Difference between revisions of "Curvilinear Coordinates Transformation"

From WikiROMS
Jump to navigationJump to search
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div class="title">Horizontal Curvilinear Coordinates</div>
<div class="title">Curvilinear Coordinates Transformation</div>
<wikitex>In many applications of interest (e.g., flow adjacent to a coastal
In many applications of interest (e.g., flow adjacent to a coastal boundary), the fluid may be confined horizontally within an irregular region.  In such problems, a horizontal coordinate system which conforms to the irregular lateral boundaries is advantageous. It is often also true in many geophysical problems that the simulated flow fields have regions of enhanced structure (e.g., boundary currents or fronts) which occupy a relatively small fraction of the physical/computational domain. In these problems, added efficiency can be gained by placing more computational resolution in such regions.
boundary), the fluid may be confined horizontally within an
irregular region.  In such problems, a horizontal coordinate system
which conforms to the irregular lateral boundaries is advantageous.
It is often also true in many geophysical problems that the
simulated flow fields have regions of enhanced structure (e.g.,
boundary currents or fronts) which occupy a relatively small
fraction of the physical/computational domain. In these problems,
added efficiency can be gained by placing more computational
resolution in such regions.


The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met, for suitably smooth domains, by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be $\xi(x,y)$ and $\eta(x,y)$, where the relationship of horizontal arc length to the differential distance is given by:
The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met, for suitably smooth domains, by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be <math>\xi(x,y)</math> and <math>\eta(x,y)</math>, where the relationship of horizontal arc length (<math>dS</math>) to the differential distance is given by:


$$ \eqalign{ (ds)_\xi &= \left( \frac{1}{m} \right) d \xi \cr
{| class="eqno"
(ds)_\eta &= \left( \frac{1}{n} \right) d \eta \cr} \eqno{(1)}$$
|<math display="block">\begin{align} (dS)_\xi &= \left( \frac{1}{m} \right) d \xi \\
(dS)_\eta &= \left( \frac{1}{n} \right) d \eta \end{align}</math><!--\eqno{(1)}-->
|(1)
|}


Here, $m(\xi,\eta)$ and $n(\xi,\eta)$ are the scale factors which relate the differential distances $(\Delta \xi,\Delta \eta)$ to the actual (physical) arc lengths.  [[Curvilinear Coordinates]] contains the curvilinear version of several common vector quantities.
Here, <math>m(\xi,\eta)</math> and <math>n(\xi,\eta)</math> are the scale factors which relate the differential distances <math>(\Delta \xi,\Delta \eta)</math> to the actual (physical) arc lengths.  [[Curvilinear Coordinates]] contains the curvilinear version of several common vector quantities.


Denoting the velocity components in the new coordinate system by
Denoting the velocity components in the new coordinate system by


$$ \eqalign{ \vec{v} \cdot \hat{\xi} &= u \cr
{| class="eqno"
\vec{v} \cdot \hat{\eta} &= v \cr} \eqno{(2)}$$
|<math display="block"> \begin{align} \vec{v} \cdot \hat{\xi} &= u \\
\vec{v} \cdot \hat{\eta} &= v \end{align}</math><!--\eqno{(2)}-->
|(2)
|}


the equations of motion can be re-written
the equations of motion can be re-written
(see, e.g., Arakawa and Lamb, 1977) as:
(see, e.g., Arakawa and Lamb, 1977) as:


