Variables: Difference between revisions
From WikiROMS
Jump to navigationJump to search
No edit summary (change visibility) |
No edit summary (change visibility) |
||
Line 53: | Line 53: | ||
:'''dimension =''' '''Hz'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]]) | :'''dimension =''' '''Hz'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]]) | ||
:'''pointer =''' [[mod_grid.F|GRID(ng)%]]'''Hz''' | :'''pointer =''' [[mod_grid.F|GRID(ng)%]]'''Hz''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_Hz</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_Hz</span> | ||
:'''units =''' meter | :'''units =''' meter | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
Line 187: | Line 187: | ||
:'''dimension =''' '''rho'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]]) | :'''dimension =''' '''rho'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]]) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''rho''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''rho''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_rho</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_rho</span> | ||
:'''units =''' kilogram meter<sup>-3</sup> | :'''units =''' kilogram meter<sup>-3</sup> | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
Line 203: | Line 203: | ||
:'''dimension =''' '''t'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],3,[[#NT|NT(ng)]]) | :'''dimension =''' '''t'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],3,[[#NT|NT(ng)]]) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''t''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''t''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_t</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_t</span> | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
:'''option =''' [[SOLVE3D]] | :'''option =''' [[SOLVE3D]] | ||
Line 260: | Line 260: | ||
:'''dimension =''' '''u'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],2) | :'''dimension =''' '''u'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],2) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''u''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''u''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_u</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_u</span> | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' u-points | :'''grid =''' u-points | ||
Line 272: | Line 272: | ||
:'''dimension =''' '''ubar'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | :'''dimension =''' '''ubar'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''ubar''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''ubar''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_ubar</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_ubar</span> | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' u-points | :'''grid =''' u-points | ||
Line 284: | Line 284: | ||
:'''dimension =''' '''v'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],2) | :'''dimension =''' '''v'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|N(ng)]],2) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''v''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''v''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_u</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_u</span> | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' v-points | :'''grid =''' v-points | ||
Line 296: | Line 296: | ||
:'''dimension =''' '''vbar'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | :'''dimension =''' '''vbar'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''vbar''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''vbar''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_vbar</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_vbar</span> | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' v-points | :'''grid =''' v-points | ||
Line 308: | Line 308: | ||
:'''dimension =''' '''W'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|0:N(ng)]]) | :'''dimension =''' '''W'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],[[#N|0:N(ng)]]) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''W''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''W''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_W</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_W</span> | ||
:'''units =''' meter<sup>3</sup> second<sup>-1</sup> | :'''units =''' meter<sup>3</sup> second<sup>-1</sup> | ||
:'''sign = ''' positive downwards (downwelling), negative upwards (upwelling) | :'''sign = ''' positive downwards (downwelling), negative upwards (upwelling) | ||
Line 336: | Line 336: | ||
:'''dimension =''' '''zeta'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | :'''dimension =''' '''zeta'''([[#LBi|LBi]]:[[#UBi|UBi]],[[#LBj|LBj]]:[[#UBj|UBj]],3) | ||
:'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''zeta''' | :'''pointer =''' [[mod_ocean.F|OCEAN(ng)%]]'''zeta''' | ||
:'''tangent =''' <span class=" | :'''tangent =''' <span class="TangentColor">tl_zeta</span> | ||
:'''adjoint =''' <span class=" | :'''adjoint =''' <span class="AdjointColor">ad_zeta</span> | ||
:'''units =''' meter | :'''units =''' meter | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points |
Revision as of 17:34, 16 November 2006
Contents | |||||||||||||||||||||||||
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
A
B
C
D
E
F
G
H
- Hz
- Vertical level thicknesses, .
- dimension = Hz(LBi:UBi,LBj:UBj,N(ng))
- pointer = GRID(ng)%Hz
- tangent = tl_Hz
- adjoint = ad_Hz
- units = meter
- grid = ρ-points
- option = SOLVE3D
- routine = set_depths.F
I
- Iend
- Non-overlaping upper bound tile index in the i-direction. Its value depends on the tile rank (sub-domain patition).
- routine = tile.h, get_tile.F
- Istr
- Non-overlaping lower bound tile index in the i-direction. Its value depends on the tile rank (sub-domain patition).
- routine = tile.h, get_tile.F
- idbio
- Identification indeces for biological tracer variables, t(:,:,:,:,idbio(:)).
- dimension = idbio(NBT)
- option = BIOLOGY
- routine = mod_scalars.F
- idsed
- Identification indeces for biological tracer variables, t(:,:,:,:,idsed(:)).
- dimension = idsed(NST)
- option = SEDIMENT
- routine = mod_scalars.F
- inert
- Identification indeces for inert tracer variables, t(:,:,:,:,inert(:)).
- dimension = inert(NPT)
- option = T_PASSIVE
- routine = mod_scalars.F
- isalt
- Tracer identification index for salinity, t(:,:,:,:,isalt).
- routine = mod_scalars.F
- itemp
- Tracer identification index for potential temperature, t(:,:,:,:,itemp).
- routine = mod_scalars.F
J
- Jend
- Non-overlaping upper bound tile index in the j-direction. Its value depends on the tile rank (sub-domain patition).
- routine = tile.h, get_tile.F
- Jstr
- Non-overlaping lower bound tile index in the j-direction. Its value depends on the tile rank (sub-domain patition).
- routine = tile.h, get_tile.F
K
L
- LBi
- Array lower bound dimension in the i-direction. In serial and shared-memory applications its value is LBi=-2 for East-West periodic grids or LBi=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBi=Istr-NghostPoints.
- option = LOWER_BOUND_I
- routine = get_bounds.F, get_tile.F
- LBj
- Array lower bound dimension in the j-direction. In serial and shared-memory applications its value is LBj=-2 for North-South periodic grids or LBj=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBj=Jstr-NghostPoints.
