OCS Study MMS 2009-062

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 3)

Katherine S. Hedstrém
Arctic Region Supercomputing Center
University of Alaska Fairbanks

U.S. Department of the Interior
Minerals Management Service
Anchorage, Alaska

Contract No. MO7PC13368

OCS Study MMS 2009-062

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 3)

Katherine S. Hedstrém
Arctic Region Supercomputing Center
University of Alaska Fairbanks

Nov 2009

This study was funded by the Alaska Outer Continental Shelf Region of the Minerals Manage-
ment Service, U.S. Department of the Interior, Anchorage, Alaska, through Contract MO7PC13368
with Rutgers University, Institute of Marine and Coastal Sciences.

The opinions, findings, conclusions, or recommendations expressed in this report or product are
those of the authors and do not necessarily reflect the views of the U.S. Department of the Interior,
nor does mention of trade names or commercial products constitute endorsement or recommenda-
tion for use by the Federal Government.

This document was prepared with I TEX xfig, and inkscape.

Acknowledgments

The ROMS model is descended from the SPEM and SCRUM models, but has been entirely
rewritten by Sasha Shchepetkin, Hernan Arango and John Warner, with many, many other con-
tributors. I am indebted to every one of them for their hard work.

Bill Hibler first came up with the viscous-plastic rheology we are using. Paul Budgell has
rewritten the dynamic sea-ice model, improving the solution procedure and making the water-
stress term implicit in time, then changing it again to use the elastic-viscous-plastic rheology of
Hunke and Dukowicz. I am very grateful that he is allowing us to use his version of the code. The
sea-ice thermodynamics is derived from Sirpa Héakkinen’s implementation of the Mellor-Kantha
scheme. She was kind enough to allow Paul and I to start with her code.

Thanks to the internet community for providing great tools like Perl, patch, cpp, svn, and
gmake to aid in software development (and to make it more fun).

This work was supported in part by a grant of HPC resources from the Arctic Region Super-
computing Center and the DoD High Performance Computing Modernization Program.

Development and testing of the ROMS model has been funded by many, including the USGS
Coastal and Marine Program, the Office of Naval Research, the National Ocean Partnership Pro-
gram...

UNIX is a registered trademark of the Open Group.
Cygwin is a registered trademark of Red Hat, Inc.

Abstract

The Regional Ocean Modeling System (ROMS), authored by many, most notably Sasha
Shchepetkin, is one approach to regional and basin-scale ocean modeling. This user’s manual for
ROMS describes the model equations and algorithms, as well as additional user configurations
necessary for specific applications. ROMS itself has now branched out as well - the version
described here is that available through the myroms.org svn site with modifications to include
sea ice and other minor changes.

Contents

(1 Introduction|

2

Getting started|

2.1 myroms.org| e e e e e e e
2.2 Prerequisites| e
2.3 Acquiring the ROMS code]
2.4 Compiling ROMS|.
2.4.1 FEnvironment Variables formake| 00000000
[2.4.2 Providing the Environment| o000
[2.4.3 Build scripts]o
2.0 Running ROMS|. o o o
2.6 Warnings and bugs|

8 Ocean Model Formulation|

3.1 Equations of motion|
[3.2 Vertical boundary conditions| Lo
|3.3 Horizontal boundary conditions| o Lo
[3.4 Terrain-following coordinate system|

Numerical Solution Technique|
4.1 Vertical and horizontal discretizationlo
[4.1.1 Horizontal grid|
[4.1.2 Vertical gridl
4.2 Masking of land areas|
[4.2.1 Velocity] e
|4.2.2 Temperature, salinity and surface elevation|
4.2.3 Wetting and drying|
4.3 Time-stepping overview| e e e e e e
4.4 Conservation properties| e e
4.5 Depth-integrated equations| o
4.6 Density in the mode coupling|
4.7 'Time stepping: internal velocity modes and tracers|

4.8 Advection schemesl e

[4.8.4 Third-order Upwind|
4.9 Determination of the vertical velocity and density fields]
[4.10 Horizontal mixing|.
[4.10.1 Deviatory stress tensor|. Lo

[4.11.2 The Large, McWilliams and Doney parameterizationl
|4.12 Timestepping vertical viscosity and diffusion|.
4.13 Boundary Conditions|.

4.13.1 Gradient boundary condition|o
[4.13.2 Wall boundary condition|
[4.13.3 Clamped boundary condition| L.
4.13.4 Flather boundary condition|
4.13.5 Chapman boundary condition|.
4.13.6 Radiation boundary condition|. L.
[4.13.7 Mixed radiation-nudging boundary condition| L.

