roms.in: Difference between revisions
No edit summary (change visibility) |
No edit summary (change visibility) |
||
Line 89: | Line 89: | ||
== Adjoint Sensitivity Parameters == | == Adjoint Sensitivity Parameters == | ||
Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing. | * Starting ([[Variables#DstrS|DstrS]]) and ending ([[Variables#DendS|DendS]]) day for adjoint sensitivity forcing. [[Variables#DstrS|DstrS]] must be less or equal to [[Variables#DendS|DendS]]. If both values are zero, their values are reset internally to the full range of the adjoint integration.<div class="box"> [[Variables#DstrS|DstrS]] == 0.0d0 ! starting day<br /> [[Variables#DendS|DendS]] == 0.0d0 ! ending day</div> | ||
DstrS must be less or equal to DendS. If both values are zero, their | |||
values are reset internally to the full range of the adjoint integration. | |||
* Starting and ending vertical levels of the 3D adjoint state variables whose sensitivity is required.<div class="box"> [[Variables#KstrS|KstrS]] == 1 ! starting level<br /> [[Variables#KendS|KendS]] == 1 ! ending level</div> | |||
* Logical switches ('''TRUE'''/'''FALSE''') to specify the adjoint state variables whose sensitivity is required.<div class="box">[[Variables#Lstate|Lstate(isFsur)]] == F ! free-surface<br />[[Variables#Lstate|Lstate(isUbar)]] == F ! 2D U-momentum<br />[[Variables#Lstate|Lstate(isVbar)]] == F ! 2D V-momentum<br />[[Variables#Lstate|Lstate(isUvel)]] == F ! 3D U-momentum<br />[[Variables#Lstate|Lstate(isVvel)]] == F ! 3D V-momentum</div> | |||
whose sensitivity is required. | |||
* Logical switches ('''TRUE'''/'''FALSE''') to specify the adjoint state tracervariables whose sensitivity is required, [1:[[NT]],1:[[Ngrids]]] values are expected.<div class="box">[[Variables#Lstate|Lstate(isTvar)]] == F F ! tracers</div> | |||
Logical switches (TRUE/FALSE) to specify the adjoint state | |||
whose sensitivity is required | |||
== Stochastic Optimals Parameters == | == Stochastic Optimals Parameters == | ||
Stochastic optimals time decorrelation scale (days) assumed for | * Stochastic optimals time decorrelation scale (days) assumed for red noise processes.<div class="box"> [[Variables#SO_decay|SO_decay]] == 2.0d0 ! days</div> | ||
red noise processes. | |||
Logical switches (TRUE/FALSE) to specify the surface | * Logical switches ('''TRUE'''/'''FALSE''') to specify the state surface forcing variable whose stochastic optimals is required.<div class="box">[[Variables#SOstate|SOstate(isUstr)]] == T ! surface u-stress<br />[[Variables#SOstate|SOstate(isVstr)]] == T ! surface v-stress</div> | ||
variable whose stochastic optimals is required ( | |||
* Logical switches ('''TRUE'''/'''FALSE''') to specify the surface tracer forcing variable whose stochastic optimals is required, [1:[[NT]],1:[[Ngrids]]] values are expected.<div class="box">[[Variables#SOstate|SOstate(isTsur)]] == F F ! surface tracer flux</div> | |||
Stochastic optimals surface forcing standard deviation for | * Stochastic optimals surface forcing standard deviation for dimensionalization.<div class="box">[[Variables#SO_sdev|SO_sdev(isUstr)]] == 1.0d0 ! surface u-stress<br />[[Variables#SO_sdev|SO_sdev(isVstr)]] == 1.0d0 ! surface v-stress<br />[[Variables#SO_sdev|SO_sdev(isTsur)]] == 1.0d0 1.0d0 ! NT surface tracer flux</div> | ||
dimensionalization. | |||
== Output Variables Switches == | == Output Variables Switches == | ||
