Terrain-Following Coordinate Transformation: Difference between revisions
No edit summary (change visibility) |
sigma and equation numbers (change visibility) |
||
Line 3: | Line 3: | ||
convenient to introduce a stretched vertical coordinate system which | convenient to introduce a stretched vertical coordinate system which | ||
essentially "flattens out" the variable bottom at $z = -h(x,y)$. | essentially "flattens out" the variable bottom at $z = -h(x,y)$. | ||
Such "$ | Such "$\sigma$" coordinate systems have long been used, with slight | ||
appropriate modification, in both meteorology and oceanography | appropriate modification, in both meteorology and oceanography | ||
[e.g., Phillips (1957) and Freeman et al. (1972)]. | [e.g., Phillips (1957) and Freeman et al. (1972)]. | ||
To proceed, we make the coordinate transformation: | To proceed, we make the coordinate transformation: | ||
$$\hat{x} = x | $$ \eqalign{ \hat{x} &= x \cr | ||
\hat{y} &= y \cr | |||
\sigma &= \sigma(x,y,z) \cr | |||
z &= z(x,y,\sigma) \cr | |||
\hat{t} &= t \cr } \eqno{(1)}$$ | |||
See [[S-coordinate]] for the form of $\sigma$ used here. Also, see [[Bibliography#ShchepetkinAF_2005a | Shchepetkin and McWilliams, 2005]] for a discussion about the nature of this form of $\sigma$ and how it | |||
differs from that used in SCRUM. | |||
In the stretched system, the vertical coordinate $s$ spans the | In the stretched system, the vertical coordinate $s$ spans the | ||
range $-1 \leq | range $-1 \leq \sigma \leq 0$; we are therefore left with | ||
level upper ($ | level upper ($\sigma = 0$) and lower ($\sigma = -1$) bounding | ||
surfaces. The chain rules for this transformation are: | surfaces. The chain rules for this transformation are: | ||
$$\left( { \partial \over \partial x } \right)_z =\left( { \partial \over \partial x } \right) | $$ \eqalign{ \left( { \partial \over \partial x } \right)_z &=\left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma}\cr | ||
\noalign{\smallskip} | |||
\left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \cr | |||
\noalign{\smallskip} | |||
{ \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} = { 1 \over H_z } { \partial \over \partial \sigma } \cr} \eqno{(2)} $$ | |||
where | where | ||
$$H_z \equiv { \partial z \over \partial | $$H_z \equiv { \partial z \over \partial \sigma } \eqno{(3)}$$ | ||
As a trade-off for this geometric | As a trade-off for this geometric | ||
Line 35: | Line 37: | ||
carats: | carats: | ||
$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial | $${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u \eqno{(4)}$$ | ||
$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial | $$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v \eqno{(5)}$$ | ||
$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial | $$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} \eqno{(6)}$$ | ||
$$\rho = \rho(T,S,P)$$ | $$\rho = \rho(T,S,P) \eqno{(7)}$$ | ||
$$\frac{\partial \phi}{\partial | $$\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) \eqno{(8)}$$ | ||
$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial | $${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 \eqno{(9)}$$ | ||
where | where | ||
$$\vec{v} = (u,v,\Omega)$$ | $$\vec{v} = (u,v,\Omega) \eqno{(10)}$$ | ||
$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v | $$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v | ||
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial | \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} \eqno{(11)}$$ | ||
The vertical velocity in $ | The vertical velocity in $\sigma$ coordinates is | ||
$$\Omega (x,y, | $$\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] \eqno{(12)}$$ | ||
and | and | ||
$$w = {\partial z \over \partial t} + u {\partial z \over \partial x} | $$w = {\partial z \over \partial t} + u {\partial z \over \partial x} | ||
+ v {\partial z \over \partial y} + \Omega H_z$$ | + v {\partial z \over \partial y} + \Omega H_z \eqno{(13)}$$ | ||
</wikitex> | </wikitex> | ||
==Vertical Boundary Conditions== | ==Vertical Boundary Conditions== | ||
Line 66: | Line 68: | ||
become: | become: | ||
top ($ | top ($\sigma = 0$): | ||
$$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_s (x,y,t) \cr | |||
\left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_s(x,y,t)\cr | |||
\left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = {Q_C \over \rho_o c_P}\cr | |||
&\Omega = 0 \cr} \eqno{(14)} $$ | |||
and bottom ($ | and bottom ($\sigma = -1$): | ||
$$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_b (x,y,t) \cr | |||
\left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_b (x,y,t) \cr | |||
\left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = 0 \cr | |||
&\Omega = 0 \cr} \eqno{(15)}$$ | |||
Note the simplification of the boundary conditions on vertical | Note the simplification of the boundary conditions on vertical | ||
velocity that arises from the $ | velocity that arises from the $\sigma$ coordinate transformation. | ||
</wikitex> | </wikitex> |
Revision as of 19:08, 24 July 2008
<wikitex>From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at $z = -h(x,y)$. Such "$\sigma$" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:
$$ \eqalign{ \hat{x} &= x \cr \hat{y} &= y \cr \sigma &= \sigma(x,y,z) \cr z &= z(x,y,\sigma) \cr \hat{t} &= t \cr } \eqno{(1)}$$
See S-coordinate for the form of $\sigma$ used here. Also, see Shchepetkin and McWilliams, 2005 for a discussion about the nature of this form of $\sigma$ and how it differs from that used in SCRUM.
