Terrain-Following Coordinate Transformation: Difference between revisions
No edit summary (change visibility) |
convert to TeX (change visibility) |
||
Line 1: | Line 1: | ||
<div class="title">Vertical Terrain-Following Coordinates</div> | <div class="title">Vertical Terrain-Following Coordinates</div> | ||
<wikitex> | |||
From the point of view of the computational model, it is highly | From the point of view of the computational model, it is highly | ||
convenient to introduce a stretched vertical coordinate system which | convenient to introduce a stretched vertical coordinate system which | ||
essentially "flattens out" the variable bottom at | essentially "flattens out" the variable bottom at $z = -h(x,y)$. | ||
Such " | Such "$s$" coordinate systems have long been used, with slight | ||
appropriate modification, in both meteorology and oceanography | appropriate modification, in both meteorology and oceanography | ||
[e.g., Phillips (1957) and Freeman et al. (1972)]. | [e.g., Phillips (1957) and Freeman et al. (1972)]. | ||
To proceed, we make the coordinate transformation: | To proceed, we make the coordinate transformation: | ||
$$\hat{x} = x$$ | |||
$$\hat{y} = y $$ | |||
$$s = s(x,y,z)$$ | |||
$$z = z(x,y,s)$$ | |||
$$\hat{t} = t$$ | |||
See [[S-coordinate]] for the form of | See [[S-coordinate]] for the form of $s$ used here. | ||
In the stretched system, the vertical coordinate | In the stretched system, the vertical coordinate $s$ spans the | ||
range | range $-1 \leq s \leq 0$; we are therefore left with | ||
level upper ( | level upper ($s = 0$) and lower ($s = -1$) bounding | ||
surfaces. The chain rules for this transformation are: | surfaces. The chain rules for this transformation are: | ||
$$\left( { \partial \over \partial x } \right)_z =\left( { \partial \over \partial x } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_s { \partial \over \partial s}$$ | |||
$$\left( { \partial \over \partial y } \right)_z = \left( { \partial \over \partial y } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_s { \partial \over \partial s}$$ | |||
$${ \partial \over \partial z } = \left( { \partial s \over \partial z } \right) { \partial \over \partial s} = { 1 \over H_z } { \partial \over \partial s }$$ | |||
where | where | ||
$$H_z \equiv { \partial z \over \partial s }$$ | |||
As a trade-off for this geometric | As a trade-off for this geometric | ||
Line 36: | Line 38: | ||
carats: | carats: | ||
$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + {\cal F}_u + {\cal D}_u$$ | |||
$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + {\cal F}_v + {\cal D}_v$$ | |||
$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = {\cal F}_{T} + {\cal D}_{T}$$ | |||
$$\frac{\partial S}{\partial t} + \vec{v} \cdot \nabla S = {\cal F}_{S} + {\cal D}_{S}$$ | |||
$$\rho = \rho(T,S,P)$$ | |||
$$\frac{\partial \phi}{\partial s} = \left( \frac{-gH_z\rho} {\rho_o} \right)$$ | |||
$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial s} = 0$$ | |||
where | where | ||
$$\vec{v} = (u,v,\Omega)$$ | |||
$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v | |||
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial s} | \frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial s}$$ | ||
The vertical velocity in | The vertical velocity in $s$ coordinates is | ||
$$\Omega (x,y,s,t) = {1 \over H_z} \left[ w - (1+s) {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right]$$ | |||
and | and | ||
$$w = {\partial z \over \partial t} + u {\partial z \over \partial x} | |||
+ v {\partial z \over \partial y} + \Omega H_z | + v {\partial z \over \partial y} + \Omega H_z$$ | ||
==Vertical Boundary Conditions== | ==Vertical Boundary Conditions== | ||
Line 71: | Line 72: | ||
become: | become: | ||
top ( | top ($s = 0$): | ||
:: | ::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_s (x,y,t)$ | ||
:: | ::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_s(x,y,t)$ | ||
:: | ::$\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = {Q_T \over \rho_o c_P} + {1 \over \rho_o c_P} {dQ \over dT} (T - T_{\rm ref})$ | ||
:: | ::$\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = {(E - P) S \over \rho_o}$ | ||
:: | ::$\Omega = 0$ | ||
and bottom ( | and bottom ($s = -1$): | ||
:: | ::$\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_b (x,y,t)$ | ||
:: | ::$\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_b (x,y,t)$ | ||