5__Ice Model Formulation|

b.1 Dynamics|o
b.2 Thermodynamics| e
[5.2.1 Ocean surtace boundary conditions|

6.2.2 ocean control.F|
6.2.3 ROMS initializel

6.4 Modules
6.0 Functionalsl o

[6.7 C preprocessor variables|
6.8 Important parameters|
6.9 Domain decomposition|

6.9.2 MPIlexchange]
6.9.3 Code syntax] e
[6.9.4 Input/output|

[7

Configuring ROMS for a Specific Application|

(7.1 Configuring ROMS|

[7.1.2 Case-specific Include File| oo 000000

[7.1.6 x,ygridl o e e e e
[7.1.7 Emerid]o
[1.8 Tnitial conditions L
[7.1.9 Equation of state]
[7.1.10 Boundary conditions|
[7.1.11 Model forcing|
[[.1.12 ocean.inl e e e

37
37
38
43
44
45

46
46
48
48
48
48
49
49
49
52
52
54
o6
56
65
65
66
68
69
72

[7.2 Upwelling/Downwelling Example] L 88

[7.2.1 cppdefs.h| 88

(.22 Model domainl L 90

[7.2.3 ana_grid|. 90

[7.2.4 Initial conditions and the equation of state| 90

[7.2.5 Boundary conditions| Lo o 91

[7.2.6 Model forcing| 91

[[27 oceandnl e 91

[72.8 Output] 92

[7.3 Northeast Pacific example|o oo o 99
[7.3.1 mepd.hl 99

(.32 NEP5 codechunksl 110

(3.3 Model domainl 112

[7.3.4 Initial and boundary conditions|. 0oL 113

[7.3.5 Forcingl 113

[[3.6 oceandnl e 113

[7.3.7 Output] e 113

[8 Plotting Programs for Postprocessing| 117
[A° Model Time-stepping Schemes| 120
AT Euler]. . . oo 120

A Leaptrog 120
[A.3 Third-order Adams-Bashforth (AB3)[. 120
A4 Forward-Backwardl 121
[A.5 Forward-Backward Feedback (RK2-FB) 121
[A6 LE-TR and LE-AM3 with FB Feedbackl 122
[A.7 Generalized FB with an AB3-AM4 Step| o000 122
[B_The vertical c-coordinatel 123
[C Hon I T G | 125
[D Viscosity and Diffusion| 126
[D.1 Horizontal viscosity|. 126
[D.2 Horizontal Diffusionl 126
[D.3 Vertical Viscosity and Diffusion| L 126
(E._Radiant heat fluxes| 127
[E. I Shortwave radiationl 127
[E.2 Longwave radiation|. 127
.3 Sensible heatlo 127
[E.4 Latent heatl 127

[F' The C preprocessor| 129
(.1 Fileinclusionl o Lo 129
[F.2 Macro substitutionl 129
[F.3 Conditional inclusion|. o o 130
[F4 Ccomments.o e 131
[F.5 Amnoteonstylel 131
[F.6 Potential problems| 131
.7 Modern Fortran|.o 132

G__Makefiles

. 1.1 Macros

12

Implicit Rules|.

G.1.3

Dependencies|

IG.2 gnumake|

|G.3 Multiple Source Directories the ROMS Way|

G.3.1

Directory Structure] . . .

|G.3.2 Conditionally Including Components|

[G.3.3 User-defined make Functions|

G.3.4

Library Module.mk]|. . .

[G.3.5

Main Program|

G.3.6

Top Level Makefile|

|G.4 Final warnings|

[H sfmakedepend|

[_Subversionl
LI _Overview

.2 Checking out the code|

.4 Code changes|

5.1

Merging conflicts by hand|

5.2

Copying a file onto your working filef

5.3

Punting: Using svn revert|

133
133
134
134
135
135
136
136
137
138
139
139
139
140
142
142
143
146

147

List of Figures

11 Placement of variables on an Arakawa Cgrid| 13
[2 Placement of variables on staggered vertical grid| 13
13 Masked region within the domain|. 0000, 14

{4 Diagrams of the time stepping and mode coupling used in various ROMS versions. (a)
Rutgers University ROMS (from myrom
described in [73], (d) non-hydrostatic ROMS ([35]). In all, the curved arrows update
the 3-D fields; those with “pillars” are leapfrog in nature with the pillar representing |
the r.h.s. terms. Straight arrows indicate exchange between the barotropic and |
baroclinic modes. The shape functions tor the fast time steps show just one option |

|
|

out of many possibilities. The grey function has weights to produce an estimate at
time n + 1, while the light red function has weights to produce an estimate at time

T
Ao 16

5] The split time stepping used in the model.|. 19

|6 Weights tor the barotropic time stepping. The upper panel shows the primary |
weights, centered at time n + 1, while the lower panel shows the secondary weights |

weights, centered at time n + % 21
{7 Diagram of the difterent locations where ice melting and freezing can occur.| 40
18 Diagram of internal ice temperatures and fluxes. The hashed layer is the snow. . . . 40
19 ROMS directory structure.| 47
[0 ROMS main structurel 48
(11 Flow chart of the model main program. 50

12 The whole grid. Note that there are Lm by Mm interior computational points. The |
| points on the thick outer line and those outside it are provided by the boundary |

[conditionS..o e e e 67
[13 A tiled grid with some ROMS tile variables.| 68
[I4 A choice of numbering schemes: (a) each tile is numbered the same, and (b) each |
| tile retains the numbering of the parent domain.| 69
15 Some ROMS variables for tiles, for both a periodic and non-periodic case. Shown |
| are the variables in the i-direction, the j-direction is similar.|. 70
116 A tiled grid with out-ot-date halo regions shown in grey and the interior points |
| color-coded by tile: (a) before an exchange and (b) after an exchange. 71
(17 The upwelling/downwelling bathymetry,| 100
[I8 Surface velocities after one day, showing the flow to the left of the wind (southern |
| hemisphere).| 101
19 Constant & slices of the u,v,T" and w fieldsatday 1.| 102
20 Constant & slices of the u,v, T, and w fieldsat day 5. 103
[21 Bathymetry of the Northeast Pacific domain (NEP5).| 104
22 Surface elevation after 200 days showing tides. This is from a snapshot in a history |
| file—the averages files have been detided.| oL 114
23 Ice concentration averaged over the month of April, 1959. 115

