cppdefs.h

From WikiROMS
Jump to navigationJump to search
cppdefs.h

Internal header file containing all the C-preprocessing options that defines a particular application. It is included at the top of every ROMS source file.

  • Options associated with momentum equations: The default horizontal and vertical advection is 4th-order centered. Use the splines vertical advection option is shallow, high vertical resolution applications.
Option Description
UV_ADV use to turn on or off advection terms
UV_COR use to turn on or off Coriolis term
UV_C2ADVECTION use to turn on or off 2nd-order centered advection
UV_C4ADVECTION use to turn on or off 4th-order centered advection
UV_SADVECTION use to turn on or off splines vertical advection
UV_VIS2 use to turn on or off harmonic horizontal mixing
UV_VIS4 use to turn on or off biharmonic horizontal mixing
UV_LOGDRAG use to turn on or off logarithmic bottom friction
UV_LDRAG use to turn on or off linear bottom friction
UV_QDRAG use to turn on or off quadratic bottom friction
UV_PSOURCE use to turn on or off point Sources/Sinks


  • Options associated with tracers equations: The default horizontal and vertical advection is 4th-order centered. Use the splines vertical advection option is shallow, high vertical resolution applications.
    • TS_A4HADVECTION use if 4th-order Akima horizontal advection
    • TS_C2HADVECTION use if 2nd-order centered horizontal advection
    • TS_C4HADVECTION use if 4th-order centered horizontal advection
    • TS_MPDATA use if recursive MPDATA 3D advection
    • TS_U3HADVECTION use if 3rd-order upstream horiz. advection
    • TS_A4VADVECTION use if 4th-order Akima vertical advection
    • TS_C2VADVECTION use if 2nd-order centered vertical advection
    • TS_C4VADVECTION use if 4th-order centered vertical advection
    • TS_SVADVECTION use if splines vertical advection
    • TS_DIF2 use to turn ON or OFF harmonic horizontal mixing
    • TS_DIF4 use to turn ON or OFF biharmonic horizontal mixing
    • TS_FIXED use if diagnostic run, no evolution of tracers
    • T_PASSIVE use if inert passive tracers (dyes, etc)
    • SALINITY use if having salinity
    • NONLIN_EOS use if using nonlinear equation of state
    • QCORRECTION use if net heat flux correction
    • SCORRECTION use if freshwater flux correction
    • SOLAR_SOURCE use if solar radiation source term
    • SRELAXATION use if salinity relaxation as a freshwater flux
    • TS_PSOURCE use to turn ON or OFF point Sources/Sinks
    • **
    • Pressure gradient algorithm OPTIONS: **
    • **
    • If no option is selected, the pressure gradient term is computed using **
    • standard density Jacobian algorithm. Notice that there are two quartic **
    • pressure Jacobian options. They differ on how the WENO reconsicliation **
    • step is done and in the monotonicity constraining algorithms. **
    • **
    • DJ_GRADPS use if splines density Jacobian (Shchepetkin, 2000) **
    • PJ_GRADP use if finite volume Pressure Jacobian (Lin,1997) **
    • PJ_GRADPQ2 use if quartic 2 Pressure Jacobian (Shchepetkin,2000) **
    • PJ_GRADPQ4 use if quartic 4 Pressure Jacobian (Shchepetkin,2000) **
    • WJ_GRADP use if weighted density Jacobian (Song,1998) **
    • **
    • ATM_PRESS use to impose atmospheric pressure onto sea surface **
    • **
    • Model coupling OPTIONS: **
    • **
    • SWAN_COUPLING use if two-way coupling to SWAN **
    • WRF_COUPLING use if two-way coupling to WRF **
    • **
    • OPTIONS for surface fluxes formutalion using atmospheric boundary layer **
    • (Fairall et al, 1996): **
    • **
    • There are three ways to provide longwave radiation in the atmospheric **
    • boundary layer: (1) Compute the net longwave radiation internally using **
    • the Berliand (1952) equation (LONGWAVE) as function of air temperature, **
    • sea surface temperature, relative humidity, and cloud fraction; **
    • (2) provide (read) longwave downwelling radiation only and then add **
    • outgoing longwave radiation (LONGWAVE_OUT) as a function of the model **
