Variables: Difference between revisions
From WikiROMS
Jump to navigationJump to search
No edit summary (change visibility) |
|||
Line 23: | Line 23: | ||
:'''units =''' meter | :'''units =''' meter | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[set_depths.F]] | :'''routine =''' [[set_depths.F]] | ||
Line 31: | Line 31: | ||
:Identification indeces for biological tracer variables, [[#t|t]](:,:,:,:,idbio(:)). | :Identification indeces for biological tracer variables, [[#t|t]](:,:,:,:,idbio(:)). | ||
:'''dimension =''' '''idbio'''([[#NBT|NBT]]) | :'''dimension =''' '''idbio'''([[#NBT|NBT]]) | ||
:''' | :'''option =''' [[BIOLOGY]] | ||
:'''routine =''' [[mod_scalars.F]] | :'''routine =''' [[mod_scalars.F]] | ||
Line 37: | Line 37: | ||
:Identification indeces for biological tracer variables, [[#t|t]](:,:,:,:,idsed(:)). | :Identification indeces for biological tracer variables, [[#t|t]](:,:,:,:,idsed(:)). | ||
:'''dimension =''' '''idsed'''([[#NST|NST]]) | :'''dimension =''' '''idsed'''([[#NST|NST]]) | ||
:''' | :'''option =''' [[SEDIMENT]] | ||
:'''routine =''' [[mod_scalars.F]] | :'''routine =''' [[mod_scalars.F]] | ||
Line 43: | Line 43: | ||
:Identification indeces for inert tracer variables, [[#t|t]](:,:,:,:,inert(:)). | :Identification indeces for inert tracer variables, [[#t|t]](:,:,:,:,inert(:)). | ||
:'''dimension =''' '''inert'''([[#NPT|NPT]]) | :'''dimension =''' '''inert'''([[#NPT|NPT]]) | ||
:''' | :'''option =''' [[T_PASSIVE]] | ||
:'''routine =''' [[mod_scalars.F]] | :'''routine =''' [[mod_scalars.F]] | ||
Line 61: | Line 61: | ||
;<span id="LBi"></span>'''LBi''' | ;<span id="LBi"></span>'''LBi''' | ||
:Array lower bound dimension in the '''i'''-direction. | :Array lower bound dimension in the '''i'''-direction. In serial and shared-memory applications its value is '''LBi'''=-2 for East-West periodic grids or '''LBi'''=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, '''LBi'''=[[#Istr|Istr]]-[[#Nghost|Nghost]]. | ||
:'''option =''' [[LOWER_BOUND_I]] | |||
:'''routine =''' [[get_bounds.F]], [[get_tile.F]] | |||
;<span id="LBj"></span>'''LBj''' | ;<span id="LBj"></span>'''LBj''' | ||
:Array lower bound dimension in the '''j'''-direction. | :Array lower bound dimension in the '''j'''-direction. In serial and shared-memory applications its value is '''LBj'''=-2 for North-South periodic grids or '''LBj'''=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, '''LBj'''=[[#Jstr|Jstr]]-[[#Nghost|Nghost]]. | ||
:'''option =''' [[LOWER_BOUND_J]] | |||
:'''routine =''' [[get_bounds.F]], [[get_tile.F]] | |||
==<span class="alphabet">M</span>== | ==<span class="alphabet">M</span>== | ||
Line 81: | Line 85: | ||
;<span id="NAT"></span>'''NAT''' | ;<span id="NAT"></span>'''NAT''' | ||
:Number of active tracer-type variables. Usually, it has a value of two for potential temperature and salinty. | :Number of active tracer-type variables. Usually, it has a value of two for potential temperature and salinty. | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
;<span id="NBT"></span>'''NBT''' | ;<span id="NBT"></span>'''NBT''' | ||
:Number of biological tracer-type variables. | :Number of biological tracer-type variables. | ||
:''' | :'''option =''' [[BIOLOGY]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
;<span id="NCT"></span>'''NCS''' | ;<span id="NCT"></span>'''NCS''' | ||
:Number of cohesive (mud) sediment tracer-type variables. | :Number of cohesive (mud) sediment tracer-type variables. | ||
:''' | :'''option =''' [[SEDIMENT]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
;<span id="NNS"></span>'''NNS''' | ;<span id="NNS"></span>'''NNS''' | ||
:Number of non-cohesive (sand) sediment tracer-type variables. | :Number of non-cohesive (sand) sediment tracer-type variables. | ||
:''' | :'''option =''' [[SEDIMENT]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