Logical switches (TRUE/FALSE) to activate writing of fields into | * Logical switches (TRUE/FALSE) to activate writing of fields into history output file. If CPP option [[AVERAGES]] is defined, these switches will cause the samedata to be averaged and written to the averages file.<div class="box">[[Variables#Hout|Hout(idUvel)]] == T ! 3D U-velocity<br />[[Variables#Hout|Hout(idVvel)]] == T ! 3D V-velocity<br />[[Variables#Hout|Hout(idWvel)]] == T ! 3D W-velocity<br />[[Variables#Hout|Hout(idOvel)]] == T ! omega vertical velocity<br />[[Variables#Hout|Hout(idUbar)]] == T ! 2D U-velocity<br />[[Variables#Hout|Hout(idVbar)]] == T ! 2D V-velocity<br />[[Variables#Hout|Hout(idFsur)]] == T ! free-surface<br /><br />[[Variables#Hout|Hout(idTvar)]] == T T ! temperature and salinity<br /><br />[[Variables#Hout|Hout(idUsms)]] == F ! surface U-stress<br />[[Variables#Hout|Hout(idVsms)]] == F ! surface V-stress<br />[[Variables#Hout|Hout(idUbms)]] == F ! bottom U-stress<br />[[Variables#Hout|Hout(idVbms)]] == F ! bottom V-stress<br />[[Variables#Hout|Hout(idUbrs)]] == F ! bottom U-current stress<br />[[Variables#Hout|Hout(idVbrs)]] == F ! bottom V-current stress<br />[[Variables#Hout|Hout(idUbws)]] == F ! bottom U-wave stress<br />[[Variables#Hout|Hout(idVbws)]] == F ! bottom V-wave stress<br />[[Variables#Hout|Hout(idUbcs)]] == F ! bottom max wave-current U-stress<br />[[Variables#Hout|Hout(idVbcs)]] == F ! bottom max wave-current V-stress<br /><br />[[Variables#Hout|Hout(idUbot)]] == F ! bed wave orbital U-velocity<br />[[Variables#Hout|Hout(idVbot)]] == F ! bed wave orbital V-velocity<br />[[Variables#Hout|Hout(idUbur)]] == F ! bottom U-velocity above bed<br />[[Variables#Hout|Hout(idVbvr)]] == F ! bottom V-velocity above bed<br /><br />[[Variables#Hout|Hout(idTsur)]] == F F ! surface net heat and salt flux<br />[[Variables#Hout|Hout(idLhea)]] == F ! latent heat flux<br />[[Variables#Hout|Hout(idShea)]] == F ! sensible heat flux<br />[[Variables#Hout|Hout(idLrad)]] == F ! longwave radiation flux<br />[[Variables#Hout|Hout(idSrad)]] == F ! shortwave radiation flux<br />[[Variables#Hout|Hout(idevap)]] == F ! evaporation rate<br />[[Variables#Hout|Hout(idrain)]] == F ! precipitation rate<br /><br />[[Variables#Hout|Hout(idDano)]] == F ! density anomaly<br />[[Variables#Hout|Hout(idVvis)]] == F ! vertical viscosity<br />[[Variables#Hout|Hout(idTdif)]] == F ! vertical T-diffusion<br />[[Variables#Hout|Hout(idSdif)]] == F ! vertical Salinity diffusion<br />[[Variables#Hout|Hout(idHsbl)]] == F ! depth of surface boundary layer<br />[[Variables#Hout|Hout(idHbbl)]] == F ! depth of bottom boundary layer<br />[[Variables#Hout|Hout(idMtke)]] == F ! turbulent kinetic energy<br />[[Variables#Hout|Hout(idMtls)]] == F ! turbulent length scale</div> | ||
* Logical switches ('''TRUE'''/'''FALSE''') to activate writing of extra inert passive tracers other than biological and sediment tracers. An inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. [1:[[NPT]],1:[[Ngrids]]] values are expected. However, these switches can be activated using compact parameter specification.<div class="box">[[Variables#Hout|Hout(inert)]] == T ! inert passive tracers</div> | |||
* Logical switches ('''TRUE'''/'''FALSE''') to activate writing of exposed sediment layer properties into HISTORY output file. Currently, [[Variables#MBOTP|MBOTP]] properties are expected for the bottom boundary layer and/or sediment models.<div class="box"><span class="twilightBlue">! [[Variables#Hout|Hout(idBott(isd50))]], [[Variables#isd50|isd50]] = 1 ! mean grain diameter<br />! [[Variables#Hout|Hout(idBott(idens))]], [[Variables#idens|idens]] = 2 ! mean grain density<br />! [[Variables#Hout|Hout(idBott(iwsed))]], [[Variables#iwsed|iwsed]] = 3 ! mean settling velocity<br />! [[Variables#Hout|Hout(idBott(itauc))]], [[Variables#itauc|itauc]] = 4 ! critical erosion stress<br />! [[Variables#Hout|Hout(idBott(irlen))]], [[Variables#irlen|irlen]] = 5 ! ripple length<br />! [[Variables#Hout|Hout(idBott(irhgt))]], [[Variables#irhgt|irhgt]] = 6 ! ripple height<br />! [[Variables#Hout|Hout(idBott(ibwav))]], [[Variables#ibwav|ibwav]] = 