Curvilinear Coordinates: Difference between revisions
No edit summary (change visibility) |
Change to wikitex, whew! (change visibility) |
||
Line 1: | Line 1: | ||
<div class="title">Curvilinear Coordinates</div> | <div class="title">Curvilinear Coordinates</div> | ||
<wikitex> | |||
The requirement for a boundary-following coordinate system and for a | The requirement for a boundary-following coordinate system and for a | ||
laterally variable grid resolution can both be met (for suitably | laterally variable grid resolution can both be met (for suitably | ||
smooth domains) by introducing an appropriate orthogonal coordinate | smooth domains) by introducing an appropriate orthogonal coordinate | ||
transformation in the horizontal. Let the new coordinates be | transformation in the horizontal. Let the new coordinates be | ||
$\xi(x,y)$ and $\eta(x,y)$ where the relationship of horizontal arc | |||
length to the differential distance is given by: | length to the differential distance is given by: | ||
$$(ds)_{\xi} = \left( {1 \over m} \right) d \xi$$ | |||
$$(ds)_{\eta} = \left( {1 \over n} \right) d \eta$$ | |||
Here, | Here, $m(\xi,\eta)$ and $n(\xi,\eta)$ are the scale factors which | ||
relate the differential distances | relate the differential distances $(\Delta \xi,\Delta \eta)$ to the | ||
actual (physical) arc lengths. | actual (physical) arc lengths. | ||
It is helpful to write the equations in vector notation and to use | It is helpful to write the equations in vector notation and to use | ||
the formulas for div, grad, and curl in curvilinear coordinates (see | the formulas for div, grad, and curl in curvilinear coordinates (see | ||
Batchelor, Appendix 2): | [[Bibliography#Batchelor67 |Batchelor, Appendix 2]]): | ||
$$\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} + | |||
\hat{\eta} n {\partial \phi \over \partial \eta} | \hat{\eta} n {\partial \phi \over \partial \eta}$$ | ||
$$\nabla \cdot \vec{a} = mn \left[ | |||
{\partial \over \partial \xi} \!\! \left( {a \over n} \right) + | {\partial \over \partial \xi} \!\! \left( {a \over n} \right) + | ||
{\partial \over \partial \eta} \!\! \left( {b \over m} \right) | {\partial \over \partial \eta} \!\! \left( {b \over m} \right) | ||
\right] | \right]$$ | ||
$$ | |||
\nabla \times \vec{a} = mn \left| \matrix{ | |||
{\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \ | {\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \cr | ||
{\partial \over \partial \xi} & | {\partial \over \partial \xi} & | ||
{\partial \over \partial \eta} & | {\partial \over \partial \eta} & | ||
{\partial \over \partial z} \ | {\partial \over \partial z} \cr | ||
{a \over m} & {b \over n} & c | {a \over m} & {b \over n} & c | ||
} \right| | |||
$$ | |||
$$\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[ | |||
{\partial \over \partial \xi} \!\! \left( {m \over n} | {\partial \over \partial \xi} \!\! \left( {m \over n} | ||
{\partial \phi \over \partial \xi} \right) + | {\partial \phi \over \partial \xi} \right) + | ||
{\partial \over \partial \eta} \!\! \left( {n \over m} | {\partial \over \partial \eta} \!\! \left( {n \over m} | ||
{\partial \phi \over \partial \eta} \right) \right] | {\partial \phi \over \partial \eta} \right) \right]$$ | ||
where | where $\phi$ is a scalar and $\vec{a}$ is a vector with components | ||
$a$, $b$, and $c$. | |||
</wikitex> |
Revision as of 00:46, 23 September 2009
<wikitex> The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met (for suitably smooth domains) by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be $\xi(x,y)$ and $\eta(x,y)$ where the relationship of horizontal arc length to the differential distance is given by:
$$(ds)_{\xi} = \left( {1 \over m} \right) d \xi$$
$$(ds)_{\eta} = \left( {1 \over n} \right) d \eta$$
Here, $m(\xi,\eta)$ and $n(\xi,\eta)$ are the scale factors which relate the differential distances $(\Delta \xi,\Delta \eta)$ to the actual (physical) arc lengths.
It is helpful to write the equations in vector notation and to use the formulas for div, grad, and curl in curvilinear coordinates (see Batchelor, Appendix 2):
$$\nabla \phi = \hat{\xi} m {\partial \phi \over \partial \xi} +
\hat{\eta} n {\partial \phi \over \partial \eta}$$
$$\nabla \cdot \vec{a} = mn \left[
{\partial \over \partial \xi} \!\! \left( {a \over n} \right) + {\partial \over \partial \eta} \!\! \left( {b \over m} \right) \right]$$
$$ \nabla \times \vec{a} = mn \left| \matrix{
{\hat{\xi}_1 \over m} & {\hat{\xi}_2 \over n} & \hat{k} \cr {\partial \over \partial \xi} & {\partial \over \partial \eta} & {\partial \over \partial z} \cr {a \over m} & {b \over n} & c } \right|
$$
$$\nabla^2 \phi = \nabla \cdot \nabla \phi = mn \left[
{\partial \over \partial \xi} \!\! \left( {m \over n} {\partial \phi \over \partial \xi} \right) + {\partial \over \partial \eta} \!\! \left( {n \over m} {\partial \phi \over \partial \eta} \right) \right]$$
where $\phi$ is a scalar and $\vec{a}$ is a vector with components $a$, $b$, and $c$. </wikitex>