
1	

Adding Variables to ROMS

Kate Hedstrom

January 2011

Considerations

•  Input/initialization
•  Output?

•  Is it gridded or not?

•  Where does it logically belong?

2	

Four Examples

•  Scalar variable
•  A 3-D tracer

•  A static 2-D gridded field

•  A time-dependent 2-D gridded field

3	

Simplest Case
•  A scalar (not gridded), common to all

processes

•  No need for I/O

•  In ROMS/Modules/mod_scalars.F:
#ifdef ICE_MODEL!
 logical, dimension(Ngrids) :: Lice!
#endif!
#ifdef ICE_MODEL!
 Lice(ng)=.TRUE.!
#endif!
!

4	

Where?

•  Lice is a logical switch, similar to
logicals Lbiology, Lfloats, and
Lsediment

•  Put it with the others, but keep
the #ifdefs around so you can find
the ICE_MODEL changes later

5	

Second Case

•  The ecosystem models have NBT
tracers

•  If using NEMURO, the value of
NBT comes from nemuro_mod.h,
included by mod_biology.F

•  The biology files are all under
ROMS/Nonlinear/Biology

6	

NEMURO Iron

•  Jerome Fiechter added iron to
NEMURO, using three new tracers

ifdef IRON_LIMIT!
 NBT = 14!
else!
 NBT = 11!
endif!

7	

New Tracer ID (nemuro_mod.h)

! Set biological tracer indices.!
 integer :: iopal!
ifdef IRON_LIMIT!
 integer :: iFeSp ! Small phyt Fe!
 integer :: iFeLp ! Large phyt Fe!
 integer :: iFeD_ ! Dissolved Fe!
endif!

8	

Give them Values

 iopal=ic+11!
ifdef IRON_LIMIT!
 iFeSp=ic+12!
 iFeLp=ic+13!
 iFeD_=ic+14!
endif!

9	

Other Iron Changes

•  nemuro_mod.h – set up some rate
constants

•  nemuro_inp.h – read in rate
constants

•  Add the rate constants to a copy
of nemuro.in called nemuro_iron.in

•  Add code to nemuro.h to use the
rate constants and iron fields

10	

Iron I/O Changes

•  nemuro_def.h – NetCDF definitions
for writing iron vars (see the opal
code)

•  nemuro_wrt.h – output of iron vars

•  nemuro_var.h – check for idTvar
(iFeSp) and friends when reading
varinfo.dat

•  Add them to varinfo.dat

•  Add iron fields to boundary and
initial condition files (or ana_initial.h)

11	

Finally…

•  Adding passive tracers is even
simpler, changing NPT in ocean.in

•  To output them, change Hout(inert)
in ocean.in

•  To provide initial and boundary
conditions, call the fields dye_01,
dye_west_01, etc.

12	

Third Case

•  Spatially variable bottom friction
•  2-D field to be read in from the

grid file, treated like the other grid
variables

•  I tried to add it live for a ROMS
training in Maryland – and failed

13	

Label Your Code

•  Start by picking a cppdef:
RDRG_GRID, also ANA_RDRG in
the case of defining it analytically

•  More later on the ANA_ business

•  Add both RDRG_GRID and
ANA_RDRG to checkdefs.F and
cppdefs.h

14	

Which Module?

•  I put it in mod_forces.F, with the
other bottom drag variables:

#ifdef RDRG_GRID!
 real(r8), pointer :: rdrg_grid(:,:)!
#endif!
#ifdef RDRG_GRID!
 allocate(FORCES(ng)%rdrg_grid(LBi:UBi,LBj:UBj))!
#endif!
ifdef RDRG_GRID!
 FORCES(ng) % rdrg_grid(i,j) = IniVal!
endif!
!

15	

mod_forces.F

•  The three chunks go in three
different parts of mod_forces
– Define the data structure
– Allocate the gridded variables
–  Initialize the gridded variables

•  If adding a gridded variable, make
sure to add it to a module with
other gridded variables

16	

Input via get_grid.F

•  Because I put the variable in
mod_forces, we need to “use” it:
#ifdef RDRG_GRID!
 USE mod_forces!
#endif!

•  We can check to see if rdrg_grid is in
the file, then read it, just like the ‘h’
variable, including communication

•  Doesn’t need to be in varinfo.dat

17	

Analytic function

•  You might want to read the grid file
first, then call ana_rdrg instead of
reading the field

•  In initial.F, after the get_grid block:
!

18	

#ifdef ANA_RDRG!
!$OMP PARALLEL DO PRIVATE(thread,subs,tile)
SHARED(ng,numthreads)!
 DO thread=0,numthreads-1!
 subs=NtileX(ng)*NtileE(ng)/numthreads!
 DO tile=subs*thread,subs*(thread+1)-1!
 CALL ana_rdrg (ng, TILE, iNLM)!
 END DO!
 END DO!
!$OMP END PARALLEL DO!
#endif!
!