:: | ::$\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = 0<$ | ||
:: | ::$\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = 0$ | ||
:: | ::$\Omega = 0$ | ||
Note the simplification of the boundary conditions on vertical | Note the simplification of the boundary conditions on vertical | ||
velocity that arises from the | velocity that arises from the $s$ coordinate transformation. |
Revision as of 00:48, 10 July 2008
<wikitex>
From the point of view of the computational model, it is highly convenient to introduce a stretched vertical coordinate system which essentially "flattens out" the variable bottom at $z = -h(x,y)$. Such "$s$" coordinate systems have long been used, with slight appropriate modification, in both meteorology and oceanography [e.g., Phillips (1957) and Freeman et al. (1972)]. To proceed, we make the coordinate transformation:
$$\hat{x} = x$$ $$\hat{y} = y $$ $$s = s(x,y,z)$$ $$z = z(x,y,s)$$ $$\hat{t} = t$$
See S-coordinate for the form of $s$ used here. In the stretched system, the vertical coordinate $s$ spans the range $-1 \leq s \leq 0$; we are therefore left with level upper ($s = 0$) and lower ($s = -1$) bounding surfaces. The chain rules for this transformation are:
$$\left( { \partial \over \partial x } \right)_z =\left( { \partial \over \partial x } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial x } \right)_s { \partial \over \partial s}$$
$$\left( { \partial \over \partial y } \right)_z = \left( { \partial \over \partial y } \right)_s - \left( { 1 \over H_z } \right) \left( { \partial z \over \partial y } \right)_s { \partial \over \partial s}$$
$${ \partial \over \partial z } = \left( { \partial s \over \partial z } \right) { \partial \over \partial s} = { 1 \over H_z } { \partial \over \partial s }$$
where
$$H_z \equiv { \partial z \over \partial s }$$
As a trade-off for this geometric simplification, the dynamic equations become somewhat more complicated. The resulting dynamic equations are, after dropping the carats:
$${\partial u \over \partial t} - fv + \vec{v} \cdot \nabla u = - {\partial \phi \over \partial x} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial x} - g {\partial \zeta \over \partial x} + {\cal F}_u + {\cal D}_u$$
$$\frac{\partial v}{\partial t} + fu + \vec{v} \cdot \nabla v = - \frac{\partial \phi}{\partial y} - \left( \frac{g\rho} {\rho_o} \right) \frac{\partial z}{\partial y} - g {\partial \zeta \over \partial y} + {\cal F}_v + {\cal D}_v$$
$$\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T = {\cal F}_{T} + {\cal D}_{T}$$
$$\frac{\partial S}{\partial t} + \vec{v} \cdot \nabla S = {\cal F}_{S} + {\cal D}_{S}$$
$$\rho = \rho(T,S,P)$$
$$\frac{\partial \phi}{\partial s} = \left( \frac{-gH_z\rho} {\rho_o} \right)$$
$${\partial H_z \over \partial t} + {\partial (H_zu) \over \partial x} + {\partial (H_zv) \over \partial y} + {\partial (H_z \Omega) \over \partial s} = 0$$ where
$$\vec{v} = (u,v,\Omega)$$
$$\vec{v} \cdot \nabla = u \frac{\partial}{\partial x} + v
\frac{\partial}{\partial y} + \Omega \frac{\partial}{\partial s}$$
The vertical velocity in $s$ coordinates is
$$\Omega (x,y,s,t) = {1 \over H_z} \left[ w - (1+s) {\partial \zeta \over \partial t} - u {\partial z \over \partial x} - v {\partial z \over \partial y} \right]$$
and
$$w = {\partial z \over \partial t} + u {\partial z \over \partial x}
+ v {\partial z \over \partial y} + \Omega H_z$$
Vertical Boundary Conditions
In the stretched coordinate system, the vertical boundary conditions become:
top ($s = 0$):
- $\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_s (x,y,t)$
- $\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_s(x,y,t)$
- $\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = {Q_T \over \rho_o c_P} + {1 \over \rho_o c_P} {dQ \over dT} (T - T_{\rm ref})$
- $\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = {(E - P) S \over \rho_o}$
- $\Omega = 0$
and bottom ($s = -1$):
- $\left(\frac{K_m}{H_z}\right) \frac{\partial u}{\partial s} = \tau^x_b (x,y,t)$
- $\left(\frac{K_m}{H_z}\right) \frac{\partial v}{\partial s} = \tau^y_b (x,y,t)$
- $\left(\frac{K_T}{H_z}\right) \frac{\partial T}{\partial s} = 0<$
- $\left(\frac{K_S}{H_z}\right) \frac{\partial S}{\partial s} = 0$
- $\Omega = 0$
Note the simplification of the boundary conditions on vertical velocity that arises from the $s$ coordinate transformation.