7 ! wave excursion amplitude<br />! [[Variables#Hout|Hout(idBott(izdef))]], [[Variables#izdef|izdef]] = 8 ! default bottom roughness<br />! [[Variables#Hout|Hout(idBott(izapp))]], [[Variables#izapp|izapp]] = 9 ! apparent bottom roughness<br />! [[Variables#Hout|Hout(idBott(izNik))]], [[Variables#izNik|izNik]] = 10 ! Nikuradse bottom roughness<br />! [[Variables#Hout|Hout(idBott(izbio))]], [[Variables#izbio|izbio]] = 11 ! biological bottom roughness<br />! [[Variables#Hout|Hout(idBott(izbfm))]], [[Variables#izbfm|izbfm]] = 12 ! bed form bottom roughness<br />! [[Variables#Hout|Hout(idBott(izbld))]], [[Variables#izbld|izbld]] = 13 ! bed load bottom roughness<br />! [[Variables#Hout|Hout(idBott(izwbl))]], [[Variables#izwbl|izwbl]] = 14 ! wave bottom roughness<br />! [[Variables#Hout|Hout(idBott(iactv))]], [[Variables#iactv|iactv]] = 15 ! active layer thickness<br />! [[Variables#Hout|Hout(idBott(ishgt))]], [[Variables#ishgt|ishgt]] = 16 ! saltation height<br />!<br />! 1 1 1 1 1 1 1<br />! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6<br /></span><br />[[Variables#Hout|Hout(idBott)]] == T T T T T T T T T F F F F F F F</div> | |||
== User Parameters == | == User Parameters == | ||
Generic User parameters, [1:NUSER]. | * Generic User parameters, [1:NUSER] values are expected.<div class="box"> [[Variables#Nuser|NUSER]] = 0<br /> [[Variables#user|USER]] = 0.d0</div> | ||
Input | == Input NetCDF Files == | ||
* Input NetCDF file names, [1:Ngrids] values are expected.<div class="box"> [[Variables#GRDname|GRDNAME]] == ocean_grd.nc ! Grid<br /> [[Variables#INIname|ININAME]] == ocean_ini.nc ! NLM initial conditions<br /> [[Variables#ITLname|ITLNAME]] == ocean_itl.nc ! TLM initial conditions<br /> [[Variables#IRPname|IRPNAME]] == ocean_irp.nc ! RPM initial conditions<br /> [[Variables#IADname|IADNAME]] == ocean_iad.nc ! ADM initial conditions<br /> [[Variables#CLMname|CLMNAME]] == ocean_clm.nc ! Climatology<br /> [[Variables#BRYname|BRYNAME]] == ocean_bry.nc ! Open boundary conditions<br /> [[Variables#FWDname|FWDNAME]] == ocean_fwd.nc ! Forward trajectory<br /> [[Variables#ADSname|ADSNAME]] == ocean_ads.nc ! Adjoint sensitivity functionals</div> | |||
* Input forcing NetCDF file name(s). The USER has the option to enter several files names per each nested grid. For example, the '''user''' may have a different files for wind products, heat fluxes, rivers, tides, etc. The model will scan the file list and will read the needed data from the first file in the list containing the forcing field. Therefore, the order of the file names is very important. If multiple forcing files per grid, enter first all the file names for grid 1, then grid 2, and so on. Use a single line per entry with a continuation (<span class="red">\</span>) symbol at the each entry, except the last one.<div class="box"> [[Variables#nFfiles|NFFILES]] == 1 ! number of forcing files<br /><br /> [[Variables#FRCname|FRCNAME]] == ocean_frc.nc ! forcing file 1, grid 1</div> | |||
== Output NetCDF Files == | == Output NetCDF Files == | ||
Output NetCDF file names, [1:Ngrids]. | * Output NetCDF file names, [1:Ngrids] files are expected.<div class="box"> [[Variables#GSTname|GSTNAME]] == ocean_gst.nc ! GST analysis restart<br /> [[Variables#RSTname|RSTNAME]] == ocean_rst.nc ! Restart<br /> [[Variables#HISname|HISNAME]] == ocean_his.nc ! History<br /> [[Variables#TLMname|TLMNAME]] == ocean_tlm.nc ! TLM history<br /> [[Variables#TLFname|TLFNAME]] == ocean_tlf.nc ! Impulse TLM forcing<br /> [[Variables#ADJname|ADJNAME]] == ocean_adj.nc ! ADM history<br /> [[Variables#AVGname|AVGNAME]] == ocean_avg.nc ! Averages<br /> [[Variables#DIAname|DIANAME]] == ocean_dia.nc ! Diagnostics<br /> [[Variables#STAname|STANAME]] == ocean_sta.nc ! Stations<br /> [[Variables#FLTname|FLTNAME]] == ocean_flt.nc ! Floats</div> | ||
