
An Overview of ROMS Code

Kate Hedstrom, ARSC
January 2011

Outline

•  Outline of the code
•  cpp
•  cppdefs.h
•  Modules
•  ocean.in
•  Compiling ROMS

ls Trunk

Atmosphere/ Lib/ ROMS/
Compilers/ makefile User/

Data/ Master/ Waves/

•  I also have an Apps directory here
for my applications

ls ROMS

Adjoint/ License_ROMS.txt
Bin/ Modules/ SeaIce/

Drivers/ Nonlinear/ Tangent/

External/ Obsolete/ Utility/

Functionals/ Programs/ Version

Include/ Representer/

Most Important

•  Drivers
– Various model main programs

•  Nonlinear
– The regular ocean physics (forward model)

•  Modules
– Ocean model data types, with allocation

and initialization routines
•  Utility

– File reading and writing routines and other
files common to the various models

Support

•  Include
–  Include files, including cppdefs.h

•  Bin
–  Perl and shell scripts

•  Compilers
–  System-dependent parts of the makefile

•  Lib
–  ARPACK and MCT libraries (optional)

•  External
–  ASCII input files

Other

•  Data Assimilation
–  Adjoint
–  Representer
–  Tangent

•  SeaIce
•  Functionals

–  Analytic expressions for initial conditions, etc.
•  Obsolete
•  Programs

Master/master.F

#include “cppdefs.h”!
#if defined AIR_OCEAN!
include “air_ocean.h”!
#elif defined WAVES_OCEAN!
include “waves_ocean.h”!
#else!
include “ocean.h”!
#endif!

Master/ocean.h
#include “cppdefs.h”!
 PROGRAM ocean!
 USE …!
#ifdef MPI!
 CALL mpi_init!
 CALL mpi_comm_rank(…)!
#endif!
 CALL initialize!
 CALL run!
 CALL finalize!
#ifdef MPI!
 CALL mpi_finalize!
#endif!
 END PROGRAM ocean!

ROMS/Drivers/nl_ocean.h

•  Included by ocean_control.F
•  Contains initialize, run, finalize for

the nonlinear ocean model
•  Run calls main3d or main2d inside

the timestepping loop
•  Many, many other include files for

the other models

ROMS/TOMS:

MODULAR DESIGN

cpp

•  The C preprocessor, cpp, comes
with some C compilers, or the
functionality can be built into a C
compiler

•  Very simple macro processor

•  Used in ROMS primarily for
conditional compilation

•  We probably won’t switch to coco
when it becomes widely available

cpp Versions

•  People started using the C
preprocessor before there was a C
standard - the Standard cpp isn’t
quite the version we want

•  Gnu “cpp -traditional” does the
right thing for Fortran

File Inclusion

•  In Fortran, you can include files
with:

 include ‘file.h’!
•  In cpp, the equivalent is:

 #include “file.h”
•  We use the cpp version to make

sure the #defines in the include
files are seen

Macro Substitution

•  A macro definition has the form:
 #define text replacement text
•  This is done in ROMS:
 #define WESTERN_EDGE Istr.eq.1!
•  and used in:
 if (WESTERN_EDGE) then ….!
•  Safe as long as the replacement

text is not much longer than the
original

More on Macros

•  Another type of macro
substitution is like statement
functions in Fortran

•  Statement functions and the more
modern inlined functions are
better because the compiler can
do type checking

Logical Macros

•  A third kind of macro is something like:

 #define MASKING!
•  or

 #define MASKING 1!
•  These can be tested like:

 #ifdef MASKING (first case)

 #if MASKING (second case)

•  We use the first style for historical
reasons, gnu has officially gone to the
second

Conditional Compilation

•  ROMS uses conditional code
everywhere.

 #ifdef ICE!
 ! Stuff having to do with sea ice!
 #endif!
•  If you want to find out about

sediment code, do a search (grep) on
SEDIMENT

More on Conditionals

•  When setting up a problem of your
own, it’s best to surround code
you add with a unique cpp flag:

 #define LOMBOK_STRAIT!
 :!
 #ifdef LOMBOK_STRAIT!
 ! My code!
 #endif!

Still More

•  The ROMS Makefile will take our .F files
and run them through cpp for us before
passing them to the compiler

•  The intermediate files have a .f90
extension

•  The compiler errors will refer to line
numbers in the .f90 file, not the original
source file

•  Fix the .F file, but feel free to look at
the .f90 files to see what happened

cppdefs.h
•  Every ROMS source file starts

with:
 #include “cppdefs.h”!
•  This file has a list of the available

options, then:
#if defined ROMS_HEADER!
include ROMS_HEADER!
#endif!

•  The ROMS_HEADER variable
comes from the makefile or build
script

Modules

•  The model variables are stored in
Fortran 90 modules defining
specific types

•  Many routines start with “use
mod_kinds”, defining 64-bit reals,
etc.

•  Let’s look at a few modules…

Input file

•  ROMS has an ascii input file which
it reads during initialization

•  The file is not a namelist, but
similar in intent

•  It specifies things like:
– Number of timesteps
– Number of gridpoints (Lm, Mm, N)
– Parallel grid partitioning
– Other input filenames, output options
– Many others

Build System

•  To compile ROMS, there is a build
script, build.bash. Edit this, then run
it. It invokes the “make” command.

•  The “make” command uses the
makefile to find its build rules.

•  The makefile invokes cpp, then
cpp_clean, then the Fortran compiler

•  It also needs to know some things
about your computer, especially
where the NetCDF library is.

Build or Make?

•  You can use the build script or
you can use the makefile directly

•  Either way, copy the standard one
and edit the copy

Directories to Consider

•  Where the sources are
•  Where your current directory is

(where the executable lands)

•  Where the many intermediate files
get created (.f90, .mod, .o)

•  Where you put the problem
dependent files (case.h,
ana_grid.h, etc)

•  Where to run the thing

My Preferences

•  I keep the source under my home
directory

•  I use make and issue “make –f
makefile.dujour” from my source
directory

•  $SCRATCH_DIR is either local Build
or Build off in some scratch space

•  I move the executable to scratch
space visible to the compute nodes

Design Goals of Build

•  Make it flexible enough that you
can simultaneously build
UPWELLING in one directory,
CIRCLE in another

•  I like to have one SCRATCH_DIR
for debug, one for production

•  Let’s get the build script working
for UPWELLING

Build/MakeDepend

•  Automatically generated by a Perl
script

•  Has two purposes:
– Correct compilation order
– Update a file and only recompile what’s

necessary
– Second goal isn’t quite met, hence

“clean=1” in build.bash

Circle Problem

•  The CIRCLE test problem comes
in three flavors (so far)

•  All need a C language Bessel
function so the makefile is
changed

•  Put it in its own git branch to keep
the rest clean

•  Look at a makefile now…

