cppdefs.h: Difference between revisions
No edit summary (change visibility) |
No edit summary (change visibility) |
||
Line 110: | Line 110: | ||
|} | |} | ||
=== | ===Options for pressure gradient algorithm=== | ||
:If no option is selected, the pressure gradient term is computed using standard density Jacobian algorithm. Notice that there are two quartic pressure Jacobian options. They differ on how the WENO reconciliation step is done and in the monotonicity constraining algorithms. | :If no option is selected, the pressure gradient term is computed using standard density Jacobian algorithm. Notice that there are two quartic pressure Jacobian options. They differ on how the WENO reconciliation step is done and in the monotonicity constraining algorithms. | ||
Line 135: | Line 135: | ||
|} | |} | ||
=== | ===Options for model coupling=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 148: | Line 148: | ||
===Options for atmospheric boundary layer=== | ===Options for atmospheric boundary layer=== | ||
:It is possible to compute surface wind stress and surface net heat and freshwater fluxes form atmospheric fields using the bulk flux parameterization of [[Bibliography#FairallCW_1996a | Fairall et al. (1996)]]. There are three ways to provide longwave radiation in the atmospheric boundary layer: (i) compute the net longwave radiation internally using the Berliand (1952) equation ([[LONGWAVE]]) as function of air temperature, sea surface temperature, relative humidity, and cloud fraction; (ii) provide (read) longwave downwelling radiation only and then add outgoing longwave radiation ([[LONGWAVE_OUT]]) as a function of the model sea surface temperature; and (iii) provide net longwave radiation (default). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 201: | Line 197: | ||
|} | |} | ||
=== | ===Options for model configuration=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 216: | Line 212: | ||
|- | |- | ||
| [[BODYFORCE]] | | [[BODYFORCE]] | ||
| use if applying stresses as | | use if applying stresses as a body force | ||
|- | |- | ||
| [[PROFILE]] | | [[PROFILE]] | ||
Line 283: | Line 279: | ||
===Options for analytical fields configuration=== | ===Options for analytical fields configuration=== | ||
The model may be configured, initialized, and forced with analytical expressions. These analytical expressions are coded in several header files which are included in [[analytical.F]]. The analytical header files in the '''ROMS/Functionals''' sub-directory correspond to all the distributed idealized test cases. Another set of analytical header files templates are provided in the '''User/Functionals''' sub-directory. | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 337: | Line 333: | ||
|- | |- | ||
| [[ANA_PASSIVE]] | | [[ANA_PASSIVE]] | ||
| use if analytical initial | | use if analytical initial conditions for inert tracers | ||
|- | |- | ||
| [[ANA_PERTURB]] | | [[ANA_PERTURB]] | ||
Line 409: | Line 405: | ||
|- | |- | ||
| [[MIX_GEO_UV]] | | [[MIX_GEO_UV]] | ||
| use if mixing | | use if mixing along geopotential (constant Z) surfaces | ||
|} | |} | ||
Line 424: | Line 420: | ||
|- | |- | ||
| [[MIX_GEO_TS]] | | [[MIX_GEO_TS]] | ||
| use if mixing | | use if mixing along geopotential (constant depth) surfaces | ||
|- | |- | ||
| [[MIX_ISO_TS]] | | [[MIX_ISO_TS]] | ||
| use if mixing | | use if mixing along epineutral (constant density) surfaces | ||
|} | |} | ||
===Options for vertical mixing of momentum and tracers=== | ===Options for vertical mixing of momentum and tracers=== | ||
:Activate only one closure. | :There are several vertical mixing parameterizations in ROMS. Activate only one closure. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 446: | Line 442: | ||
|- | |- | ||
| [[LMD_MIXING]] | | [[LMD_MIXING]] | ||
| use if Large et al. (1994) | | use if [[Bibliography#LargeWG_1994a | Large et al. (1994)]] K-profile vertical parameterization | ||
|} | |} | ||
===Options for the Generic Length-Scale closure=== | ===Options for the Generic Length-Scale closure=== | ||
:(Warner et al., 2005 | :The Generic Length Scale (GLS) uses two prognostic equations for turbulent kinetic energy (TKE) and length scale (ψ) variables. The GLS may be configured as k-kl, k-ε k-ω by tuning several parameters in [[ocean.in]], see [[Bibliography#WarnerJC_2005a | Warner et al., 2005]] for more details. The default horizontal advection is third-order upstream bias. The default vertical advection is 4th-order centered advection. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 487: | Line 483: | ||
===Options for the Mellor/Yamada level 2.5 closure=== | ===Options for the Mellor/Yamada level 2.5 closure=== | ||
:The default horizontal advection is third-order upstream bias. The default vertical advection is 4th-order centered advection. | :This is the original closure proposed by [[Bibliography#MellorGL_1982 | Mellor and Yamda (1982)]] and latter modified by [[Bibliography#GalperinG_1988a | Galperin et al. (1994)]]. The default horizontal advection is third-order upstream bias. The default vertical advection is 4th-order centered advection. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 533: | Line 529: | ||
===Options for Richardson number smoothing=== | ===Options for Richardson number smoothing=== | ||
:if [[SPLINES]] is not activated | :Mostly all vertical mixing parameterization are based on the Richardson Number (buoyancy/shear ratio). This computation is usually noisy and requires some smoothing. Use the options below if [[SPLINES]] is not activated. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 546: | Line 542: | ||
===Options for Meinte Blass bottom boundary layer closure=== | ===Options for Meinte Blass bottom boundary layer closure=== | ||
The Options [[MB_Z0BL]] and [[MB_Z0RIP]] should be activated concurrently. | :The Options [[MB_Z0BL]] and [[MB_Z0RIP]] should be activated concurrently. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 616: | Line 612: | ||