    • sea surface temperature; (3) provide net longwave radiation (default). **
    • **
    • BULK_FLUXES use if bulk fluxes computation **
    • COOL_SKIN use if cool skin correction **
    • LONGWAVE use if computing net longwave radiation **
    • LONGWAVE_OUT use if computing ougoing longwave radiation **
    • EMINUSP use if computing E-P **
    • **
    • OPTIONS for wave roughness formulation in bulk fluxes: **
    • **
    • COARE_TAYLOR_YELLAND use Taylor and Yelland (2001) relation **
    • COARE_OOST use Oost et al (2002) relation **
    • DEEPWATER_WAVES use Deep water waves approximation **
    • **
    • OPTIONS for shortwave radiation: **
    • **
    • The shortwave radiation can be computed using the global albedo **
    • equation with a cloud correction. Alternatively, input shortwave **
    • radiation data computed from averaged data (with snapshots greater **
    • or equal than 24 hours) can be modulated by the local diurnal cycle **
    • which is a function longitude, latitude and day-of-year. **
    • **
    • ALBEDO use if albedo equation for shortwave radiation **
    • DIURNAL_SRFLUX use to impose shortwave radiation local diurnal cycle **
    • **
    • Model configuration OPTIONS: **
    • **
    • SOLVE3D use if solving 3D primitive equations **
    • CURVGRID use if curvilinear coordinates grid **
    • MASKING use if land/sea masking **
    • BODYFORCE use if applying stresses as bodyforces **
    • PROFILE use if time profiling **
    • AVERAGES use if writing out time-averaged data **
    • AVERAGES_AKV use if writing out time-averaged AKv **
    • AVERAGES_AKT use if writing out time-averaged AKt **
    • AVERAGES_AKS use if writing out time-averaged AKs **
    • AVERAGES_FLUXES use if writing out time-averaged fluxes **
    • AVERAGES_NEARSHORE use if writing out time-averaged nearshore stresses **
    • AVERAGES_QUADRATIC use if writing out quadratic terms **
    • AVERAGES_BEDLOAD use if writing out time-averaged bed load **
    • DIAGNOSTICS_BIO use if writing out biological diagnostics **
    • DIAGNOSTICS_UV use if writing out momentum diagnostics **
    • DIAGNOSTICS_TS use if writing out tracer diagnostics **
    • ICESHELF use if including ice shelf cavities **
    • SPHERICAL use if analytical spherical grid **
    • STATIONS use if writing out station data **
    • STATIONS_CGRID use if extracting data at native C-grid **
    • **
    • OPTIONS for Lagrangian drifters: **
    • **
    • FLOATS use to activate simulated Lagrangian drifters **
    • FLOAT_VWALK use if vertical random walk **
    • **
    • OPTION to activate conservative, parabolic spline reconstruction of **
    • vertical derivatives. Notice that there also options (see above) for **
    • vertical advection of momentum and tracers using splines. **
    • **
    • SPLINES use to activate parabolic splines reconstruction **
    • **
    • OPTIONS for analytical fields configuration: **
    • **
    • Any of the analytical expressions are coded in "analytical.F". **
    • **
    • ANA_BIOLOGY use if analytical biology initial conditions **
    • ANA_BPFLUX use if analytical bottom passive tracers fluxes **
    • ANA_BSFLUX use if analytical bottom salinity flux **
    • ANA_BTFLUX use if analytical bottom temperature flux **
    • ANA_CLOUD use if analytical cloud fraction **
    • ANA_DIAG use if customized diagnostics **
    • ANA_FSOBC use if analytical free-surface boundary conditions **
    • ANA_GRID use if analytical model grid set-up **
    • ANA_HUMIDITY use if analytical surface air humidity **
    • ANA_INITIAL use if analytical initial conditions **
    • ANA_M2CLIMA use if analytical 2D momentum climatology **
    • ANA_M2OBC use if analytical 2D momentum boundary conditions **
    • ANA_M3CLIMA use if analytical 3D momentum climatology **
    • ANA_M3OBC use if analytical 3D momentum boundary conditions **
    • ANA_MASK use if analytical Land/Sea masking **
    • ANA_PAIR use if analytical surface air pressure **
    • ANA_PASSIVE use if analytical initial condtions for inert tracers **