;<span id="NPT"></span>'''NPT''' | ;<span id="NPT"></span>'''NPT''' | ||
:Number of inert tracer-type variables. Currently, an inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. | :Number of inert tracer-type variables. Currently, an inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. | ||
:''' | :'''option =''' [[T_PASSIVE]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
;<span id="NST"></span>'''NST''' | ;<span id="NST"></span>'''NST''' | ||
:Number of sediment tracer-type variables, NST=[[#NCS|NCS]]+[[#NCS|NNS]]. | :Number of sediment tracer-type variables, NST=[[#NCS|NCS]]+[[#NCS|NNS]]. | ||
:''' | :'''option =''' [[SEDIMENT]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
Line 112: | Line 116: | ||
:Total number of tracer-type variables for each nested grid. Currently, NT=[[#NAT|NAT]]+[[#NPT|NPT]]+[[#NST|NST]]+[[#NBT|NBT]]. | :Total number of tracer-type variables for each nested grid. Currently, NT=[[#NAT|NAT]]+[[#NPT|NPT]]+[[#NST|NST]]+[[#NBT|NBT]]. | ||
:'''dimension =''' '''NT([[#Ngrids|Ngrids]]) | :'''dimension =''' '''NT([[#Ngrids|Ngrids]]) | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[mod_param.F]] | :'''routine =''' [[mod_param.F]] | ||
Line 132: | Line 136: | ||
:'''units =''' kilogram meter<sup>-3</sup> | :'''units =''' kilogram meter<sup>-3</sup> | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
:''' | :'''option = ''' [[SOLVE3D]], [[NONLIN_EOS]] | ||
:'''routine =''' [[rho_eos.F]] | :'''routine =''' [[rho_eos.F]] | ||
:It can computed using a linear or nonlinear equation of state. The nonlinear equation of state is based on [[Bibliography#JackettDR_1995a | Jackett and McDougall (1992)]] polynomial expressions. | :It can computed using a linear or nonlinear equation of state. The nonlinear equation of state is based on [[Bibliography#JackettDR_1995a | Jackett and McDougall (1992)]] polynomial expressions. | ||
Line 147: | Line 151: | ||
:'''adjoint =''' <span class="purple">ad_t</span> | :'''adjoint =''' <span class="purple">ad_t</span> | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[step3d_t.F]] | :'''routine =''' [[step3d_t.F]] | ||
Line 201: | Line 205: | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' u-points | :'''grid =''' u-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[step3d_uv.F]] | :'''routine =''' [[step3d_uv.F]] | ||
Line 225: | Line 229: | ||
:'''units =''' meter second<sup>-1</sup> | :'''units =''' meter second<sup>-1</sup> | ||
:'''grid =''' v-points | :'''grid =''' v-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[step3d_uv.F]] | :'''routine =''' [[step3d_uv.F]] | ||
Line 250: | Line 254: | ||
:'''sign = ''' positive downwards (downwelling), negative upwards (upwelling) | :'''sign = ''' positive downwards (downwelling), negative upwards (upwelling) | ||
:'''grid =''' w-points | :'''grid =''' w-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[omega.F]] | :'''routine =''' [[omega.F]] | ||
Line 260: | Line 264: | ||
:'''sign = ''' positive downwards (downwelling), negative upwards (upwelling | :'''sign = ''' positive downwards (downwelling), negative upwards (upwelling | ||
:'''grid =''' w-points | :'''grid =''' w-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[wvelocity.F]] | :'''routine =''' [[wvelocity.F]] | ||
Line 286: | Line 290: | ||
:'''sign =''' negative downwards | :'''sign =''' negative downwards | ||
:'''grid =''' ρ-points | :'''grid =''' ρ-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[set_depths.F]] | :'''routine =''' [[set_depths.F]] | ||
Line 296: | Line 300: | ||
:'''sign =''' negative downwards | :'''sign =''' negative downwards | ||
:'''grid =''' w-points | :'''grid =''' w-points | ||
:''' | :'''option =''' [[SOLVE3D]] | ||
:'''routine =''' [[set_depths.F]] | :'''routine =''' [[set_depths.F]] | ||
Revision as of 13:54, 16 November 2006
A
B
C
D
E
F
G
H
- Hz
- Vertical level thicknesses, .