- option = LOWER_BOUND_J
- routine = get_bounds.F, get_tile.F
M
N
- N
- Number of vertical levels for each nested grid.
- dimension = N(Ngrids)
- routine = mod_param.F
- NAT
- Number of active tracer-type variables. Usually, it has a value of two for potential temperature and salinty.
- option = SOLVE3D
- routine = mod_param.F
- NBT
- Number of biological tracer-type variables.
- option = BIOLOGY
- routine = mod_param.F
- NCS
- Number of cohesive (mud) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- NghostPoints
- Number of ghost points in the halo region used in distributed-memory configurations.
- option = GHOST_POINTS
- routine = mod_param.F
- Ngrids
- Number of nested and/or multiple connected grids to solve.
- routine = mod_param.F
- NNS
- Number of non-cohesive (sand) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- NPT
- Number of inert tracer-type variables. Currently, an inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc.
- option = T_PASSIVE
- routine = mod_param.F
- NST
- Number of sediment tracer-type variables, NST=NCS+NNS.
- option = SEDIMENT
- routine = mod_param.F
- NT
- Total number of tracer-type variables for each nested grid. Currently, NT=NAT+NPT+NST+NBT.
- dimension = NT(Ngrids)
- option = SOLVE3D
- routine = mod_param.F
O
P
Q
R
- rho
- In situ density anomaly computed as a function of potential temperature, salinity, and depth.
- .
- dimension = rho(LBi:UBi,LBj:UBj,N(ng))
- pointer = OCEAN(ng)%rho
- tangent = tl_rho
- adjoint = ad_rho
- units = kilogram meter-3
- grid = ρ-points
- option = SOLVE3D, NONLIN_EOS
- routine = rho_eos.F
- It can computed using a linear or nonlinear equation of state. The nonlinear equation of state is based on Jackett and McDougall (1992) polynomial expressions.
S
T
- t
- Tracer-type variables, .
- dimension = t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng))
- pointer = OCEAN(ng)%t
- tangent = tl_t
- adjoint = ad_t
- grid = ρ-points
- option = SOLVE3D
- routine = step3d_t.F
- This array contains all the tracer fields. They are classified as active (potential temperature, salinity), inert (dyes, pollutants, oil spills, etc), passive (sediment, biology). There is a index identifier for each tracer field (see table below). Notice that salinity does not have physical units. Usually PSU is used to indicate that the practical salinity scale was used to determine conductivity.
Index | Field | Units | CPP |
---|---|---|---|
itemp | Potential temperature | Celsius | SOLVE3D |
isalt | Salinity | None | SALINITY |
inert(1:NPT) | NPT inert tracers | kilogram meter-3 | T_PASSIVE |
idsed(1:NST) | NST sediment tracers | kilogram meter-3 | SEDIMENT |
idbio(1:NBT) | NBT biology tracers | millimole meter-3 | BIOLOGY |
U
- UBi
- Array upper bound dimension in the i-direction. In serial and shared-memory applications its value is govern by the value of UPPER_BOUND_I. In distributed-memory its value is a function of the tile partition, UBi=Iend+NghostPoints.
- option = UPPER_BOUND_I
- routine = get_bounds.F, get_tile.F
- UBj
- Array upper bound dimension in the j-direction. In serial and shared-memory applications its value is govern by the value of UPPER_BOUND_J. In distributed-memory its value is a function of the tile partition, UBj=Jend+NghostPoints.
- option = UPPER_BOUND_J
- routine = get_bounds.F, get_tile.F
- u
- Total momentum component in the ξ-direction, .
- dimension = u(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%u
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = u-points
- option = SOLVE3D
- routine = step3d_uv.F
- ubar
- Vertically-integrated momentum component in the ξ-direction, .
- dimension = ubar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%ubar
- tangent = tl_ubar
- adjoint = ad_ubar
- units = meter second-1
- grid = u-points
- routine = step2d.F
V
- v
- 3D momentum component in the η-direction, .
- dimension = v(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%v
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = v-points
- option = SOLVE3D
- routine = step3d_uv.F
- vbar
- Vertically-integrated momentum component in the η-direction, .
- dimension = vbar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%vbar
- tangent = tl_vbar
- adjoint = ad_vbar
- units = meter second-1
- grid = v-points
- routine = step2d.F
W
- W
- Terrain-following, vertical velocity component, .
- dimension = W(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%W
- tangent = tl_W
- adjoint = ad_W
- units = meter3 second-1
- sign = positive downwards (downwelling), negative upwards (upwelling)
- grid = w-points
- option = SOLVE3D
- routine = omega.F
- wvel
- True vertical velocity component, . It is computed only for output purposes.
- dimension = wvel(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%wvel
- units = meter second-1
- sign = positive downwards (downwelling), negative upwards (upwelling
- grid = w-points
- option = SOLVE3D
- routine = wvelocity.F
X
Y
Z
- zeta
- Free-surface, .
- dimension = zeta(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%zeta
- tangent = tl_zeta
- adjoint = ad_zeta
- units = meter
- grid = ρ-points
- routine = step2d.F
- z_r
- Actual depths of variables at ρ-points, .
- dimension = z_r(LBi:UBi,LBj:UBj,N(ng))
- pointer = GRID(ng)%z_r
- units = meter
- sign = negative downwards
- grid = ρ-points
- option = SOLVE3D
- routine = set_depths.F
- z_w
- Actual depths of variables at w-points, .
- dimension = z_w(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = GRID(ng)%z_w
- units = meter
- sign = negative downwards
- grid = w-points
- option = SOLVE3D
- routine = set_depths.F