation contain it already.
| Variable | Value | Description |
|---|---|---|
| $(a,b)$ | (9.5, 7.66) | vapor pressure constants over ice |
| $(a,b)$ | (7.5, 35.86) | vapor pressure constants over water |
| $c$ | cloud cover fraction | |
| $C_E$ | $1.75 \times 10^{-3}$ | transfer coefficient for latent heat |
| $C_H$ | $1.75 \times 10^{-3}$ | transfer coefficient for sensible heat |
| $c_p$ | 1004 J kg$^{-1}$ K$^{-1}$ | specific heat of dry air |
| $\delta$ | declination | |
| $e$ | vapor pressure in pascals | |
| $e_s$ | saturation vapor pressure | |
| $\epsilon$ | 0.622 | ratio of molecular weight of water to dry air |
| $H\!A$ | hour angle | |
| $L$ | $2.5 \times 10^6$ J kg$^{-1}$ | latent heat of vaporization |
| $L$ | $2.834 \times 10^6$ J kg$^{-1}$ | latent heat of sublimation |
| $\phi$ | latitude | |
| $Q_o$ | incoming radiation for cloudless skies | |
| $q_s$ | surface specific humidity | |
| $q_{10 \rm m}$ | 10 meter specific humidity | |
| $\rho_a$ | air density | |
| $S$ | 1353 W m$^{-2}$ | solar constant |
| $\sigma$ | $5.67 \times 10^{-8}$ W m$^{-2}$ K$^{-4}$ | Stefan-Boltzmann constant |
| $T_a$ | air temperature | |
| $T_d$ | dew point temperature | |
| $T_{s\!f\!c}$ | surface temperature of the water/ice/snow | |
| $V_{wg}$ | geostrophic wind speed | |
| $Z$ | solar zenith angle |
</wikitex>
Longwave Radiation
<wikitex> The clear sky formula for incoming longwave radiation is given by: $$
F\!\downarrow\, = \sigma T_a^4 \left\{1 - 0.261 \exp \left[ -7.77 \times 10^{-4}
(273 - T_a) ^2 \right] \right\}
$$ while the cloud correction is given by: $$
LW\!\downarrow\, = (1 + 0.275 c)\, F\!\downarrow .
$$ Note that the CORE forcing files contain incoming longwave radiation so only the outgoing needs to be computed. </wikitex>
Sensible heat
<wikitex> The sensible heat is given by the standard aerodynamic formula: $$
H\!\downarrow\, = \rho_a c_p C_H V_{wg} (T_a - T_{s\!f\!c}) .
$$ </wikitex>
Latent Heat
<wikitex> The latent heat depends on the vapor pressure and the saturation vapor pressure given by: $$ \eqalign{
e &= 611 \times 10^{a(T_d - 273.16) / (T_d - b)} \cr
e_s &= 611 \times 10^{a(T_{s\!f\!c} - 273.16) / (T_{s\!f\!c} - b)}
} $$ The vapor pressures are used to compute specific humidities according to: $$ \eqalign{
q_{10 \rm m} &= {\epsilon e \over p - (1 - \epsilon) e} \cr
q_s &= {\epsilon e_s \over p - (1 - \epsilon) e_s}
} $$ The latent heat is also given by a standard aerodynamic formula: $$
LE\!\downarrow\, = \rho_a L C_E V_{wg} (q_{10 \rm m} - q_s) .
$$ Note that these need to be computed independently for the ice-covered and ice-free portions of each gridbox since the empirical factors $a$ and $b$ and the factor $L$ differ depending on the surface type. </wikitex>