== Additional Input Scripts == | == Additional Input Scripts == | ||
Input ASCII parameter filenames. | * Input ASCII parameter filenames.<div class="box"> [[Variables#APARnam|APARNAM]] = ROMS/External/[[s4dvar.in]]<br /> [[Variables#SPOSnam|SPOSNAM]] = ROMS/External/[[stations.in]]<br /> [[Variables#FPOSnam|FPOSNAM]] = ROMS/External/[[floats.in]]<br /> [[Variables#BPARnam|BPARNAM]] = ROMS/External/[[bioFasham.in]]<br /> [[Variables#SPARnam|SPARNAM]] = ROMS/External/[[sediment.in]]<br /> [[Variables#USRname|USRNAME]] = ROMS/External/MyFile.dat</div> | ||
Revision as of 04:47, 5 July 2007
File ocean.in is the ROMS standard input file to any model run. This file sets the application spatial dimensions and many of the parameters that are not specified at compile time, including parallel tile decomposition, time-stepping, physical coefficients and constants, vertical coordinate set-up, logical switches and flags to control the frequency of output, the names of input and output NetCDF files, and additional input scripts names for data assimilation, stations, floats trajectories, ecosystem models, and sediment model.
This standard input ASCII file is organized in several sections as shown below, with links to more detailed explanation where required.
Notice: A detailed information about ROMS input script file syntax can be found here.
Notice: A default ocean.in input script is provided in the User/External subdirectory. Also there are several standard input scripts in the ROMS/External subdirectory which are used in the distributed test cases. They are usually named ocean_app.in where app is the lowercase of the test case cpp option.
Configuration Parameters
- Application title. This string will be saved in the output NetCDF files. TITLE = Wind-Driven Upwelling/Downwelling over a Periodic Channel
- C-preprocessing Flag to define the specific configuration. In versions up to 2.3 this flag was one of the predefined model applications that headed the cppdefs.h file. You must make the value of MyAppCPP below consistent with variable ROMS_APPLICATION in the makefile. ROMS converts the ROMS_APPLICATION variable to lowercase to determine the name of the file to include. To see the options used in the predefined applications browse the files in ROMS/Include.
Notice: It is recommended that users setting up their own configuration by creating a new file e.g. myproject.h to hold CPP options and keep this either in User/Include or a separate directory that is indicated by the MY_HEADER_DIR macro definition in makefile.
Warning: If you copy a predefined application from ROMS/Include as a template for your application you must rename it. You cannot stop ROMS from first looking in ROMS/Include, in which case any edits you make will get shadowed and your changes will not be used.
- Input variable information file name. This file needs to be processed first so all information arrays can be initialized properly.VARNAME = ROMS/External/varinfo.dat
- Grid dimension parameters. These are used to dynamically allocate all model state variables upon execution.Lm == 41 ! Number of I-direction INTERIOR RHO-points
Mm == 80 ! Number of J-direction INTERIOR RHO-points
N == 16 ! Number of vertical levels
Nbed = 0 ! Number of sediment bed layers
NAT = 2 ! Number of active tracers (usually, 2)
NPT = 0 ! Number of inactive passive tracers
NCS = 0 ! Number of cohesive (mud) sediment tracers
NNS = 0 ! Number of non-cohesive (sand) sediment tracers
- Domain decomposition parameters for serial, distributed-memory or shared-memory configurations used to determine tile horizontal range indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids] values are expected.