| [[SSW_Z0RIP]] | | [[SSW_Z0RIP]] | ||
| use if bedform roughness from ripples | | use if bedform roughness from ripples | ||
|} | |} | ||
Line 678: | Line 662: | ||
|} | |} | ||
* ''' | * '''Options for open boundary conditions''': | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 685: | Line 669: | ||
| [[RADIATION_2D]] | | [[RADIATION_2D]] | ||
| use if tangential phase speed in radiation conditions | | use if tangential phase speed in radiation conditions | ||
|- | |||
| [[SPONGE]] | |||
| use if enhanced viscosity/diffusion areas | |||
|} | |} | ||
=== | ===Options for eastern edge open boundary conditions=== | ||
:Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 756: | Line 744: | ||
|} | |} | ||
=== | ===Options for western edge open boundary conditions=== | ||
:Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 825: | Line 814: | ||
|} | |} | ||
=== | ===Options for northern edge open boundary conditions=== | ||
:Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 894: | Line 884: | ||
|} | |} | ||
=== | ===Options for southern edge open boundary conditions=== | ||
:Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 965: | Line 956: | ||
===Options for tidal forcing at open boundaries=== | ===Options for tidal forcing at open boundaries=== | ||
:The tidal data is processed in terms of tidal components, classified by period. The tidal forcing is computed for the full horizontal grid. If requested, the tidal forcing is added to the processed open boundary data. Both tidal elevation and tidal currents are required to force the model properly. However, if only the tidal elevation is available, the tidal | :The tidal data is processed in terms of tidal components, classified by period. The tidal forcing is computed for the full horizontal grid. If requested, the tidal forcing is added to the processed open boundary data. Both tidal elevation and tidal currents are required to force the model properly. However, if only the tidal elevation is available, the tidal | ||
currents at the open boundary can be estimated | currents at the open boundary can be estimated using reduced physics equations. Only the pressure gradient, Coriolis, and surface and bottom stresses terms are considered at the open boundary. See [[u2dbc_im.F]] or [[v2dbc_im.F]] for details. Notice that there is an additional option ([[FSOBC_REDUCED]]) for the computation of the pressure gradient term in both Flather or reduced physics conditions (*_M2FLATHER, *_M2REDUCED). | ||
reduced physics conditions (*_M2FLATHER, *_M2REDUCED). | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 984: | Line 974: | ||
|- | |- | ||
| [[ADD_FSOBC]] | | [[ADD_FSOBC]] | ||
| use to add tidal elevation to processed | | use to add tidal elevation to processed open boundary conditions data | ||
|- | |- | ||
| [[ADD_M2OBC]] | | [[ADD_M2OBC]] | ||
| use to add tidal currents to processed | | use to add tidal currents to processed open boundary conditions data | ||
|} | |} | ||
Line 1,009: | Line 999: | ||
===Options to nudge climatology data=== | ===Options to nudge climatology data=== | ||
: | :These options are used primarily on sponge areas. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,027: | Line 1,017: | ||
|} | |} | ||
===Optimal Interpolation or nudging data assimilation | ===Options for Optimal Interpolation or nudging data assimilation=== | ||
:The Optimal Interpolation (OI) assimilation is intermittent whereas nudging is continuous (observations are time interpolated). If applicable, choose only one option for each field to update: either OI assimilation or nudging. | :The Optimal Interpolation (OI) assimilation is intermittent whereas nudging is continuous (observations are time interpolated). If applicable, choose only one option for each field to update: either OI assimilation or nudging. | ||
Line 1,067: | Line 1,057: | ||
|} | |} | ||
===ROMS/TOMS driver | ===Options for ROMS/TOMS driver=== | ||
:Choose only one option. | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,231: | Line 1,222: | ||
|} | |} | ||
===Fasham-type | ===Options for Fasham-type biological model=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,261: | Line 1,252: | ||
|} | |} | ||
===NPZD | ===Options for NPZD biological model=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,273: | Line 1,264: | ||
|} | |} | ||
=== | ===Options for bio-optical EcoSim model=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,282: | Line 1,273: | ||
|} | |} | ||
=== | ===Options for sediment transport model=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,324: | Line 1,315: | ||
|} | |} | ||
=== | ===Options for nearshore stresses and shallow water configurations=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,336: | Line 1,327: | ||
|} | |} | ||
===NetCDF input | ===Options for NetCDF input and output=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,363: | Line 1,354: | ||
|} | |} | ||
=== | ===Options for idealized test problems=== | ||
:These tests are defined using analytical expressions. Choose only one configuration. | |||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,462: | Line 1,454: | ||
|} | |} | ||
=== | ===Options for climatological applications=== | ||
: | :These applications require input NetCDF files which can be downloaded [http://www.myroms.org/Datasets | here]. | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | ||
Line 1,472: | Line 1,464: | ||
|} | |} | ||
=== | ===Options for selected realistic applications=== | ||
{| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" | {| border="0" cellspacing="0" style="padding-left:3.5em; padding-top:10px; padding-bottom:10px;" |
Revision as of 01:56, 1 June 2007
Internal header file containing all the C-preprocessing options that defines a particular application. It is included at the top of every ROMS source file.