- dimension = Hz(LBi:UBi,LBj:UBj,N(ng))
- pointer = GRID(ng)%Hz
- tangent = tl_Hz
- adjoint = ad_Hz
- units = meter
- grid = ρ-points
- option = SOLVE3D
- routine = set_depths.F
I
- idbio
- Identification indeces for biological tracer variables, t(:,:,:,:,idbio(:)).
- dimension = idbio(NBT)
- option = BIOLOGY
- routine = mod_scalars.F
- idsed
- Identification indeces for biological tracer variables, t(:,:,:,:,idsed(:)).
- dimension = idsed(NST)
- option = SEDIMENT
- routine = mod_scalars.F
- inert
- Identification indeces for inert tracer variables, t(:,:,:,:,inert(:)).
- dimension = inert(NPT)
- option = T_PASSIVE
- routine = mod_scalars.F
- isalt
- Tracer identification index for salinity, t(:,:,:,:,isalt).
- routine = mod_scalars.F
- itemp
- Tracer identification index for potential temperature, t(:,:,:,:,itemp).
- routine = mod_scalars.F
J
K
L
- LBi
- Array lower bound dimension in the i-direction. In serial and shared-memory applications its value is LBi=-2 for East-West periodic grids or LBi=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBi=Istr-Nghost.
- option = LOWER_BOUND_I
- routine = get_bounds.F, get_tile.F
- LBj
- Array lower bound dimension in the j-direction. In serial and shared-memory applications its value is LBj=-2 for North-South periodic grids or LBj=0 for non-periodic grids . In distributed-memory its value is a function of the tile partition, LBj=Jstr-Nghost.
- option = LOWER_BOUND_J
- routine = get_bounds.F, get_tile.F
M
N
- N
- Number of vertical levels for each nested grid.
- dimension = N(Ngrids)
- routine = mod_param.F
- Ngrids
- Number of nested and/or multiple connected grids to solve.
- routine = mod_param.F
- NAT
- Number of active tracer-type variables. Usually, it has a value of two for potential temperature and salinty.
- option = SOLVE3D
- routine = mod_param.F
- NBT
- Number of biological tracer-type variables.
- option = BIOLOGY
- routine = mod_param.F
- NCS
- Number of cohesive (mud) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- NNS
- Number of non-cohesive (sand) sediment tracer-type variables.
- option = SEDIMENT
- routine = mod_param.F
- NPT
- Number of inert tracer-type variables. Currently, an inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc.
- option = T_PASSIVE
- routine = mod_param.F
- NST
- Number of sediment tracer-type variables, NST=NCS+NNS.
- option = SEDIMENT
- routine = mod_param.F
- NT
- Total number of tracer-type variables for each nested grid. Currently, NT=NAT+NPT+NST+NBT.
- dimension = NT(Ngrids)
- option = SOLVE3D
- routine = mod_param.F
O
P
Q
R
- rho
- In situ density anomaly computed as a function of potential temperature, salinity, and depth.
- .