Time-Stepping and Iterations Parameters
- Time-stepping parameters.
- Model iteration loops parameters.ERstr = 1 ! Starting perturbation or iteration
ERend = 1 ! Ending perturbation or iteration
Nouter = 1 ! Maximum number of 4DVar outer loop iterations
Ninner = 1 ! Maximum number of 4DVar inner loop iterations
Nintervals = 1 ! Number of stochastic optimals interval divisions
- Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the Lanczos/Arnoldi problem in the Generalized Stability Theory (GST) analysis. NCV must be greater than NEV.
Notice: At present, there is no a-priori analysis to guide the selection of NCV relative to NEV. The only formal requirement is that NCV > NEV. However in optimal perturbations, it is recommended to have NCV ≥ 2*NEV. In Finite Time Eigenmodes (FTE) and Adjoint Finite Time Eigenmodes (AFTE) the requirement is to have NCV ≥ 2*NEV+1. The efficiency of calculations depends critically on the combination of NEV and NCV. If NEV is large (greater than 10 say), you can use NCV=2*NEV+1 but for NEV small (less than 6) it will be inefficient to use NCV=2*NEV+1. In complicated applications, you can start with NEV=2 and NCV=10. Otherwise, it will iterate for very long time.
Output Frequency Parameters
- Flags controlling the frequency of output.NRREC = 0 ! Model restart flag
LcycleRST == T ! Switch to recycle restart time records
NRST == 288 ! Number of time-steps between restart records
NSTA == 1 ! Number of time-steps between stations records
NFLT == 1 ! Number of time-steps between floats records
NINFO == 1 ! Number of time-steps between information diagnostics
- Output history, average, diagnostic files parameters.LDEFOUT == T ! File creation/append switch
NHIS == 72 ! Number of time-steps between history records
NDEFHIS == 0 ! Number of time-steps between creation of new history file
NTSAVG == 1 ! Starting averages time-step
NAVG == 72 ! Number of time-steps between averages records
NDEFAVG == 0 ! Number of time-steps between creation of new averages file
NTSDIA == 1 ! Starting diagnostics time-step
NDIA == 72 ! Number of time-steps between diagnostics records
NDEFDIA == 0 ! Number of time-steps between creation of new diagnostics file
- Output tangent linear and adjoint models parameters.LcycleTLM == F ! Switch to recycle TLM time records
NTLM == 72 ! Number of time-steps between TLM records
NDEFTLM == 0 ! Number of time-steps between creation of new TLM file
LcycleADJ == F ! Switch to recycle ADM time records
NADJ == 72 ! Number of time-steps between ADM records
NDEFADJ == 0 ! Number of time-steps between creation of new ADM file
- Output check pointing GST restart parameters.LrstGST = F ! GST restart switch
MaxIterGST = 500 ! maximum number of iterations
NGST = 10 ! check pointing interval
Physical and Numerical Parameters
- Relative accuracy of the Ritz values computed in the GST analysis.Ritz_tol = 1.0d-15
- Harmonic/biharmonic horizontal diffusion of all active and passive (dye) tracers, [1:NAT+NPT,Ngrids]. Diffusion coefficients for biology and sediment tracers are set in their respective input scripts.
- Harmonic/biharmonic, horizontal viscosity coefficient: [1:Ngrids values are expected. Only used if the appropriate CPP options are defined.
- Background vertical mixing coefficients for active and passive (dye) tracers: [1:NAT+NPT,Ngrids] values are expected.AKT_BAK == 1.0d-6 1.0d-6 ! m2/s
- Background vertical mixing coefficient for momentum: [1:Ngrids] values are expected.AKV_BAK == 1.0d-5 ! m2/s
- Turbulent closures parameters.
- Generic length-scale turbulence closure parameters. These parameters are used when GLS_MIXING is activated.
- Constants used in surface turbulent kinetic energy flux computation.CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! Roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking
- Constants used in momentum stress computation.
- Height (m) of atmospheric measurements for Bulk fluxes parameterization.
- Minimum depth for wetting and drying.DCRIT == 0.10d0 ! m
- Jerlov water type used to set vertical depth scale for shortwave radiation absorption.WTYPE == 1
- Deepest and shallowest levels to apply surface momentum stress as a body-force.
- Mean Density and Brunt-Vaisala frequency.