Options associated with momentum equations
- The default horizontal and vertical advection is 4th-order centered. Use the splines vertical advection option is shallow, high vertical resolution applications.
UV_ADV | use to activate advection terms |
UV_COR | use to activate Coriolis term |
UV_C2ADVECTION | use to activate 2nd-order centered advection |
UV_C4ADVECTION | use to activate 4th-order centered advection |
UV_SADVECTION | use to activate splines vertical advection |
UV_VIS2 | use to activate harmonic horizontal mixing |
UV_VIS4 | use to activate biharmonic horizontal mixing |
UV_LOGDRAG | use to activate logarithmic bottom friction |
UV_LDRAG | use to activate linear bottom friction |
UV_QDRAG | use to activate quadratic bottom friction |
UV_PSOURCE | use to activate point Sources/Sinks |
Options associated with tracers equations
- The default horizontal and vertical advection is 4th-order centered. Use the splines vertical advection option is shallow, high vertical resolution applications.
TS_A4HADVECTION | use if 4th-order Akima horizontal advection |
TS_C2HADVECTION | use if 2nd-order centered horizontal advection |
TS_C4HADVECTION | use if 4th-order centered horizontal advection |
TS_MPDATA | use if recursive MPDATA 3D advection |
TS_U3HADVECTION | use if 3rd-order upstream horiz. advection |
TS_A4VADVECTION | use if 4th-order Akima vertical advection |
TS_C2VADVECTION | use if 2nd-order centered vertical advection |
TS_C4VADVECTION | use if 4th-order centered vertical advection |
TS_SVADVECTION | use if splines vertical advection |
TS_DIF2 | use to turn ON or OFF harmonic horizontal mixing |
TS_DIF4 | use to turn ON or OFF biharmonic horizontal mixing |
TS_FIXED | use if diagnostic run, no evolution of tracers |
T_PASSIVE | use if inert passive tracers (dyes, etc) |
SALINITY | use if having salinity |
NONLIN_EOS | use if using nonlinear equation of state |
QCORRECTION | use if net heat flux correction |
SCORRECTION | use if freshwater flux correction |
SOLAR_SOURCE | use if solar radiation source term |
SRELAXATION | use if salinity relaxation as a freshwater flux |
TS_PSOURCE | use to turn ON or OFF point Sources/Sinks |
Options for pressure gradient algorithm
- If no option is selected, the pressure gradient term is computed using standard density Jacobian algorithm. Notice that there are two quartic pressure Jacobian options. They differ on how the WENO reconciliation step is done and in the monotonicity constraining algorithms.
DJ_GRADPS | use if splines density Jacobian (Shchepetkin, 2000) |
PJ_GRADP | use if finite volume Pressure Jacobian (Lin,1997) |
PJ_GRADPQ2 | use if quartic 2 Pressure Jacobian (Shchepetkin,2000) |
PJ_GRADPQ4 | use if quartic 4 Pressure Jacobian (Shchepetkin,2000) |
WJ_GRADP | use if weighted density Jacobian (Song,1998) |
ATM_PRESS | use to impose atmospheric pressure onto sea surface |
Options for model coupling
SWAN_COUPLING | use if two-way coupling to SWAN |
WRF_COUPLING | use if two-way coupling to WRF |
Options for atmospheric boundary layer
- It is possible to compute surface wind stress and surface net heat and freshwater fluxes form atmospheric fields using the bulk flux parameterization of Fairall et al. (1996). There are three ways to provide longwave radiation in the atmospheric boundary layer: (i) compute the net longwave radiation internally using the Berliand (1952) equation (LONGWAVE) as function of air temperature, sea surface temperature, relative humidity, and cloud fraction; (ii) provide (read) longwave downwelling radiation only and then add outgoing longwave radiation (LONGWAVE_OUT) as a function of the model sea surface temperature; and (iii) provide net longwave radiation (default).
BULK_FLUXES | use if bulk fluxes computation |
COOL_SKIN | use if cool skin correction |
LONGWAVE | use if computing net longwave radiation |
LONGWAVE_OUT | use if computing ougoing longwave radiation |
EMINUSP | use if computing E-P |
Options for wave roughness formulation in bulk fluxes
COARE_TAYLOR_YELLAND | use Taylor and Yelland (2001) relation |
COARE_OOST | use Oost et al (2002) relation |
DEEPWATER_WAVES | use Deep water waves approximation |
Options for shortwave radiation
- The shortwave radiation can be computed using the global albedo equation with a cloud correction. Alternatively, input shortwave radiation data computed from averaged data (with snapshots greater or equal than 24 hours) can be modulated by the local diurnal cycle which is a function longitude, latitude and year day.