    • ANA_PERTURB use if analytical perturbation of initial conditions **
    • ANA_PSOURCE use if analytical point Sources/Sinks **
    • ANA_RAIN use if analytical rain fall rate **
    • ANA_SEDIMENT use if analytical sediment initial fields **
    • ANA_SMFLUX use if analytical surface momentum stress **
    • ANA_SPFLUX use if analytical surface passive tracers fluxes **
    • ANA_SPINNING use if analytical time-varying rotation force **
    • ANA_SRFLUX use if analytical surface shortwave radiation flux **
    • ANA_SSFLUX use if analytical surface salinity flux **
    • ANA_SSH use if analytical sea surface height **
    • ANA_SSS use if analytical sea surface salinity **
    • ANA_SST use if analytical SST and dQdSST **
    • ANA_STFLUX use if analytical surface temperature flux **
    • ANA_TAIR use if analytical surface air temperature **
    • ANA_TCLIMA use if analytical tracers climatology **
    • ANA_TOBC use if analytical tracers boundary conditions **
    • ANA_VMIX use if analytical vertical mixing coefficients **
    • ANA_WINDS use if analytical surface winds **
    • ANA_WWAVE use if analytical wind induced waves **
    • **
    • OPTIONS for horizontal mixing of momentum: **
    • **
    • VISC_GRID use to scale viscosity coefficient by grid size **
    • MIX_S_UV use if mixing along constant S-surfaces **
    • MIX_GEO_UV use if mixing on geopotential (constant Z) surfaces **
    • **
    • OPTIONS for horizontal mixing of tracers: **
    • **
    • DIFF_GRID use to scale diffusion coefficients by grid size **
    • MIX_S_TS use if mixing along constant S-surfaces **
    • MIX_GEO_TS use if mixing on geopotential (constant Z) surfaces **
    • MIX_ISO_TS use if mixing on epineutral (constant RHO) surfaces **
    • **
    • OPTIONS for vertical turbulent mixing scheme of momentum and tracers **
    • (activate only one closure): **
    • **
    • BVF_MIXING use if Brunt-Vaisala frequency mixing **
    • GLS_MIXING use if Generic Length-Scale mixing **
    • MY25_MIXING use if Mellor/Yamada Level-2.5 closure **
    • LMD_MIXING use if Large et al. (1994) interior closure **
    • **
    • OPTIONS for the Generic Length-Scale closure (Warner et al., 2005): **
    • **
    • The default horizontal advection is third-order upstream bias. The **
    • default vertical advection is 4th-order centered advection. **
    • **
    • CANUTO_A use if Canuto A-stability function formulation **
    • CANUTO_B use if Canuto B-stability function formulation **
    • CHARNOK use if Charnok surface roughness from wind stress **
    • CRAIG_BANNER use if Craig and Banner wave breaking surface flux **
    • KANTHA_CLAYSON use if Kantha and Clayson stability function **
    • K_C2ADVECTION use if 2nd-order centered advection **
    • K_C4ADVECTION use if 4th-order centered advection **
    • N2S2_HORAVG use if horizontal smoothing of buoyancy/shear **
    • ZOS_HSIG use if surface roughness from wave amplitude **
    • TKE_WAVEDISS use if wave breaking surface flux from wave amplitude **
    • **
    • OPTIONS for the Mellor/Yamada level 2.5 closure: **
    • **
    • The default horizontal advection is third-order upstream bias. The **
    • default vertical advection is 4th-order centered advection. **
    • **
    • N2S2_HORAVG use if horizontal smoothing of buoyancy/shear **
    • KANTHA_CLAYSON use if Kantha and Clayson stability function **
    • K_C2ADVECTION use if 2nd-order centered advection **
    • K_C4ADVECTION use if 4th-order centered advection **
    • **
    • OPTIONS for the Large et al. (1994) K-profile parameterization mixing: **
    • mixing: **
    • **
    • LMD_BKPP use if bottom boundary layer KPP mixing **
    • LMD_CONVEC use to add convective mixing due to shear instability **
    • LMD_DDMIX use to add double-diffusive mixing **
    • LMD_NONLOCAL use if nonlocal transport **
    • LMD_RIMIX use to add diffusivity due to shear instability **
    • LMD_SHAPIRO use if Shapiro filtering boundary layer depth **
    • LMD_SKPP use if surface boundary layer KPP mixing **
    • **
