ϕ(t)=ϕ¯+∑k=1NAksinωkt+∑k=1NBkcosωkt{\displaystyle \phi (t)={\bar {\phi }}+\sum _{k=1}^{N}A_{k}\sin \omega _{k}t+\sum _{k=1}^{N}B_{k}\cos \omega _{k}t}
To minimize cost function ε2{\displaystyle \varepsilon ^{2}}
In discrete space:
at the minimum
in matrix form (7 harmonics). Note: all instances of ∑{\displaystyle \sum } are actually ∑i=1M{\displaystyle \sum _{i=1}^{M}}