ALBEDO | use if albedo equation for shortwave radiation |
DIURNAL_SRFLUX | use to impose shortwave radiation local diurnal cycle |
Options for model configuration
SOLVE3D | use if solving 3D primitive equations |
CURVGRID | use if curvilinear coordinates grid |
MASKING | use if land/sea masking |
BODYFORCE | use if applying stresses as a body force |
PROFILE | use if time profiling |
AVERAGES | use if writing out time-averaged data |
AVERAGES_AKV | use if writing out time-averaged AKv |
AVERAGES_AKT | use if writing out time-averaged AKt |
AVERAGES_AKS | use if writing out time-averaged AKs |
AVERAGES_BEDLOAD | use if writing out time-averaged bed load |
AVERAGES_FLUXES | use if writing out time-averaged fluxes |
AVERAGES_NEARSHORE | use if writing out time-averaged nearshore stresses |
AVERAGES_QUADRATIC | use if writing out quadratic terms |
DIAGNOSTICS_BIO | use if writing out biological diagnostics |
DIAGNOSTICS_UV | use if writing out momentum diagnostics |
DIAGNOSTICS_TS | use if writing out tracer diagnostics |
ICESHELF | use if including ice shelf cavities |
SPHERICAL | use if analytical spherical grid |
SPLINES | use to activate parabolic splines reconstruction of vertical derivatives |
STATIONS | use if writing out station data |
STATIONS_CGRID | use if extracting data at native C-grid |
Options for Lagrangian drifters
FLOATS | use to activate simulated Lagrangian drifters |
FLOAT_VWALK | use if vertical random walk |
Options for analytical fields configuration
The model may be configured, initialized, and forced with analytical expressions. These analytical expressions are coded in several header files which are included in analytical.F. The analytical header files in the ROMS/Functionals sub-directory correspond to all the distributed idealized test cases. Another set of analytical header files templates are provided in the User/Functionals sub-directory.
ANA_BIOLOGY | use if analytical biology initial conditions |
ANA_BPFLUX | use if analytical bottom passive tracers fluxes |
ANA_BSFLUX | use if analytical bottom salinity flux |
ANA_BTFLUX | use if analytical bottom temperature flux |
ANA_CLOUD | use if analytical cloud fraction |
ANA_DIAG | use if customized diagnostics |
ANA_FSOBC | use if analytical free-surface boundary conditions |
ANA_GRID | use if analytical model grid set-up |
ANA_HUMIDITY | use if analytical surface air humidity |
ANA_INITIAL | use if analytical initial conditions |
ANA_M2CLIMA | use if analytical 2D momentum climatology |
ANA_M2OBC | use if analytical 2D momentum boundary conditions |
ANA_M3CLIMA | use if analytical 3D momentum climatology |
ANA_M3OBC | use if analytical 3D momentum boundary conditions |
ANA_MASK | use if analytical Land/Sea masking |
ANA_PAIR | use if analytical surface air pressure |
ANA_PASSIVE | use if analytical initial conditions for inert tracers |
ANA_PERTURB | use if analytical perturbation of initial conditions |
ANA_PSOURCE | use if analytical point Sources/Sinks |
ANA_RAIN | use if analytical rain fall rate |
ANA_SEDIMENT | use if analytical sediment initial fields |
ANA_SMFLUX | use if analytical surface momentum stress |
ANA_SPFLUX | use if analytical surface passive tracers fluxes |
ANA_SPINNING | use if analytical time-varying rotation force |
ANA_SRFLUX | use if analytical surface shortwave radiation flux |
ANA_SSFLUX | use if analytical surface salinity flux |
ANA_SSH | use if analytical sea surface height |
ANA_SSS | use if analytical sea surface salinity |
ANA_SST | use if analytical SST and dQdSST |
ANA_STFLUX | use if analytical surface temperature flux |
ANA_TAIR | use if analytical surface air temperature |
ANA_TCLIMA | use if analytical tracers climatology |
ANA_TOBC | use if analytical tracers boundary conditions |
ANA_VMIX | use if analytical vertical mixing coefficients |
ANA_WINDS | use if analytical surface winds |
ANA_WWAVE | use if analytical wind induced waves |
Options for horizontal mixing of momentum
VISC_GRID | use to scale viscosity coefficient by grid size |
MIX_S_UV | use if mixing along constant S-surfaces |
MIX_GEO_UV | use if mixing along geopotential (constant Z) surfaces |
Options for horizontal mixing of tracers
DIFF_GRID | use to scale diffusion coefficients by grid size |
MIX_S_TS | use if mixing along constant S-surfaces |
MIX_GEO_TS | use if mixing along geopotential (constant depth) surfaces |
MIX_ISO_TS | use if mixing along epineutral (constant density) surfaces |
Options for vertical mixing of momentum and tracers
- There are several vertical mixing parameterizations in ROMS. Activate only one closure.
BVF_MIXING | use if Brunt-Vaisala frequency mixing |
GLS_MIXING | use if Generic Length-Scale mixing |
MY25_MIXING | use if Mellor/Yamada Level-2.5 closure |
LMD_MIXING | use if Large et al. (1994) K-profile vertical parameterization |
Options for the Generic Length-Scale closure
- The Generic Length Scale (GLS) uses two prognostic equations for turbulent kinetic energy (TKE) and length scale (ψ) variables. The GLS may be configured as k-kl, k-ε k-ω by tuning several parameters in ocean.in, see Warner et al., 2005 for more details. The default horizontal advection is third-order upstream bias. The default vertical advection is 4th-order centered advection.