24 Vertical slice if temperature, averaged over the month of April, 1959. The slice is |
| across the Bering Sea shelf, showing the transition from vertically mixed at the coast, |
| a two layer system at mid-shelt, then a thermocline over the shelt-break.|. 116

[25 The o-surfaces for the North Atlantic with (a) 6 = 0.0001 and b = 0, (b) § = 8 and
| b=0, (c) § =8 and b = 1. (d) The actual values used in this domain were § = 5
[and b=041. e 124

List of Tables

11 The variables used in the description of the ocean model| 9
12 The variables used in the vertical boundary conditions for the ocean model| 9
13 The time stepping schemes used in the various ROMS versions. o = wot is the |
| Courant number and w = ck is the frequency for a wave component with wavenumber |

0 17
|4 Variables used in the ice momentum equations| 39
15 Variables used in the ice thermodynamics| 41
6 Qcean surface variablesl 43
[r Frazilice variablesl 44
18 Variables used in computing the incoming radiation and latent and sensible heat| . . 128

1 Introduction

This user’s manual for the Regional Ocean Modeling System (ROMS) describes the model equations
and algorithms, as well as additional user configurations necessary for specific applications. This
manual also describes the sea-ice model that we are using (Budgell [5]).

The principle attributes of the model are as follows:

General

Horizontal

Vertical

Ice

Primitive equations with potential temperature, salinity, and an equation of state.
Hydrostatic and Boussinesq approximations.
Optional third-order upwind advection scheme.

Optional Smolarkiewicz advection scheme for tracers (potential temperature, salin-
ity, etc.).

Optional Lagrangian floats.

Option for point sources and sinks.

Orthogonal-curvilinear coordinates.
Arakawa C grid.
Closed basin, periodic, prescribed, radiation, and gradient open boundary conditions.

Masking of land areas.

o (terrain-following) coordinate.
Free surface.

Tridiagonal solve with implicit treatment of vertical viscosity and diffusivity.

Hunke and Dukowicz elastic-viscous-plastic dynamics.
Mellor-Kantha thermodynamics.
Orthogonal-curvilinear coordinates.

Arakawa C grid.

Smolarkiewicz advection of tracers.

Mixing options

Horizontal Laplacian and biharmonic diffusion along constant s, z or density surfaces.
Horizontal Laplacian and biharmonic viscosity along constant s or z surfaces.

Optional Smagorinsky horizontal viscosity and diffusion (but not recommended for
diffusion).

Horizontal free-slip or no-slip boundaries.

Vertical harmonic viscosity and diffusion with a spatially variable coefficient, with

options to compute the coefficients with Large et al. [41], Mellor-Yamada [56], or
generic length scale (GLS) [85] mixing schemes.

Implementation

e Dimensional in meter, kilogram, second (MKS) units.

Fortran 90.

Runs under UNIX, requires the C preprocessor, gnu make, and Perl.

All input and output is done in NetCDF [68] (Network Common Data Format),
requires the NetCDF library.

e Options include serial, parallel with MPI, and parallel with OpenMP.

The above list hasn’t changed so very much in the past ten to fifteen years, but many of the
numerical details have changed a great deal. Examples include consistent temporal averaging of
the barotropic mode to guarantee both exact conservation and constancy preservation properties for
tracers; redefined barotropic pressure-gradient terms to account for local variations in the density
field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-
monotone advection algorithms.

ROMS now comes with a full suite of advanced data assimilation routines; these options are
beyond the scope of this document.

Chapter [2] has some information on getting started with ROMS. Chapters [3] and [4] describe the
model physics and numerical techniques and contain information from Shchepetkin and McWilliams
[75] and Haidvogel et al. [24]. Chapter [5] describes the ice equations and Chapter [] lists the model
subroutines and functions. As distributed, ROMS is ready to run with a number of example
problems. The process of configuring ROMS for a particular application and running it is described
in Chapter [7, including a discussion of a few example applications. Chapter [§ describes Hernan
Arango’s plotting programs cnt, ccnt, sec, and csec.

2 Getting started

2.1 myroms.org

Starting off with ROMS is not the easiest thing to do, and it just seems to be getting more complex
as time goes by. There are some resources, however, beginning with the electronic home for ROMS
users at (www.myroms.org. Go to register, which gives you access to the subversion server for the
code and to the discussion forum for all things ROMS. There is also a wiki, a bug tracking system,
and even a developer blog.

The wiki contains parts of this manual, but the nature of wikis is that they can be more fluid,
with more authors, than a static document such as this. Dave Robertson (robertson@marine.rutgers.edu)
is the one to talk to if you would like to contribute to the wiki.

2.2 Prerequisites

As mentioned in Chapter [[, ROMS has some external requirements. These are:
e UNIX or UNIX-like environment, such as Cygwin.

e A Fortran 90 compiler.

The NetCDF library compiled with the above compiler, including the Fortran 90 interface.

svn, the subversion revision control software. See Appendix [and the ROMS wikil.

Gnu make| version 3.81 or higher. Appendix [G] contains more than you ever wanted to know
about this software.