- dimension = rho(LBi:UBi,LBj:UBj,N(ng))
- pointer = OCEAN(ng)%rho
- tangent = tl_rho
- adjoint = ad_rho
- units = kilogram meter-3
- grid = ρ-points
- option = SOLVE3D, NONLIN_EOS
- routine = rho_eos.F
- It can computed using a linear or nonlinear equation of state. The nonlinear equation of state is based on Jackett and McDougall (1992) polynomial expressions.
S
T
- t
- Tracer-type variables, .
- dimension = t(LBi:UBi,LBj:UBj,N(ng),3,NT(ng))
- pointer = OCEAN(ng)%t
- tangent = tl_t
- adjoint = ad_t
- grid = ρ-points
- option = SOLVE3D
- routine = step3d_t.F
- This array contains all the tracer fields. They are classified as active (potential temperature, salinity), inert (dyes, pollutants, oil spills, etc), passive (sediment, biology). There is a index identifier for each tracer field (see table below). Notice that salinity does not have physical units. Usually PSU is used to indicate that the practical salinity scale was used to determine conductivity.
Index | Field | Units | CPP |
---|---|---|---|
itemp | Potential temperature | Celsius | SOLVE3D |
isalt | Salinity | None | SALINITY |
inert(1:NPT) | NPT inert tracers | kilogram meter-3 | T_PASSIVE |
idsed(1:NST) | NST sediment tracers | kilogram meter-3 | SEDIMENT |
idbio(1:NBT) | NBT biology tracers | millimole meter-3 | BIOLOGY |
U
- UBi
- Array upper bound dimension in the i-direction.
- UBj
- Array upper bound dimension in the j-direction.
- u
- Total momentum component in the ξ-direction, .
- dimension = u(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%u
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = u-points
- option = SOLVE3D
- routine = step3d_uv.F
- ubar
- Vertically-integrated momentum component in the ξ-direction, .
- dimension = ubar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%ubar
- tangent = tl_ubar
- adjoint = ad_ubar
- units = meter second-1
- grid = u-points
- routine = step2d.F
V
- v
- 3D momentum component in the η-direction, .
- dimension = v(LBi:UBi,LBj:UBj,N(ng),2)
- pointer = OCEAN(ng)%v
- tangent = tl_u
- adjoint = ad_u
- units = meter second-1
- grid = v-points
- option = SOLVE3D
- routine = step3d_uv.F
- vbar
- Vertically-integrated momentum component in the η-direction, .
- dimension = vbar(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%vbar
- tangent = tl_vbar
- adjoint = ad_vbar
- units = meter second-1
- grid = v-points
- routine = step2d.F
W
- W
- Terrain-following, vertical velocity component, .
- dimension = W(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%W
- tangent = tl_W
- adjoint = ad_W
- units = meter3 second-1
- sign = positive downwards (downwelling), negative upwards (upwelling)
- grid = w-points
- option = SOLVE3D
- routine = omega.F
- wvel
- True vertical velocity component, . It is computed only for output purposes.
- dimension = wvel(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = OCEAN(ng)%wvel
- units = meter second-1
- sign = positive downwards (downwelling), negative upwards (upwelling
- grid = w-points
- option = SOLVE3D
- routine = wvelocity.F
X
Y
Z
- zeta
- Free-surface, .
- dimension = zeta(LBi:UBi,LBj:UBj,3)
- pointer = OCEAN(ng)%zeta
- tangent = tl_zeta
- adjoint = ad_zeta
- units = meter
- grid = ρ-points
- routine = step2d.F
- z_r
- Actual depths of variables at ρ-points, .
- dimension = z_r(LBi:UBi,LBj:UBj,N(ng))
- pointer = GRID(ng)%z_r
- units = meter
- sign = negative downwards
- grid = ρ-points
- option = SOLVE3D
- routine = set_depths.F
- z_w
- Actual depths of variables at w-points, .
- dimension = z_w(LBi:UBi,LBj:UBj,0:N(ng))
- pointer = GRID(ng)%z_w
- units = meter
- sign = negative downwards
- grid = w-points
- option = SOLVE3D
- routine = set_depths.F