    • OPTIONS to activate smoothing of Richardson number, if SPLINES is not **
    • activated: **
    • **
    • RI_HORAVG use if horizontal Richardson number smoothing **
    • RI_VERAVG use if vertical Richardson number smoothing **
    • **
    • OPTIONS for Meinte Blass bottom boundary layer closure: **
    • **
    • The Options MB_Z0BL and MB_Z0RIP should be activated concurrently. **
    • **
    • MB_BBL use if Meinte Blaas BBL closure **
    • MB_CALC_ZNOT use if computing bottom roughness internally **
    • MB_CALC_UB use if computing bottom orbital velocity internally **
    • MB_Z0BIO use if biogenic bedform roughness for ripples **
    • MB_Z0BL use if bedload roughness for ripples **
    • MB_Z0RIP use if bedform roughness for ripples **
    • **
    • OPTIONS for Styles and Glenn (2000) bottom boundary layer closure: **
    • **
    • SG_BBL use if Styles and Glenn (2000) BBL closure **
    • SG_CALC_ZNOT use if computing bottom roughness internally **
    • SG_CALC_UB use if computing bottom orbital velocity internally **
    • SG_LOGINT use if logarithmic interpolation of (Ur,Vr) **
    • **
    • OPTIONS for the Sherwood/Signell/Warner bottom boundary layer closure: **
    • **
    • SSW_BBL use if Sherwood et al. BBL closure **
    • SSW_CALC_ZNOT use if computing bottom roughness internally **
    • SSW_LOGINT use if logarithmic interpolation of (Ur,Vr) **
    • SSW_CALC_UB use if computing bottom orbital velocity internally **
    • SSW_FORM_DRAG_COR use to activate form drag coefficient **
    • SSW_Z0BIO use if biogenic bedform roughness from ripples **
    • SSW_Z0BL use if bedload roughness for ripples **
    • SSW_Z0RIP use if bedform roughness from ripples **
    • **
    • Lateral boundary conditions OPTIONS: **
    • **
    • Select ONE option at each boundary edge for free-surface, 2D momentum, **
    • 3D momentum, and tracers. The turbulent kineric energy (TKE) conditions **
    • are only activated for the Generic length scale or Mellor-Yamada 2.5 **
    • vertical mixing closures. If open boundary radiation conditions, an **
    • additional option can be activated at each boundary edge to include **
    • a passive (active) nudging term with weak (strong) values for outflow **
    • (inflow). **
    • **
    • Option to impose a sponge layer near the lateral boundary: **
    • **
    • SPONGE use if enhanced viscosity/diffusion areas **
    • **
    • OPTIONS to impose mass conservation at the open boundary: **
    • **
    • EAST_VOLCONS use if Eastern edge mass conservation enforcement **
    • WEST_VOLCONS use if Western edge mass conservation enforcement **
    • NORTH_VOLCONS use if Northern edge mass conservation enforcement **
    • SOUTH_VOLCONS use if Southern edge mass conservation enforcement **
    • **
    • OPTIONS for periodic boundary conditions: **
    • **
    • EW_PERIODIC use if East-West periodic boundaries **
    • NS_PERIODIC use if North-South periodic boundaries **
    • **
    • OPTIONS for closed boundary conditions: **
    • **
    • EASTERN_WALL use if Eastern edge, closed wall condition **
    • WESTERN_WALL use if Western edge, closed wall condition **
    • NORTHERN_WALL use if Northern edge, closed wall condition **
    • SOUTHERN_WALL use if Southern edge, closed wall condition **
    • **
    • Additional OPTION for radiation open boundary conditions: **
    • **
    • RADIATION_2D use if tangential phase speed in radiation conditions **
    • **
    • Eastern edge open boundary condtions OPTIONS: **
    • **
    • EAST_FSCHAPMAN use if free-surface Chapman condition **
    • EAST_FSGRADIENT use if free-surface gradient condition **
    • EAST_FSRADIATION use if free-surface radiation condition **
    • EAST_FSNUDGING use if free-surface passive/active nudging term **
    • EAST_FSCLAMPED use if free-surface clamped condition **
    • EAST_M2FLATHER use if 2D momentum Flather condition **
    • EAST_M2GRADIENT use if 2D momentum gradient condition **
    • EAST_M2RADIATION use if 2D momentum radiation condition **