- Time-stamp assigned for model initialization, reference time origin for tidal forcing, and model reference time for output NetCDF units attribute.
- Nudging/relaxation time scales, inverse scales will be computed internally, [1:Ngrids] values are expected.
- Factor between passive (outflow) and active (inflow) open boundary conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger than on outflow (recommended).OBCFAC == 0.0d0 ! nondimensional
- Linear equation of State parameters, [1:Ngrids] values are expected.
- Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip).GAMMA2 = 1.0d0
Vertical Coordinates Parameters
- Terrain-following coordinates surface control parameter, [1:Ngrids] values are expected.THETA_S == 3.0d0 ! 0 < THETA_S < 20
- Terrain-following coordinates bottom control parameter, [1:Ngrids] values are expected.THETA_B == 0.0d0 ! 0 < THETA_B < 1
- Width of surface or bottom boundary layer in which higher vertical resolution is required during stretching.TCLINE == 50.0d0 ! m
Adjoint Sensitivity Parameters
- Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing. DstrS must be less or equal to DendS. If both values are zero, their values are reset internally to the full range of the adjoint integration.
- Starting and ending vertical levels of the 3D adjoint state variables whose sensitivity is required.
- Logical switches (TRUE/FALSE) to specify the adjoint state variables whose sensitivity is required.Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum
- Logical switches (TRUE/FALSE) to specify the adjoint state tracervariables whose sensitivity is required, [1:NT,1:Ngrids] values are expected.Lstate(isTvar) == F F ! tracers
Stochastic Optimals Parameters
- Stochastic optimals time decorrelation scale (days) assumed for red noise processes.SO_decay == 2.0d0 ! days
- Logical switches (TRUE/FALSE) to specify the state surface forcing variable whose stochastic optimals is required.
- Logical switches (TRUE/FALSE) to specify the surface tracer forcing variable whose stochastic optimals is required, [1:NT,1:Ngrids] values are expected.SOstate(isTsur) == F F ! surface tracer flux
- Stochastic optimals surface forcing standard deviation for dimensionalization.SO_sdev(isUstr) == 1.0d0 ! surface u-stress
SO_sdev(isVstr) == 1.0d0 ! surface v-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux
Output Variables Switches
- Logical switches (TRUE/FALSE) to activate writing of fields into history output file. If CPP option AVERAGES is defined, these switches will cause the samedata to be averaged and written to the averages file.Hout(idUvel) == T ! 3D U-velocity
Hout(idVvel) == T ! 3D V-velocity
Hout(idWvel) == T ! 3D W-velocity
Hout(idOvel) == T ! omega vertical velocity
Hout(idUbar) == T ! 2D U-velocity
Hout(idVbar) == T ! 2D V-velocity
Hout(idFsur) == T ! free-surface
Hout(idTvar) == T T ! temperature and salinity
Hout(idUsms) == F ! surface U-stress
Hout(idVsms) == F ! surface V-stress
Hout(idUbms) == F ! bottom U-stress
Hout(idVbms) == F ! bottom V-stress
Hout(idUbrs) == F ! bottom U-current stress
Hout(idVbrs) == F ! bottom V-current stress
Hout(idUbws) == F ! bottom U-wave stress
Hout(idVbws) == F ! bottom V-wave stress
Hout(idUbcs) == F ! bottom max wave-current U-stress
Hout(idVbcs) == F ! bottom max wave-current V-stress
Hout(idUbot) == F ! bed wave orbital U-velocity
Hout(idVbot) == F ! bed wave orbital V-velocity
Hout(idUbur) == F ! bottom U-velocity above bed
Hout(idVbvr) == F ! bottom V-velocity above bed
Hout(idTsur) == F F ! surface net heat and salt flux
Hout(idLhea) == F ! latent heat flux
Hout(idShea) == F ! sensible heat flux
Hout(idLrad) == F ! longwave radiation flux
Hout(idSrad) == F ! shortwave radiation flux
Hout(idevap) == F ! evaporation rate
Hout(idrain) == F ! precipitation rate
Hout(idDano) == F ! density anomaly
Hout(idVvis) == F ! vertical viscosity