CANUTO_A | use if Canuto A-stability function formulation |
CANUTO_B | use if Canuto B-stability function formulation |
CHARNOK | use if Charnok surface roughness from wind stress |
CRAIG_BANNER | use if Craig and Banner wave breaking surface flux |
KANTHA_CLAYSON | use if Kantha and Clayson stability function |
K_C2ADVECTION | use if 2nd-order centered advection |
K_C4ADVECTION | use if 4th-order centered advection |
N2S2_HORAVG | use if horizontal smoothing of buoyancy/shear |
ZOS_HSIG | use if surface roughness from wave amplitude |
TKE_WAVEDISS | use if wave breaking surface flux from wave amplitude |
Options for the Mellor/Yamada level 2.5 closure
- This is the original closure proposed by Mellor and Yamda (1982) and latter modified by Galperin et al. (1994). The default horizontal advection is third-order upstream bias. The default vertical advection is 4th-order centered advection.
N2S2_HORAVG | use if horizontal smoothing of buoyancy/shear |
KANTHA_CLAYSON | use if Kantha and Clayson stability function |
K_C2ADVECTION | use if 2nd-order centered advection |
K_C4ADVECTION | use if 4th-order centered advection |
Options for K-profile vertical mixing parameterization
LMD_BKPP | use if bottom boundary layer KPP mixing |
LMD_CONVEC | use to add convective mixing due to shear instability |
LMD_DDMIX | use to add double-diffusive mixing |
LMD_NONLOCAL | use if nonlocal transport |
LMD_RIMIX | use to add diffusivity due to shear instability |
LMD_SHAPIRO | use if Shapiro filtering boundary layer depth |
LMD_SKPP | use if surface boundary layer KPP mixing |
Options for Richardson number smoothing
- Mostly all vertical mixing parameterization are based on the Richardson Number (buoyancy/shear ratio). This computation is usually noisy and requires some smoothing. Use the options below if SPLINES is not activated.
RI_HORAVG | use if horizontal Richardson number smoothing |
RI_VERAVG | use if vertical Richardson number smoothing |
Options for Meinte Blass bottom boundary layer closure
MB_BBL | use if Meinte Blaas BBL closure |
MB_CALC_ZNOT | use if computing bottom roughness internally |
MB_CALC_UB | use if computing bottom orbital velocity internally |
MB_Z0BIO | use if biogenic bedform roughness for ripples |
MB_Z0BL | use if bedload roughness for ripples |
MB_Z0RIP | use if bedform roughness for ripples |
Options for Styles and Glenn (2000) bottom boundary layer closure
SG_BBL | use if Styles and Glenn (2000) BBL closure |
SG_CALC_ZNOT | use if computing bottom roughness internally |
SG_CALC_UB | use if computing bottom orbital velocity internally |
SG_LOGINT | use if logarithmic interpolation of (Ur,Vr) |
Options for the Sherwood/Signell/Warner bottom boundary layer closure
SSW_BBL | use if Sherwood et al. BBL closure |
SSW_CALC_ZNOT | use if computing bottom roughness internally |
SSW_LOGINT | use if logarithmic interpolation of (Ur,Vr) |
SSW_CALC_UB | use if computing bottom orbital velocity internally |
SSW_FORM_DRAG_COR | use to activate form drag coefficient |
SSW_Z0BIO | use if biogenic bedform roughness from ripples |
SSW_Z0BL | use if bedload roughness for ripples |
SSW_Z0RIP | use if bedform roughness from ripples |
Options to impose mass conservation at the open boundary
EAST_VOLCONS | use if Eastern edge mass conservation enforcement |
WEST_VOLCONS | use if Western edge mass conservation enforcement |
NORTH_VOLCONS | use if Northern edge mass conservation enforcement |
SOUTH_VOLCONS | use if Southern edge mass conservation enforcement |
Options for periodic boundary conditions
EW_PERIODIC | use if East-West periodic boundaries |
NS_PERIODIC | use if North-South periodic boundaries |
Options for closed boundary conditions
EASTERN_WALL | use if Eastern edge, closed wall condition |
WESTERN_WALL | use if Western edge, closed wall condition |
NORTHERN_WALL | use if Northern edge, closed wall condition |
SOUTHERN_WALL | use if Southern edge, closed wall condition |
- Options for open boundary conditions:
RADIATION_2D | use if tangential phase speed in radiation conditions |
SPONGE | use if enhanced viscosity/diffusion areas |
Options for eastern edge open boundary conditions
- Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow).
EAST_FSCHAPMAN | use if free-surface Chapman condition |
EAST_FSGRADIENT | use if free-surface gradient condition |
EAST_FSRADIATION | use if free-surface radiation condition |
EAST_FSNUDGING | use if free-surface passive/active nudging term |
EAST_FSCLAMPED | use if free-surface clamped condition |
EAST_M2FLATHER | use if 2D momentum Flather condition |
EAST_M2GRADIENT | use if 2D momentum gradient condition |
EAST_M2RADIATION | use if 2D momentum radiation condition |
EAST_M2REDUCED | use if 2D momentum reduced-physics |
EAST_M2NUDGING | use if 2D momentum passive/active nudging term |
EAST_M2CLAMPED | use if 2D momentum clamped condition |
EAST_M3GRADIENT | use if 3D momentum gradient condition |
EAST_M3RADIATION | use if 3D momentum radiation condition |
EAST_M3NUDGING | use if 3D momentum passive/active nudging term |
EAST_M3CLAMPED | use if 3D momentum clamped condition |
EAST_KGRADIENT | use if TKE fields gradient condition |
EAST_KRADIATION | use if TKE fields radiation condition |
EAST_TGRADIENT | use if tracers gradient condition |
EAST_TRADIATION | use if tracers radiation condition |
EAST_TNUDGING | use if tracers passive/active nudging term |
EAST_TCLAMPED | use if tracers clamped condition |
Options for western edge open boundary conditions
- Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow).