    • EAST_M2REDUCED use if 2D momentum reduced-physics **
    • EAST_M2NUDGING use if 2D momentum passive/active nudging term **
    • EAST_M2CLAMPED use if 2D momentum clamped condition **
    • EAST_M3GRADIENT use if 3D momentum gradient condition **
    • EAST_M3RADIATION use if 3D momentum radiation condition **
    • EAST_M3NUDGING use if 3D momentum passive/active nudging term **
    • EAST_M3CLAMPED use if 3D momentum clamped condition **
    • EAST_KGRADIENT use if TKE fields gradient condition **
    • EAST_KRADIATION use if TKE fields radiation condition **
    • EAST_TGRADIENT use if tracers gradient condition **
    • EAST_TRADIATION use if tracers radiation condition **
    • EAST_TNUDGING use if tracers passive/active nudging term **
    • EAST_TCLAMPED use if tracers clamped condition **
    • **
    • Western edge open boundary condtions OPTIONS: **
    • **
    • WEST_FSCHAPMAN use if free-surface Chapman condition **
    • WEST_FSGRADIENT use if free-surface gradient condition **
    • WEST_FSRADIATION use if free-surface radiation condition **
    • WEST_FSNUDGING use if free-surface passive/active nudging term **
    • WEST_FSCLAMPED use if free-surface clamped condition **
    • WEST_M2FLATHER use if 2D momentum Flather condition **
    • WEST_M2GRADIENT use if 2D momentum gradient condition **
    • WEST_M2RADIATION use if 2D momentum radiation condition **
    • WEST_M2REDUCED use if 2D momentum reduced-physics **
    • WEST_M2NUDGING use if 2D momentum passive/active nudging term **
    • WEST_M2CLAMPED use if 2D momentum clamped condition **
    • WEST_M3GRADIENT use if 3D momentum gradient condition **
    • WEST_M3RADIATION use if 3D momentum radiation condition **
    • WEST_M3NUDGING use if 3D momentum passive/active nudging term **
    • WEST_M3CLAMPED use if 3D momentum clamped condition **
    • WEST_KGRADIENT use if TKE fields gradient condition **
    • WEST_KRADIATION use if TKE fields radiation condition **
    • WEST_TGRADIENT use if tracers gradient condition **
    • WEST_TRADIATION use if tracers radiation condition **
    • WEST_TNUDGING use if tracers passive/active nudging term **
    • WEST_TCLAMPED use if tracers clamped condition **
    • **
    • Northern edge open boundary condtions OPTIONS: **
    • **
    • NORTH_FSCHAPMAN use if free-surface Chapman condition **
    • NORTH_FSGRADIENT use if free-surface gradient condition **
    • NORTH_FSRADIATION use if free-surface radiation condition **
    • NORTH_FSNUDGING use if free-surface passive/active nudging term **
    • NORTH_FSCLAMPED use if free-surface clamped condition **
    • NORTH_M2FLATHER use if 2D momentum Flather condition **
    • NORTH_M2GRADIENT use if 2D momentum gradient condition **
    • NORTH_M2RADIATION use if 2D momentum radiation condition **
    • NORTH_M2REDUCED use if 2D momentum reduced-physics **
    • NORTH_M2NUDGING use if 2D momentum passive/active nudging term **
    • NORTH_M2CLAMPED use if 2D momentum clamped condition **
    • NORTH_M3GRADIENT use if 3D momentum gradient condition **
    • NORTH_M3RADIATION use if 3D momentum radiation condition **
    • NORTH_M3NUDGING use if 3D momentum passive/active nudging term **
    • NORTH_M3CLAMPED use if 3D momentum clamped condition **
    • NORTH_KGRADIENT use if TKE fields gradient condition **
    • NORTH_KRADIATION use if TKE fields radiation condition **
    • NORTH_TGRADIENT use if tracers gradient condition **
    • NORTH_TRADIATION use if tracers radiation condition **
    • NORTH_TNUDGING use if tracers passive/active nudging term **
    • NORTH_TCLAMPED use if tracers clamped condition **
    • **
    • Southern edge open boundary condtions OPTIONS: **
    • **
    • SOUTH_FSCHAPMAN use if free-surface Chapman condition **
    • SOUTH_FSGRADIENT use if free-surface gradient condition **
    • SOUTH_FSRADIATION use if free-surface radiation condition **
    • SOUTH_FSNUDGING use if free-surface passive/active nudging term **
    • SOUTH_FSCLAMPED use if free-surface clamped condition **
    • SOUTH_M2FLATHER use if 2D momentum Flather condition **