A |C preprocessor—the one from gnu with the -traditional flag works well. See Appendix [E}

e The Perl scripting language.
e Matlab is optional, but it is a common tool for pre- and post-processing of ROMS files.

Make sure you've got the right environment before attempting to download or compile ROMS.

2.3 Acquiring the ROMS code

The main ROMS code is available for download via svn at https://www.myroms.org/svn/src/.
The version of the model described in this document is a merger between ROMS 3.2 and a sea-ice
model. The sea ice code is a branch off a different repository and requires special access—contact
Dave Robertson (as above) for more information.

ROMS comes with several cases all ready to go at the flip of a switch. Try these out first and
get to understand how they are set up.

o §2.4 describes how to pick the cases and set up the build environment.

e §6.7]lists all the ROMS options that can be added to your case.

e §6.5]lists the fields which can be provided to ROMS via analytic expressions.
o §7.1.12]lists the input parameters ROMS reads from a text file at run time.

e Chapters [6] and [7] are meant to be informative for the simple and not-so-simple cases. If that
isn’t the case, please let me know.

In addition to this manual, there are some other ROMS resources:

http://www.myroms.org
http://www.redhat.com/services/custom/cygwin/
http://www.unidata.ucar.edu/software/netcdf/index.html
http://subversion.tigris.org
https://www.myroms.org/wiki/index.php/Subversion
http://www.gnu.org/software/make/
http://en.wikipedia.org/wiki/C_preprocessor
http://www.perl.org
http://www.mathworks.com/products/matlab/
https://www.myroms.org/svn/src/

e You may be best served by going to the ROMS wiki| which includes sections called Getting
Started and Tutorials.

e Don’t be afraid to use the forum. It has everything from employment opportunities to debug-
ging help. Posting there can get you help from one of several people, improving your odds of
success over private emails. Registered users get an email once a day about new postings, so
you might have to wait a day (or more) for a reply.

e There have been ROMS meetings and classes in which a tutorial session is included as part
of the program.

e There are various resources from these online—I’ve heard good things about the tutorials
from Manu Di Lorenzo.

2.4 Compiling ROMS
2.4.1 Environment Variables for make

ROMS has a growing list of choices the user must make about the compilation before starting the
compile process, set in user-defined variables. Since we now use gnu make, it is possible to set the
value of these variables in the Unix environment, rather than necessarily inside the Makefile (see
§G)). The user-definable variables understood by the ROMS makefile are:

ROMS__APPLICATION Set the cpp option defining the particular application. This is used
for setting up options inside the code specific to this application and also determines

the name of the .h header file for it. This can be either a predefined case, such as
BENCHMARK, or one of your own, such as NEP5.

MY_HEADER_ DIR Sets the path to the user’s header file, if any. It can be left empty for the
standard cases, where benchmark.h and the like are found in ROMS /Include, which
is already in the search path. In the case of NEPS5, this is set to Apps/NEP where
nepb.h resides.

MY__ANALYTICAL_ DIR Sets the path to the user’s analytic files described in if any.
This can be User/Functionals or some other location. I tend to place both the header
file and the functionals in the same directory, one directory per application.

MY_ CPP__FLAGS Set tunable cpp options. Sometimes it is desirable to activate one or more
cpp options to run different variants of the same application without modifying its header
file. If this is the case, specify each option here using the -D syntax. Notice that you need
to use the shell’s quoting syntax (either single or double quotes) to enclose the definition
if you are using one of the build scripts below.

NestedGrids Integer number of grids in the setup, usually 1.
Compiler-specific Options These flags are used by the files inside the Compilers directory.
USE__DEBUG Set this to on to turn off optimization and turn on the -g flag for
debugging.
USE__MPI Set this if running an MPI parallel job.

USE_ OpenMP Set this if running an OpenMP parallel job.

USE_ MPIF90 I'm frankly not sure about this one. I suppose if you have both mpich
and some other MPI for a given compiler/system pair, this could be used to
switch between them.

https://www.myroms.org/wiki/
http://eros.eas.gatech.edu/ROMS-Tutorial/tutorials.html

USE__LARGE Some systems support both 32-bit and 64-bit options. Select this to get
64-bit addressing, usually used for programs need more than 2 GB of memory.

NETCDF_INCDIR The location of the netcdf.mod and typesizes.mod files.
NETCDF_ LIBDIR The location of the NetCDF library.

USE__NETCDF4 Set this if linking against the NetCDF4 library, which needs the
HDF5 library and therefore:

HDF5_ LIBDIR The location of the HDF5 library.

FORT A shorthand name for the compiler to be used when selecting which system-compiler file
is to be included from the Compilers directory. See section §G.2.3 and §2.4.2]

Local File Options BINDIR Directory in which to place the binary executable. The default is
“.”, the current (top) directory.

SCRATCH_ DIR Put the .f90 and the temporary binary files in a build directory to
avoid clutter. The default is Build under the top directory. It can also point to
differing places if you want to keep these files for multiple projects at the same
time, each in their own directory.

2.4.2 Providing the Environment
Before compiling, you will need to find out some background information:

e What is the name of your compiler?

e What is returned by uname -s on your system?

Is there a working NetCDF library?

Where is it?

Was it built with the above compiler?
e Do you have access to MPI or OpenMP?

As described more fully in the makefile will be looking for a file in the Compilers directory
with the combination of your operating system and your compiler. For instance, using Linux and
the Pathscale compiler, the file would be called Linux-path.mk. Is the corresponding file for your
system and compiler in the Compilers directory? If not, you will have to create it following the
existing examples there.