$$ \eqalign{ \frac{\partial}{\partial t} \left( \frac{H_z u}{mn} \right) + \frac
{| class="eqno"
|<math display="block"> \begin{align} \frac{\partial}{\partial t} \left( \frac{H_z u}{mn} \right) + \frac
   {\partial}{\partial \xi} \left( \frac{H_z u^2}{n} \right ) + \frac
   {\partial}{\partial \xi} \left( \frac{H_z u^2}{n} \right ) + \frac
   {\partial}{\partial \eta} \left( \frac{H_z uv}{m} \right) +& \frac
   {\partial}{\partial \eta} \left( \frac{H_z uv}{m} \right) +& \frac
   {\partial}{\partial \sigma} \left( \frac{H_z u\Omega}{mn} \right) \cr
   {\partial}{\partial \sigma} \left( \frac{H_z u\Omega}{mn} \right) \\
  - \left\{\left(\frac{f}{mn} \right) + v \frac{\partial}{\partial \xi}
  - \left\{\left(\frac{f}{mn} \right) + v \frac{\partial}{\partial \xi}
   \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \eta} \left(
   \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \eta} \left(
   \frac{1}{m} \right) \right\}& H_z v = \cr
   \frac{1}{m} \right) \right\}& H_z v = \\
  -\left( \frac{H_z }{n} \right )
  -\left( \frac{H_z }{n} \right )
   \left( \frac{\partial \phi}{\partial \xi} +
   \left( \frac{\partial \phi}{\partial \xi} +
   {g \rho \over \rho_o} {\partial z \over \partial \xi} +
   {g \rho \over \rho_o} {\partial z \over \partial \xi} +
   g {\partial \zeta \over \partial \xi} \right) &+ \cr
   g {\partial \zeta \over \partial \xi} \right) &+ \\
  { 1 \over mn} {\partial \over
  { 1 \over mn} {\partial \over
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial u
     \over \partial \sigma} \right] + { H_z \over mn}
     \over \partial \sigma} \right] + { H_z \over mn}
   &\left( {\cal F}_u + {\cal D}_u \right) \cr} \eqno{(3)}$$
   &\left( {\cal F}_u + {\cal D}_u \right) \end{align}</math><!--\eqno{(3)}-->
|(3)
|}




$$ \eqalign{ \frac{\partial}{\partial t} \left( \frac{H_z v}{mn} \right) + \frac
{| class="eqno"
|<math display="block"> \begin{align} \frac{\partial}{\partial t} \left( \frac{H_z v}{mn} \right) + \frac
   {\partial}{\partial \xi} \left( \frac{H_z uv}{n} \right ) + \frac
   {\partial}{\partial \xi} \left( \frac{H_z uv}{n} \right ) + \frac
   {\partial}{\partial \eta} \left( \frac{H_z v^2}{m} \right) +& \frac
   {\partial}{\partial \eta} \left( \frac{H_z v^2}{m} \right) +& \frac
   {\partial}{\partial \sigma} \left( \frac{H_z v\Omega}{mn} \right) \cr
   {\partial}{\partial \sigma} \left( \frac{H_z v\Omega}{mn} \right) \\
  + \left\{\left(\frac{f}{mn} \right) + v \frac{\partial}{\partial \xi}
  + \left\{\left(\frac{f}{mn} \right) + v \frac{\partial}{\partial \xi}
   \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \eta} \left(
   \left( \frac{1}{n} \right) - u \frac{\partial}{\partial \eta} \left(
   \frac{1}{m} \right) \right\} &H_z u = \cr
   \frac{1}{m} \right) \right\} &H_z u = \\
  -\left( \frac{H_z }{m} \right )
  -\left( \frac{H_z }{m} \right )
   \left( \frac{\partial \phi}{\partial \eta} +
   \left( \frac{\partial \phi}{\partial \eta} +
   {g \rho \over \rho_o} {\partial z \over \partial \eta} +
   {g \rho \over \rho_o} {\partial z \over \partial \eta} +
   g {\partial \zeta \over \partial \eta} \right) &+ \cr
   g {\partial \zeta \over \partial \eta} \right) &+ \\
  { 1 \over mn} {\partial \over
  { 1 \over mn} {\partial \over
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial v
     \over \partial \sigma} \right] + { H_z \over mn}
     \over \partial \sigma} \right] + { H_z \over mn}
   &\left( {\cal F}_v + {\cal D}_v \right) \cr} \eqno{(4)}$$
   &\left( {\cal F}_v + {\cal D}_v \right) \end{align}</math><!--\eqno{(4)}-->
|(4)
|}