    • SOUTH_M2GRADIENT use if 2D momentum gradient condition **
    • SOUTH_M2RADIATION use if 2D momentum radiation condition **
    • SOUTH_M2REDUCED use if 2D momentum reduced-physics **
    • SOUTH_M2NUDGING use if 2D momentum passive/active nudging term **
    • SOUTH_M2CLAMPED use if 2D momentum clamped condition **
    • SOUTH_M3GRADIENT use if 3D momentum gradient condition **
    • SOUTH_M3RADIATION use if 3D momentum radiation condition **
    • SOUTH_M3NUDGING use if 3D momentum passive/active nudging term **
    • SOUTH_M3CLAMPED use if 3D momentum clamped condition **
    • SOUTH_KGRADIENT use if TKE fields gradient condition **
    • SOUTH_KRADIATION use if TKE fields radiation condition **
    • SOUTH_TGRADIENT use if tracers gradient condition **
    • SOUTH_TRADIATION use if tracers radiation condition **
    • SOUTH_TNUDGING use if tracers passive/active nudging term **
    • SOUTH_TCLAMPED use if tracers clamped condition **
    • **
    • OPTIONS for tidal forcing at open boundaries: **
    • **
    • The tidal data is processed in terms of tidal components, classified by **
    • period. The tidal forcing is computed for the full horizontal grid. If **
    • requested, the tidal forcing is added to the processed open boundary **
    • data. **
    • **
    • Both tidal elevation and tidal currents are required to force the model **
    • properly. However, if only the tidal elevation is available, the tidal **
    • currents at the open boundary can be estimated by reduced physics. Only **
    • the pressure gradient, Coriolis, and surface and bottom stresses terms **
    • are considered at the open boundary. See "u2dbc_im.F" or "v2dbc_im.F" **
    • for details. Notice that there is an additional option (FSOBC_REDUCED) **
    • for the computation of the pressure gradient term in both Flather or **
    • reduced physics conditions (*_M2FLATHER, *_M2REDUCED). **
    • **
    • SSH_TIDES use if imposing tidal elevation **
    • UV_TIDES use if imposing tidal currents **
    • RAMP_TIDES use if ramping (over one day) tidal forcing **
    • FSOBC_REDUCED use if SSH data and reduced physics conditions **
    • ADD_FSOBC use to add tidal elevation to processed OBC data **
    • ADD_M2OBC use to add tidal currents to processed OBC data **
    • **
    • OPTIONS for reading and processing of climatological fields: **
    • **
    • M2CLIMATOLOGY use if processing 2D momentum climatology **
    • M3CLIMATOLOGY use if processing 3D momentum climatology **
    • TCLIMATOLOGY use if processing tracers climatology **
    • ZCLIMATOLOGY use if processing SSH climatology **
    • **
    • OPTIONS to nudge climatology data (primarily in sponge areas): **
    • **
    • M2CLM_NUDGING use if nudging 2D momentum climatology **
    • M3CLM_NUDGING use if nudging 3D momentum climatology **
    • TCLM_NUDGING use if nudging tracers climatology **
    • ZCLM_NUDGING use if nudging SSH climatology **
    • **
    • Optimal Interpolation (OI) or nudging data assimilation OPTIONS: **
    • **
    • The OI assimilation is intermittent whereas nudging is continuous **
    • (observations are time interpolated). If applicable, choose only one **
    • option for each field to update: either OI assimilation or nudging. **
    • **
    • ASSIMILATION_SSH use if assimilating SSH observations **
    • ASSIMILATION_SST use if assimilating SST observations **
    • ASSIMILATION_T use if assimilating tracers observations **
    • ASSIMILATION_UVsur use if assimilating surface current observations **
    • ASSIMILATION_UV use if assimilating horizontal current observations **
    • UV_BAROCLINIC use if assimilating baroclinic currents only **
    • NUDGING_SSH use if nudging SSH observations **
    • NUDGING_SST use if nudging SST observations **
    • NUDGING_T use if nudging tracers observations **
    • NUDGING_UVsur use if nudging surface current observations **
    • NUDGING_UV use if nudging horizontal currents observations **
    • **
    • ROMS/TOMS driver OPTIONS: **
    • **
    • ADM_DRIVER use if generic adjoint model driver **