WEST_FSCHAPMAN | use if free-surface Chapman condition |
WEST_FSGRADIENT | use if free-surface gradient condition |
WEST_FSRADIATION | use if free-surface radiation condition |
WEST_FSNUDGING | use if free-surface passive/active nudging term |
WEST_FSCLAMPED | use if free-surface clamped condition |
WEST_M2FLATHER | use if 2D momentum Flather condition |
WEST_M2GRADIENT | use if 2D momentum gradient condition |
WEST_M2RADIATION | use if 2D momentum radiation condition |
WEST_M2REDUCED | use if 2D momentum reduced-physics |
WEST_M2NUDGING | use if 2D momentum passive/active nudging term |
WEST_M2CLAMPED | use if 2D momentum clamped condition |
WEST_M3GRADIENT | use if 3D momentum gradient condition |
WEST_M3RADIATION | use if 3D momentum radiation condition |
WEST_M3NUDGING | use if 3D momentum passive/active nudging term |
WEST_M3CLAMPED | use if 3D momentum clamped condition |
WEST_KGRADIENT | use if TKE fields gradient condition |
WEST_KRADIATION | use if TKE fields radiation condition |
WEST_TGRADIENT | use if tracers gradient condition |
WEST_TRADIATION | use if tracers radiation condition |
WEST_TNUDGING | use if tracers passive/active nudging term |
WEST_TCLAMPED | use if tracers clamped condition |
Options for northern edge open boundary conditions
- Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow).
NORTH_FSCHAPMAN | use if free-surface Chapman condition |
NORTH_FSGRADIENT | use if free-surface gradient condition |
NORTH_FSRADIATION | use if free-surface radiation condition |
NORTH_FSNUDGING | use if free-surface passive/active nudging term |
NORTH_FSCLAMPED | use if free-surface clamped condition |
NORTH_M2FLATHER | use if 2D momentum Flather condition |
NORTH_M2GRADIENT | use if 2D momentum gradient condition |
NORTH_M2RADIATION | use if 2D momentum radiation condition |
NORTH_M2REDUCED | use if 2D momentum reduced-physics |
NORTH_M2NUDGING | use if 2D momentum passive/active nudging term |
NORTH_M2CLAMPED | use if 2D momentum clamped condition |
NORTH_M3GRADIENT | use if 3D momentum gradient condition |
NORTH_M3RADIATION | use if 3D momentum radiation condition |
NORTH_M3NUDGING | use if 3D momentum passive/active nudging term |
NORTH_M3CLAMPED | use if 3D momentum clamped condition |
NORTH_KGRADIENT | use if TKE fields gradient condition |
NORTH_KRADIATION | use if TKE fields radiation condition |
NORTH_TGRADIENT | use if tracers gradient condition |
NORTH_TRADIATION | use if tracers radiation condition |
NORTH_TNUDGING | use if tracers passive/active nudging term |
NORTH_TCLAMPED | use if tracers clamped condition |
Options for southern edge open boundary conditions
- Select only one option for free-surface, 2D momentum, 3D momentum, and tracers. The turbulent kinetic energy (TKE) conditions are only activated for the Generic length scale or Mellor-Yamada 2.5 vertical mixing closures. If open boundary radiation conditions, an additional option can be activated at each boundary edge to include a passive (active) nudging term with weak (strong) values for outflow (inflow).
SOUTH_FSCHAPMAN | use if free-surface Chapman condition |
SOUTH_FSGRADIENT | use if free-surface gradient condition |
SOUTH_FSRADIATION | use if free-surface radiation condition |
SOUTH_FSNUDGING | use if free-surface passive/active nudging term |
SOUTH_FSCLAMPED | use if free-surface clamped condition |
SOUTH_M2FLATHER | use if 2D momentum Flather condition |
SOUTH_M2GRADIENT | use if 2D momentum gradient condition |
SOUTH_M2RADIATION | use if 2D momentum radiation condition |
SOUTH_M2REDUCED | use if 2D momentum reduced-physics |
SOUTH_M2NUDGING | use if 2D momentum passive/active nudging term |
SOUTH_M2CLAMPED | use if 2D momentum clamped condition |
SOUTH_M3GRADIENT | use if 3D momentum gradient condition |
SOUTH_M3RADIATION | use if 3D momentum radiation condition |
SOUTH_M3NUDGING | use if 3D momentum passive/active nudging term |
SOUTH_M3CLAMPED | use if 3D momentum clamped condition |
SOUTH_KGRADIENT | use if TKE fields gradient condition |
SOUTH_KRADIATION | use if TKE fields radiation condition |
SOUTH_TGRADIENT | use if tracers gradient condition |
SOUTH_TRADIATION | use if tracers radiation condition |
SOUTH_TNUDGING | use if tracers passive/active nudging term |
SOUTH_TCLAMPED | use if tracers clamped condition |
Options for tidal forcing at open boundaries
- The tidal data is processed in terms of tidal components, classified by period. The tidal forcing is computed for the full horizontal grid. If requested, the tidal forcing is added to the processed open boundary data. Both tidal elevation and tidal currents are required to force the model properly. However, if only the tidal elevation is available, the tidal
currents at the open boundary can be estimated using reduced physics equations. Only the pressure gradient, Coriolis, and surface and bottom stresses terms are considered at the open boundary. See u2dbc_im.F or v2dbc_im.F for details. Notice that there is an additional option (FSOBC_REDUCED) for the computation of the pressure gradient term in both Flather or reduced physics conditions (*_M2FLATHER, *_M2REDUCED).