Next, there are two ways to provide the location for the NetCDF files (and optional HDF5
library). One is by editing the corresponding lines in your system-compiler file. Another way is
through the Unix environment variables. If you are always going to be using the same compiler on
each system, you can edit your .profile or .login files to globally set them. Here is an example for
tcsh:

setenv NETCDF_INCDIR /usr/local/netcdf4/include
setenv NETCDF_LIBDIR /usr/local/netcdf4/1ib
setenv HDF5_LIBDIR /usr/local/hdf5/1lib

The ksh/bash equivalent is:

export NETCDF_INCDIR=/usr/local/netcdf4/include
export NETCDF_LIBDIR=/usr/local/netcdf4/lib
export HDF5_LIBDIR=/usr/local/hdf5/1ib

2.4.3 Build scripts

If you have more than one application (or more than one compiler), you will get tired of editing
the makefile. One option is to have a makefile for each configuration, then type:

make -f makefile.circle_pgi

for instance. Another option of keeping track of the user-defined choices in a build script. The
advantage is that updates to the build scripts are less frequent than updates to the makefile.
There are now two of these scripts in the ROMS /Bin directory: build.sh (which is surprisingly
a csh script) and build.bash. The build scripts use environment variables to provide values for
the list above, overwriting those found in the ROMS makefile. Just as in the multiple makefile
option, you will need as many copies of the build script as you have applications. The scope of
these variables is local to the build script, allowing you to compile different applications at the
same time from the same sources as long as each $(SCRATCH__DIR) is unique.
Both scripts have the same options:

-j [N] Compile in parallel using N cpus, omit argument for all available CPUs.
-noclean Do not clean already compiled objects.

Note that the default is to compile serially and to issue a “make clean” before compiling. It is
left as an exercise for the user if they prefer different default behavior.

There are also a few variables which are not recognized by the ROMS makefile, but are used
locally inside the build script. These are:

MY__PROJECT__DIR This is used in setting $(SCRATCH__DIR) and $(BINDIR).

MY_ROMS__SRC Set the path to the user’s local current ROMS source code. This is used so
that the script can be run from any directory, not necessarily only from the top ROMS
directory.

2.5 Running ROMS

ROMS expects to read a number of variables from an ASCII file (details of the file are in §7.1.12]).
For serial or OpenMP execution, the syntax is:

oceanS (or ocean0) < ocean.in > roms.out &
while MPI execution requires:
oceanM ocean.in > roms.out &

so that each process can read the file.

Realistically, you would only want to run relatively small applications such as UPWELLING
interactively on the command line as shown here. Also, for either of the parallel options, you will
have to provide some information to ROMS and to the operating system about how many threads
or processes to use. Parallel computers may also have some sort of batch queuing system in place
in which you would submit a job script. I have easy access to two Linux clusters with differing
details in the systems, requiring different job scripts. Some MPI environments require that you
submit your job with:

cd $PBS_O_WORKDIR
mpirun -np 32 ./oceanM ocean_benchmark3.in

while others need:

aprun -np 32 ./oceanM ocean_benchmark3.in

You just have to find out from the locals.

If all goes according to plan, ROMS will create both a collection of NetCDF files and a verbose
text file on standard out. Chapter [8| describes one way to view the gridded NetCDF files. Other
tools that have been used include Matlab, NCL, and [Python.

If things don’t go according to plan, the text output file is your friend. Examine it carefully. If
it fails on the UPWELLING problem, you can compare your output to that in

2.6

Warnings and bugs

ROMS is not a large program by some standards, but it is still complex enough to require some
effort to use effectively. Some specific things to be wary of include:

It is recommended that you use 64 bits of precision rather than 32 bits.

The code must be run through the C preprocessor before it is compiled. This can occasionally
be dangerous, especially with the newer ANSI C versions of cpp. Potential problems are listed
in Appendix [F]l The gnu cpp with the -traditional flag is known to work well.

The vertical o-coordinate was chosen as being a sensible way to handle variations in the water
depth as seen in the coastal oceans. Changes to the code have allowed us to expand the well-
behaved range of depths and the range of values for THETA__S, plus there are some new
vertical coordinate options. I used to give guidelines on “reasonable” values for THETA __S,
but I no longer know what’s reasonable.

o-coordinates have long had a bad reputation because errors in the pressure gradient terms
can lead to spurious currents. These errors are must less troublesome than in the past due to
code improvements and can also be controlled with some smoothing of the bathymetry. This
in turn changes the shape of the basin and leads to its own set of problems, such as altered
sill depths. Also, the currents will react to the change in shelf slope—you are now solving
a different problem. You may want to explore a matlab tool for minimally smoothing the
bathymetry found at: http://www.liga.ens.fr/~dutour/Bathymetry /index.html.