19	

More ANA_RDRG

•  Add to analytical.F:
if defined ANA_RDRG!
include <ana_rdrg.h>!
endif

•  Copy ana_mask.h to create
ana_rdrg.h then edit it

20	

ana_rdrg.h

•  Add “USE mod_forces”
•  Put “FORCES(ng) % rdrg_grid” in

argument list to ana_rdrg_tile, also
variables it depends on

•  Strip out “mask” scratch array and
all the umask, vmask stuff

21	

Passing to Tile Routine

 CALL ana_rdrg_tile (ng, tile, model, &!
& LBi, UBi, LBj, UBj, &!
& IminS, ImaxS, JminS, JmaxS, &!
& FORCES(ng) % rdrg_grid, &!
& GRID(ng) % h)!

•  Change where called and declaration:

 real(r8), intent(out) :: rdrg_grid(LBi:,LBj:)!
 real(r8), intent(out) :: h(LBi:,LBj:)!

22	

Set rdrg_grid

#ifdef NEP5!
 DO j=JstrR,JendR!
 DO i=IstrR,IendR!
 rdrg_grid(i,j)=…!
 END DO!
 END DO!
#else!
 ana_rdrg.h: no values provided
for rdrg_grid.!
#endif!

23	

Communication
#if defined EW_PERIODIC || defined NS_PERIODIC!
 CALL exchange_r2d_tile (ng, tile, &!
 & LBi, UBi, LBj, UBj, &!
 & rdrg_grid)!
#endif!
#ifdef DISTRIBUTE!
 CALL mp_exchange2d (ng, tile, model, 1, &!
 & LBi, UBi, LBj, UBj, &!
 & NghostPoints, EWperiodic, &!
 & NSperiodic, rdrg_grid)!
#endif!
!

24	

ANANAME

•  Ana_mask.h has:

 ANANAME(15)=__FILE__!
•  ANANAME is defined in

mod_ncparam.F:

 character (len=256), dimension(37) ::
ANANAME!

•  Then used in def_info.F and close_io.F

•  “Magic number” of 37 in all three
places

25	

More ANANAME

•  We can change all three values to
38 and set it in ana_rdrg as:

•  Then next week/year Hernan adds
ana_jellyfish and takes over 38

•  There’s got to be a better way…

26	

 ANANAME(38)=__FILE__!

Using rdrg_grid

•  Used in set_vbc.F
•  Need to pass it to set_vbc_tile

routine – copy how bustr is passed

•  Search on rdrg and add option:
#ifdef RDRG_GRID!
 cff1=0.5_r8*(rdrg_grid(i,j) &
& +rdrg_grid(i-1,j))!
#else!
 cff1=rdrg2(ng)!
#endif!

27	

Output

•  It could be written to all output
files along with the other grid
variables unless NO_WRITE_GRID

•  Put in def_info.F and wrt_info.F

•  Still don’t need to add to
varinfo.dat

28	

Fourth Case

•  Bio sediment variables for putting
ammonia back into the water from
falling detritus

•  Code used in NEMURO for Bering
Sea (from Enrique Curchitser)

•  Time dependent – want to store
averages, write to stations, etc.

29	

NEMURO_SED1

•  We also tried a NEMURO_SED2, but it
behaved badly

•  Create two new variables in
mod_ocean.F, PONsed and OPALsed

•  2-D so declare, allocate, initialize
just like Hsbl

•  This time we need to add it to
varinfo.dat

30	

Averages

•  Add avgPONsed and avgOPALsed to
mod_averages, in three places as
usual

•  The allocate and initialize are
protected by tests on
– Aout(idPONsed, ng)
– Aout(idOPALsed)

•  Aout is array of average output
choices

31	

Aout and Sout

•  To properly set Aout(idPONsed),
we need to add code to inp_par,
matching code for Aout(idHsbl),
Sout(idHsbl)

32	

Set_avg.F

•  Again, mimic the code for Hsbl to
accumulate PONsed values into
avgPONsed and avgOPALsed
–  Initialize at start of averaging duration
– Add values until end of averaging duration
– Scale by number of timesteps at end of

averaging duration

33	

I/O

•  Add code to def_avg.F and wrt_avg.F
to get averages output

•  Add code to def_rst.F, wrt_rst.F and
get_state.F to read it on restart

•  Add code to def_station.F and
wrt_station.F

•  Add code to def_his.F and wrt_his.F –
but we neglected to check for Hout
(idPONsed) in inp_par.F

•  We also left it out of ana_biology.h

34	

Last bits

•  Don’t forget to actually use and
timestep your new variables!

•  We need to add idOPALsed and
idPONsed to mod_ncparam.F:
integer :: idOPALsed ! opal in sediment!
integer :: idPONsed ! PON in sediment!

•  Files nemuro.diffs and drag.diffs
are at:
http://www.arsc.edu/~kate/ROMS/HK!

35	