$$ \eqalign{ \frac{\partial}{\partial t} \left( \frac{H_z C}{mn} \right) + \frac
{| class="eqno"
|<math display="block"> \begin{align} \frac{\partial}{\partial t} \left( \frac{H_z C}{mn} \right) + \frac
   {\partial}{\partial \xi} \left( \frac{H_z uC}{n}
   {\partial}{\partial \xi} \left( \frac{H_z uC}{n}
   \right ) + \frac
   \right ) + \frac
   {\partial}{\partial \eta} \left( \frac{H_z vC}{m}
   {\partial}{\partial \eta} \left( \frac{H_z vC}{m}
   \right) &+ \frac {\partial}{\partial \sigma}
   \right) &+ \frac {\partial}{\partial \sigma}
   \left( \frac{H_z \Omega C}{mn} \right) = \cr
   \left( \frac{H_z \Omega C}{mn} \right) = \\
{ 1 \over mn} {\partial \over
{ 1 \over mn} {\partial \over
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial C
     \partial \sigma} \left[ {(K_m+\nu) \over H_z} {\partial C
     \over \partial \sigma} \right] + { H_z \over mn}
     \over \partial \sigma} \right] + { H_z \over mn}
   &\left( {\cal F}_{C} + {\cal D}_{C} \right)\cr} \eqno{(5)}$$
   &\left( {\cal F}_{C} + {\cal D}_{C} \right) \end{align}</math><!--\eqno{(5)}-->
|(5)
|}




$$\rho = \rho(T,S,P) \eqno{(6)} $$
{| class="eqno"
|<math display="block">\rho = \rho(T,S,P) </math><!--\eqno{(6)}-->
|(6)
|}




$$ \eqalign{ \frac{\partial \phi}{\partial \sigma} = -\left( \frac{gH_z \rho}
{| class="eqno"
|<math display="block"> \begin{align} \frac{\partial \phi}{\partial \sigma} = -\left( \frac{gH_z \rho}
   {\rho_o} \right)
   {\rho_o} \right)
   &\frac{\partial}{\partial t} \left( \frac{H_z}{mn} \right) +
   &\frac{\partial}{\partial t} \left( \frac{H_z}{mn} \right) +
   \frac{\partial}{\partial \xi} \left( \frac{H_z u}{n} \right) + \cr
   \frac{\partial}{\partial \xi} \left( \frac{H_z u}{n} \right) + \\
   &\frac{\partial}{\partial \eta} \left( \frac{H_z v}{m} \right) +
   &\frac{\partial}{\partial \eta} \left( \frac{H_z v}{m} \right) +
   \frac{\partial}{\partial \sigma}\left( \frac{H_z \Omega}{mn} \right)
   \frac{\partial}{\partial \sigma}\left( \frac{H_z \Omega}{mn} \right)
   = 0.\cr} \eqno{(6)}$$
   = 0. \end{align}</math><!--\eqno{(7)}-->
|(7)
|}


All boundary conditions remain unchanged.
All boundary conditions remain unchanged.
</wikitex>

Revision as of 15:29, 6 May 2016

Curvilinear Coordinates Transformation

In many applications of interest (e.g., flow adjacent to a coastal boundary), the fluid may be confined horizontally within an irregular region. In such problems, a horizontal coordinate system which conforms to the irregular lateral boundaries is advantageous. It is often also true in many geophysical problems that the simulated flow fields have regions of enhanced structure (e.g., boundary currents or fronts) which occupy a relatively small fraction of the physical/computational domain. In these problems, added efficiency can be gained by placing more computational resolution in such regions.

The requirement for a boundary-following coordinate system and for a laterally variable grid resolution can both be met, for suitably smooth domains, by introducing an appropriate orthogonal coordinate transformation in the horizontal. Let the new coordinates be and , where the relationship of horizontal arc length () to the differential distance is given by:

(1)

Here, and are the scale factors which relate the differential distances to the actual (physical) arc lengths. Curvilinear Coordinates contains the curvilinear version of several common vector quantities.

Denoting the velocity components in the new coordinate system by

(2)

the equations of motion can be re-written (see, e.g., Arakawa and Lamb, 1977) as:

(3)


(4)


(5)


(6)


(7)

All boundary conditions remain unchanged.