There remain bugs in ROMS. If you find any, please report them on the forum and/or the
bug tracking system at myroms.org.

http://www.mathworks.com/products/matlab/
http://www.ncl.ucar.edu/
http://www.python.org/
http://www.liga.ens.fr/~dutour/Bathymetry/index.html

3 Ocean Model Formulation

3.1 Equations of motion

ROMS is a member of a general class of three-dimensional, free-surface, terrain-following numer-
ical models that solve the Reynolds-averaged Navier-Stokes equations using the hydrostatic and
Boussinesq assumptions. The governing equations in Cartesian coordinates can be written:

ou B foler 0 —— ou
a—i—v-Vu—fvf Iz &<uw v + Fu+ Dy (1)
ov 9o 0 (—— ov
ov % _9 v -+ D, 2
g T Vet u=—5 8z< Vox) TF)
99 _ —pg
Oz - Do (3)
with the continuity equation:
ou 0Ov Ow
S T 4
dr Oy Oz 0 (4)
and scalar transport given by:
oc 0 (=— oC
— : =—— —Vg— Dc.
8t+v vC 8z<0w I/eaz>—|—fc+ c (5)
An equation of state is also required:
p=p(T,S,P) (6)

The variables are shown in Table An overbar represents a time average and a prime represents
a fluctuation about the mean. These equations are closed by parameterizing the Reynolds stresses
and turbulent tracer fluxes as:

w = —KMa; v'w' = —K ov. C'w' = —Kcaai’. (7)

Equations and express the momentum balance in the z- and y-directions, respectively.
The time evolution of all scalar concentration fields, including those for T'(z,y, z,t) and S(z,y, z,t),
are governed by the advective-diffusive equation (5). The equation of state is given by equation
@. In the Boussinesq approximation, density variations are neglected in the momentum equations
except in their contribution to the buoyancy force in the vertical momentum equation . Under
the hydrostatic approximation, it is further assumed that the vertical pressure gradient balances
the buoyancy force. Lastly, equation (4] expresses the continuity equation for an incompressible
fluid. For the moment, the effects of forcing and horizontal dissipation will be represented by the
schematic terms F and D, respectively. The horizontal and vertical mixing will be described more

fully in §4.10.1]

Variable Description
C(z,y,2,t) scalar quantity, i.e. temperature, salinity, nutrient concentration
Dy, Dy, Dc optional horizontal diffusive terms
Fu, Fu, Fc forcing/source terms
flx,y) Coriolis parameter
g acceleration of gravity
h(z,y) depth of sea floor below mean sea level
H,(x,y,z) vertical grid spacing
v, Vg molecular viscosity and diffusivity
Ky, Ke vertical eddy viscosity and diffusivity
P total pressure P ~ —p,gz
o(x,y, z,t) dynamic pressure ¢ = (P/p,)
po+ p(x,y,2,t) | total in situ density
S(z,y,z,t) salinity
t time
T(z,y,z2,t) potential temperature
U, UV, W the (z,y, z) components of vector velocity ¥/
T,y horizontal coordinates
z vertical coordinate
C(z,y,t) the surface elevation

Table 1: The variables used in the description of the ocean model

3.2 Vertical boundary conditions

The vertical boundary conditions can be prescribed as follows:

top (z = ((z,y,1t)) Km% =75(z,y,t)
K, % =1Y(z,y,t)
aCc _ Q
KC 9z POCCP
_
W= %
and bottom (z = —h(x,y)) K, % =7 (x,y,1)
Km % = Tg(xayat)
oC _
—w+v-Vh =
Variable | Description
Qc surface concentration flux
T, 7y surface wind stress
77, 7; | bottom stress

Table 2: The variables used in the vertical boundary conditions for the ocean model

The surface boundary condition variables are defined in Table Since Q7 is a strong function
of the surface temperature, we usually choose to compute Q7 using the surface temperature and
the atmospheric fields in an atmospheric bulk flux parameterization. This bulk flux routine also
computes the wind stress from the winds.

On the variable bottom, z = —h(z,y), the horizontal velocity has a prescribed bottom stress
which is a choice between linear, quadratic, or logarithmic terms. The vertical concentration flux

may also be prescribed at the bottom, although it is usually set to zero.

3.3 Horizontal boundary conditions

As distributed, the model can easily be configured for a periodic channel, a doubly periodic domain,
or a closed basin. Code is also included for open boundaries which may or may not work for your
particular application. Appropriate boundary conditions are provided for u,v, T, .S, and (.

The model domain is logically rectangular, but it is possible to mask out land areas on the
boundary and in the interior. Boundary conditions on these masked regions are straightforward,
with a choice of no-slip or free-slip walls.

If biharmonic friction is used, a higher order boundary condition must also be provided. The
model currently has this built into the code where the biharmonic terms are calculated. The high

order boundary conditions used for u are a% (V%) = 0 on the eastern and western boundaries
and a% (1/%) = 0 on the northern and southern boundaries. The boundary conditions for v and

C are similar. These boundary conditions were chosen because they preserve the property of no
gain or loss of volume-integrated momentum or scalar concentration.

3.4 Terrain-following coordinate system

From the point of view of the computational model, it is highly convenient to introduce a stretched
vertical coordinate system which essentially “flattens out” the variable bottom at z = —h(x,y).
Such “o” coordinate systems have long been used, with slight appropriate modification, in both
meteorology and oceanography (e.g., Phillips [63] and Freeman et al. [I9]). To proceed, we make
the coordinate transformation:

X
y
.y, 2)

z,y,0)

q < B
I

—~

o =
z

—~

z
and
t=t.

See Appendix [B| for the form of o used here. Also, see Shchepetkin and McWilliams, 2005 [73] for
a discussion about the nature of this form of ¢ and how it differs from that used in SCRUM.