Hout(idTdif) == F ! vertical T-diffusion
Hout(idSdif) == F ! vertical Salinity diffusion
Hout(idHsbl) == F ! depth of surface boundary layer
Hout(idHbbl) == F ! depth of bottom boundary layer
Hout(idMtke) == F ! turbulent kinetic energy
Hout(idMtls) == F ! turbulent length scale
- Logical switches (TRUE/FALSE) to activate writing of extra inert passive tracers other than biological and sediment tracers. An inert passive tracer is one that it is only advected and diffused. Other processes are ignored. These tracers include, for example, dyes, pollutants, oil spills, etc. [1:NPT,1:Ngrids] values are expected. However, these switches can be activated using compact parameter specification.Hout(inert) == T ! inert passive tracers
- Logical switches (TRUE/FALSE) to activate writing of exposed sediment layer properties into HISTORY output file. Currently, MBOTP properties are expected for the bottom boundary layer and/or sediment models.! Hout(idBott(isd50)), isd50 = 1 ! mean grain diameter
! Hout(idBott(idens)), idens = 2 ! mean grain density
! Hout(idBott(iwsed)), iwsed = 3 ! mean settling velocity
! Hout(idBott(itauc)), itauc = 4 ! critical erosion stress
! Hout(idBott(irlen)), irlen = 5 ! ripple length
! Hout(idBott(irhgt)), irhgt = 6 ! ripple height
! Hout(idBott(ibwav)), ibwav = 7 ! wave excursion amplitude
! Hout(idBott(izdef)), izdef = 8 ! default bottom roughness
! Hout(idBott(izapp)), izapp = 9 ! apparent bottom roughness
! Hout(idBott(izNik)), izNik = 10 ! Nikuradse bottom roughness
! Hout(idBott(izbio)), izbio = 11 ! biological bottom roughness
! Hout(idBott(izbfm)), izbfm = 12 ! bed form bottom roughness
! Hout(idBott(izbld)), izbld = 13 ! bed load bottom roughness
! Hout(idBott(izwbl)), izwbl = 14 ! wave bottom roughness
! Hout(idBott(iactv)), iactv = 15 ! active layer thickness
! Hout(idBott(ishgt)), ishgt = 16 ! saltation height
!
! 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Hout(idBott) == T T T T T T T T T F F F F F F F
User Parameters
- Generic User parameters, [1:NUSER] values are expected.
Input NetCDF Files
- Input NetCDF file names, [1:Ngrids] values are expected.GRDNAME == ocean_grd.nc ! Grid
ININAME == ocean_ini.nc ! NLM initial conditions
ITLNAME == ocean_itl.nc ! TLM initial conditions
IRPNAME == ocean_irp.nc ! RPM initial conditions
IADNAME == ocean_iad.nc ! ADM initial conditions
CLMNAME == ocean_clm.nc ! Climatology
BRYNAME == ocean_bry.nc ! Open boundary conditions
FWDNAME == ocean_fwd.nc ! Forward trajectory
ADSNAME == ocean_ads.nc ! Adjoint sensitivity functionals
- Input forcing NetCDF file name(s). The USER has the option to enter several files names per each nested grid. For example, the user may have a different files for wind products, heat fluxes, rivers, tides, etc. The model will scan the file list and will read the needed data from the first file in the list containing the forcing field. Therefore, the order of the file names is very important. If multiple forcing files per grid, enter first all the file names for grid 1, then grid 2, and so on. Use a single line per entry with a continuation (\) symbol at the each entry, except the last one.
Output NetCDF Files
- Output NetCDF file names, [1:Ngrids] files are expected.GSTNAME == ocean_gst.nc ! GST analysis restart
RSTNAME == ocean_rst.nc ! Restart
HISNAME == ocean_his.nc ! History
TLMNAME == ocean_tlm.nc ! TLM history
TLFNAME == ocean_tlf.nc ! Impulse TLM forcing
ADJNAME == ocean_adj.nc ! ADM history
AVGNAME == ocean_avg.nc ! Averages
DIANAME == ocean_dia.nc ! Diagnostics
STANAME == ocean_sta.nc ! Stations
FLTNAME == ocean_flt.nc ! Floats
Additional Input Scripts
- Input ASCII parameter filenames.APARNAM = ROMS/External/s4dvar.in
SPOSNAM = ROMS/External/stations.in
FPOSNAM = ROMS/External/floats.in
BPARNAM = ROMS/External/bioFasham.in
SPARNAM = ROMS/External/sediment.in
USRNAME = ROMS/External/MyFile.dat