    • AD_SENSITIVITY use if adjoint sensitivity driver **
    • AFT_EIGENMODES use if adjoint finite time eingenmodes driver **
    • CONVOLUTION use if adjoint convolution driver **
    • CORRELATION use if background-error correlation model driver **
    • ENSEMBLE use if ensemble prediction driver **
    • FORCING_SV use if forcing singular vectors driver **
    • FT_EIGENMODES use if finite time eingenmodes driver: normal modes **
    • GRADIENT_CHECK use if tangent linear and adjoint codes gradient test **
    • INNER_PRODUCT use if tangent linear and adjoint inner product check **
    • IS4DVAR use if incremental 4DVar data assimilation **
    • IS4DVAR_OLD use if old incremental 4DVar data assimilation **
    • OPT_OBSERVATIONS use if optimal observations driver **
    • OPT_PERTURBATION use if optimal perturbations driver, singular vectors **
    • PICARD_TEST use if representer tangent linear model test **
    • PSEUDOSPECTRA use if pseudospectra of tangent linear resolvant **
    • R_SYMMETRY use if representer matrix symmetry test **
    • RPM_DRIVER use if generic representers model driver **
    • SANITY_CHECK use if tangent linear and adjoint codes sanity check **
    • SO_SEMI use if stochastic optimals driver, semi-norm **
    • SO_TRACE use if stochastic optimals, randomized trace **
    • STOCHASTIC_OPT use if stochastic optimals **
    • S4DVAR use if Strong constraint 4DVar data assimilation **
    • TLM_CHECK use if tangent linear model linearization check **
    • TLM_DRIVER use if generic tangent linear model driver **
    • W4DPSAS use if weak constraint 4D-PSAS data assimilation **
    • W4DVAR use if Weak constraint 4DVar data assimilation **
    • **
    • OPTIONS associated with tangent linear, representer and adjoint models: **
    • **
    • ADJUST_STFLUX use if including surface tracer flux in 4DVar state **
    • ADJUST_WSTRESS use if including wind-stress in 4DVar state **
    • BALANCE_OPERATOR use if error covariance multivariate balance term **
    • CELERITY_WRITE use if writing radiation celerity in forward file **
    • CONVOLVE use if convolving solution with diffusion operators **
    • ENERGY1_NORM use if cost function scaled with the energy norm, 1 **
    • ENERGY2_NORM use if cost function scaled with the energy norm, 2 **
    • ENERGY3_NORM use if cost function scaled with the energy norm, 3 **
    • FORWARD_MIXING use if processing forward vertical mixing coefficient **
    • FORWARD_WRITE use if writing out forward solution, basic state **
    • FORWARD_READ use if reading in forward solution, basic state **
    • FORWARD_RHS use if processing forward right-hand-side terms **
    • IMPLICIT_VCONV use if implicit vertical convolution algorithm **
    • IMPULSE use if processing adjoint impulse forcing **
    • IOM use to activate IOM multiple executables **
    • LANCZOS use to activate Lanczos conjugate gradient algorithm **
    • MULTIPLE_TLM use if multiple TLM history files in 4DVAR **
    • N2NORM_PROFILE use if N2(z) profile for energy normalization **
    • NLM_OUTER use if nonlinear model as basic state in outer loop **
    • RPM_RELAXATION use if Picard iterations, Diffusive Relaxation of RPM **
    • SO_SEMI_WHITE use to activate white/red noise processes **
    • VCONVOLUTION use to add vertical correlation to 3D convolution **
    • VERIFICATION use if writing out solution at observation locations **
    • **
    • OPTION for processing the full grid range (interior and boundary points) **
    • of the state vector in variational data assimilation and generalized **
    • stability theory analysis. Otherwise, only interior points are processed. **
    • **
    • FULL_GRID use to consider both interior and boundary points **
    • **
    • Fasham-type biology model OPTIONS: **
    • **
    • BIO_FASHAM use if Fasham type nitrogen-based model **
    • BIO_SEDIMENT use to restore fallen material to the nutrient pool **
    • CARBON use to add carbon constituents **
    • DENITRIFICATION use to add denitrification processes **