SSH_TIDES | use if imposing tidal elevation |
UV_TIDES | use if imposing tidal currents |
RAMP_TIDES | use if ramping (over one day) tidal forcing |
FSOBC_REDUCED | use if SSH data and reduced physics conditions |
ADD_FSOBC | use to add tidal elevation to processed open boundary conditions data |
ADD_M2OBC | use to add tidal currents to processed open boundary conditions data |
Options for reading and processing of climatological fields
M2CLIMATOLOGY | use if processing 2D momentum climatology |
M3CLIMATOLOGY | use if processing 3D momentum climatology |
TCLIMATOLOGY | use if processing tracers climatology |
ZCLIMATOLOGY | use if processing SSH climatology |
Options to nudge climatology data
- These options are used primarily on sponge areas.
M2CLM_NUDGING | use if nudging 2D momentum climatology |
M3CLM_NUDGING | use if nudging 3D momentum climatology |
TCLM_NUDGING | use if nudging tracers climatology |
ZCLM_NUDGING | use if nudging SSH climatology |
Options for Optimal Interpolation or nudging data assimilation
- The Optimal Interpolation (OI) assimilation is intermittent whereas nudging is continuous (observations are time interpolated). If applicable, choose only one option for each field to update: either OI assimilation or nudging.
ASSIMILATION_SSH | use if assimilating SSH observations |
ASSIMILATION_SST | use if assimilating SST observations |
ASSIMILATION_T | use if assimilating tracers observations |
ASSIMILATION_UVsur | use if assimilating surface current observations |
ASSIMILATION_UV | use if assimilating horizontal current observations |
UV_BAROCLINIC | use if assimilating baroclinic currents only |
NUDGING_SSH | use if nudging SSH observations |
NUDGING_SST | use if nudging SST observations |
NUDGING_T | use if nudging tracers observations |
NUDGING_UVsur | use if nudging surface current observations |
NUDGING_UV | use if nudging horizontal currents observations |
Options for ROMS/TOMS driver
- Choose only one option.
ADM_DRIVER | use if generic adjoint model driver |
AD_SENSITIVITY | use if adjoint sensitivity driver |
AFT_EIGENMODES | use if adjoint finite time eingenmodes driver |
CONVOLUTION | use if adjoint convolution driver |
CORRELATION | use if background-error correlation model driver |
ENSEMBLE | use if ensemble prediction driver |
FORCING_SV | use if forcing singular vectors driver |
FT_EIGENMODES | use if finite time eingenmodes driver: normal modes |
GRADIENT_CHECK | use if tangent linear and adjoint codes gradient test |
INNER_PRODUCT | use if tangent linear and adjoint inner product check |
IS4DVAR | use if incremental 4DVar data assimilation |
IS4DVAR_OLD | use if old incremental 4DVar data assimilation |
OPT_OBSERVATIONS | use if optimal observations driver |
OPT_PERTURBATION | use if optimal perturbations driver, singular vectors |
PICARD_TEST | use if representer tangent linear model test |
PSEUDOSPECTRA | use if pseudospectra of tangent linear resolvant |
R_SYMMETRY | use if representer matrix symmetry test |
RPM_DRIVER | use if generic representers model driver |
SANITY_CHECK | use if tangent linear and adjoint codes sanity check |
SO_SEMI | use if stochastic optimals driver, semi-norm |
SO_TRACE | use if stochastic optimals, randomized trace |
STOCHASTIC_OPT | use if stochastic optimals |
S4DVAR | use if Strong constraint 4DVar data assimilation |
TLM_CHECK | use if tangent linear model linearization check |
TLM_DRIVER | use if generic tangent linear model driver |
W4DPSAS | use if weak constraint 4D-PSAS data assimilation |
W4DVAR | use if Weak constraint 4DVar data assimilation |
Options associated with tangent linear, representer and adjoint models
ADJUST_STFLUX | use if including surface tracer flux in 4DVar state | ||
ADJUST_WSTRESS | use if including wind-stress in 4DVar state | ** | use if error covariance multivariate balance term |
CELERITY_WRITE | use if writing radiation celerity in forward file | ||
CONVOLVE | use if convolving solution with diffusion operators | ||
ENERGY1_NORM | use if cost function scaled with the energy norm, 1 | ||
ENERGY2_NORM | use if cost function scaled with the energy norm, 2 | ||
ENERGY3_NORM | use if cost function scaled with the energy norm, 3 | ||
FORWARD_MIXING | use if processing forward vertical mixing coefficient | ||
FORWARD_WRITE | use if writing out forward solution, basic state | ||
FORWARD_READ | use if reading in forward solution, basic state | ||
FORWARD_RHS | use if processing forward right-hand-side terms | ||
FULL_GRID | use to consider both interior and boundary points | ||