In the stretched system, the vertical coordinate o spans the range —1 < o < 0; we are therefore
left with level upper (¢ = 0) and lower (¢ = —1) bounding surfaces. The chain rules for this

transformation are:
ON _ (9 _(L)[o
oxr), \ Oz - H, or),
ON _ (9 _(L)(o
doy), \oy/), \H.)\dy/,

9 _(0s\0 _ 19
0z \0z) 0o H,0o

9
Oo
9
oo
where

As a trade-off for this geometric simplification, the dynamic equations become somewhat more
complicated. The resulting dynamic equations are, after dropping the carats:
ou 0¢ (gp) 0z oC 1 0 {Km ou

a—f@—f—v-Vu:—%— . Hzag]—l-]:u—l-@u (8)

o Yo T H. oo

10

af%-fu—i—v Vo=———]—i—]: +D, (9)

ol gp 82 8C L L 1 0 [Ky dv
ot oy Po Y 8y H, 80 | H, do
oc 1 9 [KcoC
09 _ (—gH.p
do (Po > 12)
OH, O(Hyu) O0(Hv) 0(H,Q)
pu— 1
ot Oz oy do 0 (13)
where
U= (u,v,Q)

The vertical velocity in ¢ coordinates is

ey = [(222222

ot "o oy
and 0z 0z 0z
w== +u Uas +wv 87/ +QH,.
In the stretched coordinate system, the vertical boundary conditions become:
top (o= 0) (Km> % = Yy, t)

75 (@,
75 (2,9,1)

Q

X
R §

=
Q

sl
® 3
O\/_/_/ O\/_/

be =7 (2,9,1)
) 5o =1 (@ y.t)

ac

s

| &

(%
(
Q
and bottom (o = —1) <
(
(
0=

Note the simplification of the boundary conditions on vertical velocity that arises from the o
coordinate transformation.

3.5 Horizontal curvilinear coordinates

In many applications of interest (e.g., flow adjacent to a coastal boundary), the fluid may be confined
horizontally within an irregular region. In such problems, a horizontal coordinate system which
conforms to the irregular lateral boundaries is advantageous. It is often also true in many geo-
physical problems that the simulated flow fields have regions of enhanced structure (e.g., boundary
currents or fronts) which occupy a relatively small fraction of the physical /computational domain.
In these problems, added efficiency can be gained by placing more computational resolution in such
regions.

The requirement for a boundary-following coordinate system and for a laterally variable grid
resolution can both be met, for suitably smooth domains, by introducing an appropriate orthogonal

11

coordinate transformation in the horizontal. Let the new coordinates be £(z,y) and n(x,y), where
the relationship of horizontal arc length to the differential distance is given by:

(ds)e = (;) ¢ (14)

(ds), = (i) n (15)

Here, m(&,n) and n(&,n) are the scale factors which relate the differential distances (A&, An) to
the actual (physical) arc lengths. Appendix |C| contains the curvilinear version of several common
vector quantities.

Denoting the velocity components in the new coordinate system by

7-E=u (16)

and
v-n=w (17)

the equations of motion (8)-(13) can be re-written (see, e.g., Arakawa and Lamb [2]) as
g H,u +g H u? +g H,uv +g H,uf)
at \ mn 0& n on m do \ mn
0 (1 0 (1
G) e () o () e

(f
mn
2 gp@z 0C 1 0 [Kp,ou H,
(%) (5 + 525 55¢) e | 0]+ ot D) 1)

2(5) 5(2)- 4 (5) & (2
L) ok ()b ()
() (3t) ek o] o o

g H.C +g H,vC +i H.QC\
ot \ mn on m 0o mn N

1 0 [KgoC H
mn@s[H 90 | Ty Fo+De) (20)
p=pT,S,P) (21)
09 _ (gH:p
do (Po > 22)
0 (H, 0 (H,u 0 (Hyv o (HQ\
(o) +ae (50) + () s () o =)

All boundary conditions remain unchanged.

12

4 Numerical Solution Technique

4.1 Vertical and horizontal discretization
4.1.1 Horizontal grid

In the horizontal (£,7), a traditional, centered, second-order finite-difference approximation is
adopted. In particular, the horizontal arrangement of variables is as shown in Fig. This is
equivalent to the well known Arakawa “C” grid, which is well suited for problems with horizontal
resolution that is fine compared to the first radius of deformation (Arakawa and Lamb [2]).

Ag
*

Vi j+1 |

i (sl Vi wiga
N o T An

*

Ui,j ‘

Figure 1: Placement of variables on an Arakawa C grid

4.1.2 Vertical grid

The vertical discretization also uses a second-order finite-difference approximation. Just as we use
a staggered horizontal grid, the model was found to be more well-behaved with a staggered vertical
grid. The vertical grid is shown in Fig.

® 2

—

® /1
Wo

Figure 2: Placement of variables on staggered vertical grid

13

A B C
(@) (@) (@) (@)
D E F
= 4 = = 2 = ®
G H I J
(@) (@) X (@) (@)
K L
= & = L 4 = @ = ®
X — u points
M N
0 O O © O — v points
O — p points
= L = L = L = L
® — 1 points

Figure 3: Masked region within the domain

4.2 Masking of land areas

ROMS has the ability to work with interior land areas, although the computations occur over
the entire model domain. One grid cell is shown in Fig. [I] while several cells are shown in Fig.
including two land cells. The process of defining which areas are to be masked is external to
ROMS and is usually accomplished in Matlab; this section describes how the masking affects the
computation of the various terms in the equations of motion.