    • OXYGEN use to add oxygen dynamics **
    • OCMIP_OXYGEN_SC use if Schmidt number from Keeling et al. (1998) **
    • RIVER_BIOLOGY use to process river biology point-sources **
    • TALK_PROGNOSTIC use if prognostic/diagnotic alkalinity **
    • **
    • NPZD biology model OPTIONS: **
    • **
    • NPZD_FRANKS use if NPZD Biology model, Franks et al. (1986) **
    • NPZD_POWELL use if NPZD Biology model, Powell et al. (2006) **
    • **
    • Bio-optical EcoSim model OPTIONS: **
    • **
    • ECOSIM use if bio-optical EcoSim model **
    • **
    • Sediment transport model OPTIONS: **
    • **
    • SEDIMENT use to activate sediment transport model **
    • BEDLOAD_MPM use to activate Meyer-Peter-Mueller bed load **
    • BEDLOAD_SOULSBY use to activate Soulsby wave/current bed load **
    • RIVER_SEDIMENT use to process river sediment point-sources **
    • SED_DENS use to activate sediment to affect equation of state **
    • SED_MORPH use to allow bottom model elevation to evolve **
    • SUSPLOAD use to activate suspended load transport **
    • **
    • OPTIONS for two-way coupling to other models: **
    • **
    • REFDIF_COUPLING use if coupling to REFDIT wave model **
    • SWAN_COUPLING use if coupling to SWAN wave model **
    • WRF_COUPLING use if coupling to WRF atmospheric model **
    • **
    • Nearshore and shallow water model OPTIONS: **
    • **
    • WET_DRY use to activate wetting and drying **
    • NEARSHORE_MELLOR use to activate radiation stress terms. **
    • **
    • NetCDF input/output OPTIONS: **
    • **
    • NO_WRITE_GRID use if not writing grid arrays **
    • PERFECT_RESTART use to include perfect restart variables **
    • READ_WATER use if only reading water points data **
    • WRITE_WATER use if only writing water points data **
    • RST_SINGLE use if writing single precision restart fields **
    • OUT_DOUBLE use if writing double precision output fields **
    • **
    • OPTION to process 3D data by levels (2D slabs) to reduce memory needs in **
    • distributed-memory configurations. This option is convinient for large **
    • problems on nodes with limited memory. **
    • **
    • INLINE_2DIO use if processing 3D IO level by level **
    • **
    • **
    • Idealized Test Problems: **
    • **
    • A4DVAR_TOY 4DVAR Data Assimilation Toy **
    • BASIN Big Bad Basin Example **
    • BENCHMARK Benchmark Tests (small, Medium, big grids) **
    • BIO_TOY One-dimension (vertical) Biology Toy **
    • BL_TEST Boundary Layers Test **
    • CANYON_A Canyon_A Example **
    • CANYON_B Canyon_B Example **
    • CHANNEL_NECK Channel with a Constriction **
    • COUPLING_TEST Two-way Atmosphere-Ocean Coupling Test **
    • DOUBLE_GYRE Idealized Double-gyre Example **
    • ESTUARY_TEST Test Estuary for Sediment **
    • FLT_TEST Float Tracking Example **
    • GRAV_ADJ Graviational Adjustment Example **
    • INLET_TEST Test Inlet Application **
    • KELVIN Kelvin wave test **
    • LAB_CANYON Lab Canyon, Polar Coordinates Example **
    • LAKE_SIGNELL Lake Signell Sediment Test Case **
    • LMD_TEST Test for LMD and KPP **
    • OVERFLOW Graviational/Overflow Example **
    • RIVERPLUME1 River Plume Example 1 **
    • RIVERPLUME2 River plume Example 2 (Hyatt and Signell) **
    • SEAMOUNT Seamount Example **
    • SED_TEST1 Suspended Sediment Test in a Channel **
    • SED_TOY One-dimension (vertical) Sediment Toy **
    • SHOREFACE Shore Face Planar Beach Test Case **
    • SOLITON Equatorial Rossby Wave Example **
    • TEST_CHAN Sediment Test Channel Case **
    • TEST_HEAD Sediment Test Headland Case **
    • UPWELLING Upwelling Example (default) **
    • WEDDELL Idealized Weddell Sea Shelf Application **
    • WINDBASIN Linear Wind-driven Constant Coriolis Basin **
    • **
    • Climatological Applications: (See www.myroms.org/Datasets) **
    • **
    • DAMEE_4 North Atlantic DAMEE Application, 3/4 degree **
    • **
    • Selected Realistic Applications: **
    • **
    • ADRIA02 Adriatic Sea Application **
    • NJ_BIGHT New Jersey Bight Application **