Terrain-Following Coordinate Transformation: Difference between revisions
No edit summary   (change visibility)   | 
				No edit summary   (change visibility)   | 
				||
| Line 1: | Line 1: | ||
<div class="title">Terrain-Following Coordinate Transformation</div>  | <div class="title">Terrain-Following Coordinate Transformation</div>  | ||
From the point of view of the computational model, it is highly  | |||
convenient to introduce a stretched vertical coordinate system which  | convenient to introduce a stretched vertical coordinate system which  | ||
essentially "flattens out" the variable bottom at   | essentially "flattens out" the variable bottom at <math>z = -h(x,y)</math>.  | ||
Such "  | Such "<math>\sigma</math>" coordinate systems have long been used, with slight  | ||
appropriate modification, in both meteorology and oceanography  | appropriate modification, in both meteorology and oceanography  | ||
[e.g., Phillips (1957) and Freeman et al. (1972)].  | [e.g., Phillips (1957) and Freeman et al. (1972)].  | ||
To proceed, we make the coordinate transformation:  | To proceed, we make the coordinate transformation:  | ||
<math display="block"> \begin{align} \hat{x} &= x \\  | |||
\hat{y} &= y \  | \hat{y} &= y \\  | ||
\sigma &= \sigma(x,y,z) \  | \sigma &= \sigma(x,y,z) \\  | ||
z &= z(x,y,\sigma) \  | z &= z(x,y,\sigma) \\  | ||
\hat{t} &= t \  | \hat{t} &= t \end{align} </math> <!--\eqno{(1)}-->  | ||
See [[Vertical S-coordinate]] for the form of   | See [[Vertical S-coordinate]] for the form of <math>\sigma</math> used here. Also, see [[Bibliography#ShchepetkinAF_2005a | Shchepetkin and McWilliams, 2005]] for a discussion about the nature of this form of <math>\sigma</math> and how it  | ||
differs from that used in SCRUM.  | differs from that used in SCRUM.  | ||
In the stretched system, the vertical coordinate   | In the stretched system, the vertical coordinate <math>\sigma</math> spans the range <math>-1 \leq \sigma \leq 0</math>; we are therefore left with level upper (<math>\sigma = 0</math>) and lower (<math>\sigma = -1</math>) bounding surfaces.  The chain rules for this transformation are:  | ||
<math display="block"> \begin{align} \left( { \partial \over \partial x } \right)_z &= \left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma} \\ \\  | |||
\  | \left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \\ \\  | ||
\left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \  | { \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} =  { 1 \over H_z } { \partial \over \partial \sigma } \end{align} </math> <!--\eqno{(2)-->  | ||
\  | |||
{ \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} =  { 1 \over H_z } { \partial \over \partial \sigma } \  | |||
where  | where  | ||
<math display="block">H_z \equiv { \partial z \over \partial \sigma } </math><!--\eqno{(3)}-->  | |||
As a trade-off for this geometric  | As a trade-off for this geometric simplification, the [[Equations of Motion|dynamic equations]] become somewhat more complicated.  The resulting dynamic equations, after dropping the  | ||
simplification, the [[Equations of Motion|dynamic equations]] become somewhat more  | carats, are:  | ||
complicated.  The resulting dynamic equations   | |||
carats:  | |||
<math display="block">{\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u </math><!--\eqno{(4)}-->  | |||
<math display="block">\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v </math><!--\eqno{(5)}-->  | |||
<math display="block">\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} </math><!--\eqno{(6)}-->  | |||
<math display="block">\rho = \rho(T,S,P) </math><!--\eqno{(7)}-->  | |||
<math display="block">\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) </math><!--\eqno{(8)}-->  | |||
<math display="block">{\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 </math><!--\eqno{(9)}-->  | |||
where  | where  | ||
<math display="block">\vec{v} = (u,v,\Omega) </math><!--\eqno{(10)}-->  | |||
<math display="block">\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v  | |||
   \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} \eqno{(11)}  |    \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} </math><!--\eqno{(11)}-->  | ||
The vertical velocity in   | The vertical velocity in <math>\sigma</math> coordinates is  | ||
<math display="block">\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] </math><!--\eqno{(12)}-->  | |||
and  | and  | ||
<math display="block">w = {\partial z \over \partial t} + u {\partial z \over \partial x}  | |||
   + v {\partial z \over \partial y} + \Omega H_z \eqno{(13)}  |    + v {\partial z \over \partial y} + \Omega H_z </math><!--\eqno{(13)}-->  | ||
==Vertical Boundary Conditions==  | ==Vertical Boundary Conditions==  | ||
In the stretched coordinate system, the vertical boundary conditions  | |||
become:  | become:  | ||
top (  | top (<math>\sigma = 0</math>):  | ||
<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_s (x,y,t) \\  | |||
\left( \frac{K_m}{H_z}\right)  | \left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_s(x,y,t)\\  | ||
\left( \frac{K_C}{H_z}\right)  | \left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= {Q_C \over \rho_o c_P}\\  | ||
\Omega &= 0 \end{align}</math><!--\eqno{(14)}-->  | |||
and bottom (  | and bottom (<math>\sigma = -1</math>):  | ||
<math display="block"> \begin{align} \left( \frac{K_m}{H_z}\right) \frac{\partial u}{\partial \sigma} &= \tau^x_b (x,y,t) \\  | |||
\left( \frac{K_m}{H_z}\right)  | \left( \frac{K_m}{H_z}\right) \frac{\partial v}{\partial \sigma} &= \tau^y_b (x,y,t) \\  | ||
\left( \frac{K_C}{H_z}\right)  | \left( \frac{K_C}{H_z}\right) \frac{\partial C}{\partial \sigma} &= 0 \\  | ||
\Omega &= 0 \end{align}</math><!--\eqno{(15)}-->  | |||
Note the simplification of the boundary conditions on vertical  | Note the simplification of the boundary conditions on vertical  | ||
velocity that arises from the   | velocity that arises from the <math>\sigma</math> coordinate transformation.  | ||
Revision as of 17:15, 31 July 2015
From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at . Such "" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:
See Vertical S-coordinate for the form of used here. Also, see Shchepetkin and McWilliams, 2005 for a discussion about the nature of this form of and how it differs from that used in SCRUM.
In the stretched system, the vertical coordinate spans the range ; we are therefore left with level upper () and lower () bounding surfaces. The chain rules for this transformation are:
where
As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations, after dropping the carats, are:
The vertical velocity in coordinates is
and
Vertical Boundary Conditions
In the stretched coordinate system, the vertical boundary conditions become:
top ():
and bottom ():
Note the simplification of the boundary conditions on vertical velocity that arises from the coordinate transformation.