In the stretched system, the vertical coordinate $s$ spans the range $-1 \leq \sigma \leq 0$; we are therefore left with level upper ($\sigma = 0$) and lower ($\sigma = -1$) bounding surfaces. The chain rules for this transformation are:
$$ \eqalign{ \left( { \partial \over \partial x } \right)_z &=\left( { \partial \over \partial x } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_\sigma { \partial \over \partial \sigma}\cr \noalign{\smallskip} \left( { \partial \over \partial y } \right)_z &= \left( { \partial \over \partial y } \right)_\sigma - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_\sigma { \partial \over \partial \sigma} \cr \noalign{\smallskip} { \partial \over \partial z } &= \left( { \partial \sigma \over \partial z } \right) { \partial \over \partial \sigma} = { 1 \over H_z } { \partial \over \partial \sigma } \cr} \eqno{(2)} $$
where
$$H_z \equiv { \partial z \over \partial \sigma } \eqno{(3)}$$
As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations are, after dropping the carats:
$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u \over \partial \sigma} \right] + {\cal F}_u + {\cal D}_u \eqno{(4)}$$
$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v \over \partial \sigma} \right] + {\cal F}_v + {\cal D}_v \eqno{(5)}$$
$$\frac{\partial C}{\partial t} + \vec{v} \cdot \nabla C = { 1 \over H_z } {\partial \over \partial \sigma} \left[ {(K_C+\nu) \over H_z} {\partial C \over \partial \sigma} \right] + {\cal F}_{C} + {\cal D}_{C} \eqno{(6)}$$
$$\rho = \rho(T,S,P) \eqno{(7)}$$
$$\frac{\partial \phi}{\partial \sigma} = \left( \frac{-gH_z\rho} {\rho_o} \right) \eqno{(8)}$$
$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial \sigma} = 0 \eqno{(9)}$$ where
$$\vec{v} = (u,v,\Omega) \eqno{(10)}$$
$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial \sigma} \eqno{(11)}$$
The vertical velocity in $\sigma$ coordinates is
$$\Omega (x,y,\sigma,t) = {1 \over H_z} \left[ w - {z+h \over \zeta + h} {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right] \eqno{(12)}$$
and
$$w = {\partial z \over \partial t} + u {\partial z \over \partial x}
+ v {\partial z \over \partial y} + \Omega H_z \eqno{(13)}$$
</wikitex>
Vertical Boundary Conditions
<wikitex>In the stretched coordinate system, the vertical boundary conditions become:
top ($\sigma = 0$): $$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_s (x,y,t) \cr \left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_s(x,y,t)\cr \left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = {Q_C \over \rho_o c_P}\cr &\Omega = 0 \cr} \eqno{(14)} $$
and bottom ($\sigma = -1$): $$ \eqalign{ \left( \frac{K_m}{H_z}\right)& \frac{\partial u}{\partial \sigma} = \tau^x_b (x,y,t) \cr \left( \frac{K_m}{H_z}\right)& \frac{\partial v}{\partial \sigma} = \tau^y_b (x,y,t) \cr \left( \frac{K_C}{H_z}\right)& \frac{\partial C}{\partial \sigma} = 0 \cr &\Omega = 0 \cr} \eqno{(15)}$$
Note the simplification of the boundary conditions on vertical velocity that arises from the $\sigma$ coordinate transformation. </wikitex>