IMPLICIT_VCONV | use if implicit vertical convolution algorithm | ||
IMPULSE | use if processing adjoint impulse forcing | ||
IOM | use to activate IOM multiple executables | ||
LANCZOS | use to activate Lanczos conjugate gradient algorithm | ||
MULTIPLE_TLM | use if multiple TLM history files in 4DVAR | ||
N2NORM_PROFILE | use if N2(z) profile for energy normalization | ||
NLM_OUTER | use if nonlinear model as basic state in outer loop | ||
RPM_RELAXATION | use if Picard iterations, Diffusive Relaxation of RPM | ||
SO_SEMI_WHITE | use to activate white/red noise processes | ||
VCONVOLUTION | use to add vertical correlation to 3D convolution | ||
VERIFICATION | use if writing out solution at observation locations |
Options for Fasham-type biological model
BIO_FASHAM | use if Fasham type nitrogen-based model |
BIO_SEDIMENT | use to restore fallen material to the nutrient pool |
CARBON | use to add carbon constituents |
DENITRIFICATION | use to add denitrification processes |
OXYGEN | use to add oxygen dynamics |
OCMIP_OXYGEN_SC | use if Schmidt number from Keeling et al. (1998) |
RIVER_BIOLOGY | use to process river biology point-sources |
TALK_PROGNOSTIC | use if prognostic/diagnotic alkalinity |
Options for NPZD biological model
NPZD_FRANKS | use if NPZD Biology model, Franks et al. (1986) |
NPZD_POWELL | use if NPZD Biology model, Powell et al. (2006) |
Options for bio-optical EcoSim model
ECOSIM | use if bio-optical EcoSim model |
Options for sediment transport model
SEDIMENT | use to activate sediment transport model |
BEDLOAD_MPM | use to activate Meyer-Peter-Mueller bed load |
BEDLOAD_SOULSBY | use to activate Soulsby wave/current bed load |
RIVER_SEDIMENT | use to process river sediment point-sources |
SED_DENS | use to activate sediment to affect equation of state |
SED_MORPH | use to allow bottom model elevation to evolve |
SUSPLOAD | use to activate suspended load transport |
Options for two-way coupling to other models
REFDIF_COUPLING | use if coupling to REFDIT wave model |
SWAN_COUPLING | use if coupling to SWAN wave model |
WRF_COUPLING | use if coupling to WRF atmospheric model |
Options for nearshore stresses and shallow water configurations
WET_DRY | use to activate wetting and drying |
NEARSHORE_MELLOR | use to activate radiation stress terms. |
Options for NetCDF input and output
INLINE_2DIO | use if processing 3D IO level by level |
NO_WRITE_GRID | use if not writing grid arrays |
PERFECT_RESTART | use to include perfect restart variables |
READ_WATER | use if only reading water points data |
WRITE_WATER | use if only writing water points data |
RST_SINGLE | use if writing single precision restart fields |
OUT_DOUBLE | use if writing double precision output fields |
Options for idealized test problems
- These tests are defined using analytical expressions. Choose only one configuration.
A4DVAR_TOY | 4DVAR Data Assimilation Toy |
BASIN | Big Bad Basin Example |
BENCHMARK | Benchmark Tests (small, Medium, big grids) |
BIO_TOY | One-dimension (vertical) Biology Toy |
BL_TEST | Boundary Layers Test |
CANYON_A | Canyon_A Example |
CANYON_B | Canyon_B Example |
CHANNEL_NECK | Channel with a Constriction |
COUPLING_TEST | Two-way Atmosphere-Ocean Coupling Test |
DOUBLE_GYRE | Idealized Double-gyre Example |
ESTUARY_TEST | Test Estuary for Sediment |
FLT_TEST | Float Tracking Example |
GRAV_ADJ | Graviational Adjustment Example |
INLET_TEST | Test Inlet Application |
KELVIN | Kelvin wave test |
LAB_CANYON | Lab Canyon, Polar Coordinates Example |
LAKE_SIGNELL | Lake Signell Sediment Test Case |
LMD_TEST | Test for LMD and KPP |
OVERFLOW | Graviational/Overflow Example |
RIVERPLUME1 | River Plume Example 1 |
RIVERPLUME2 | River plume Example 2 (Hyatt and Signell) |
SEAMOUNT | Seamount Example |
SED_TEST1 | Suspended Sediment Test in a Channel |
SED_TOY | One-dimension (vertical) Sediment Toy |
SHOREFACE | Shore Face Planar Beach Test Case |
SOLITON | Equatorial Rossby Wave Example |
TEST_CHAN | Sediment Test Channel Case |
TEST_HEAD | Sediment Test Headland Case |
UPWELLING | Upwelling Example (default) |
WEDDELL | Idealized Weddell Sea Shelf Application |
WINDBASIN | Linear Wind-driven Constant Coriolis Basin |
Options for climatological applications
- These applications require input NetCDF files which can be downloaded | here.
DAMEE_4 | North Atlantic DAMEE Application, 3/4 degree |
Options for selected realistic applications
ADRIA02 | Adriatic Sea Application |
NJ_BIGHT | New Jersey Bight Application |