4.2.1 Velocity

At the end of every time step, the values of many variables within the masked region are set to zero
by multiplying by the mask for either the u, v or p points. This is appropriate for the v points E
and L in Fig. [3] since the flow in and out of the land should be zero. It is likewise appropriate for
the u point at I, but is not necessarily correct for point . The only term in the u equation that
requires the u value at point G is the horizontal viscosity, which has a term of the form %ug—z.
Since point G is used in this term by both points A and M, it is not sufficient to replace its value
with that of the image point for A. Instead, the term %Z is computed and the values at points D
and K are replaced with the values appropriate for either free-slip or no-slip boundary conditions.
Likewise, the term (%y‘g—g in the v equation must be corrected at the mask boundaries.

This is accomplished by having a fourth mask array defined at the 1 points, in which the values
are set to be no-slip in metrics. For no-slip boundaries, we count on the values inside the land
(point G) having been zeroed out. For point D, the image point at G should contain minus the
value of u at point A. The desired value of %17; is therefore 2ua while instead we have simply uAa .
In order to achieve the correct result, we multiply by a mask which contains the value 2 at point
D. It also contains a 2 at point K so that g—“ there will acquire the desired value of —2un;. The

corner point F is set to have a value of 1.

4.2.2 Temperature, salinity and surface elevation

The handling of masks by the temperature, salinity and surface elevation equations is similar to
that in the momentum equations, and is in fact simpler. Values of T', S and (inside the land

14

masks, such as point H in Fig. [3] are set to zero after every time step. This point would be used by
the horizontal diffusion term for points B, J, and IN. This is corrected by setting the first derivative
terms at points E, I, and L to zero, to be consistent with a no-flux boundary condition. Note
that the equation of state must be able to handle T'= S = 0 since this is the value inside masked
regions.

4.2.3 Wetting and drying

There is now an option to have wetting and drying in the model, in which a cell can switch between
being wet or being dry as the tides come in and go out, for instance. Cells which are masked out
as in Fig. [3| are never allowed to be wet, however.

e In the case of wetting and drying, a critical depth, D..;, is supplied by the user.

e The total water depth (D = h + () is compared to Dgp;;. If the water level is less than this
depth, no flux is allowed out of that cell. Water can always flow in and resubmerge the cell.

e The wetting and drying only happens during the 2-D computations; the 3-D computations
see a depth of D+ in the “dry” areas.

e The ice component now checks for dry cells when computing the ice rheology.

4.3 Time-stepping overview

While time stepping the model, we have a stored history of the model fields at time n — 1, an
estimate of the fields at the current time n, and we need to come up with an estimate for time
n + 1. For reasons of efficiency, we choose to use a split-explicit time step, integrating the depth-
integrated equations with a shorter time step than the full 3-D equations. There is an integer ratio
M between the time steps. The exact details of how the time stepping is done vary from one version
of ROMS to the next, with the east coast ROMS described here being older than other branches.
Still, all versions have these steps:

1. Take a predictor step for at least the 3-D tracers to time n + %

2. Compute p and p* for use in the depth-integrated time steps, from the density either at time
n or time n + %

3. Depth integrate the 3-D momentum right-hand side terms at time n + % for use in the depth-
integrated time steps (or extrapolate to obtain an estimate of those terms).

4. Take all the depth-integrated steps. Store weighted time-means of the @, v fields centered at
both time n + % and time n + 1 (plus ¢ at time n+ 1). The latter requires this time stepping
to extend past time n + 1, using M™* steps rather than just M.

5. Use the weighted time-means from depth-integrated fields to complete the corrector step for
the 3-D fields to time n + 1.

Great care is taken to avoid the introduction of a mode-splitting instability due to the use of shorter
time steps for the depth-integrated computations.

The mode coupling has evolved through the various ROMS versions, as shown in Fig. 4| (from
[74]). The time stepping schemes are also listed in Table and described in detail in [73] and
[75]; the relevant ones are described in Appendix [A]

15

—~

«n

(b)
M) .) ™
Barotropic Barotropic

Mode H} Mode

[‘ -
m=| m=M m=M* = m=M*
rhs2D(u,v) rhs2D(u,v)
AB3-type forward AB3-type forward \/
“extrapolation = / extrapolation dossasas
£r (S,0,v)
Baroclinic Baroclinic
Mode Mode

AB3-step for
Tu,v with saving
r.h.s. terms

(c) (d)
) O @) &

Barotropic Barotropic

Mode {[H Mode H}l
INEE| H

m=M* m=M*

Baroclinic
Mode

AB3-type forwarg
lextrapolation
for u,v,T,S

T) S AM4 - type

Tinterpolation
for u,v

Figure 4: Diagrams of the time stepping and mode coupling used in various ROMS versions. (a)
Rutgers University ROMS (from myroms.org), (b) ROMS AGRIF, (¢) UCLA ROMS, described
in [73], (d) non-hydrostatic ROMS ([35]). In all, the curved arrows update the 3-D fields; those
with “pillars” are leapfrog in nature with the pillar representing the r.h.s. terms. Straight arrows
indicate exchange between the barotropic and baroclinic modes. The shape functions for the fast
time steps show just one option out of many possibilities. The grey function has weights to produce
an estimate at time n + 1, while the light red function has weights to produce an estimate at time
n —+ %

16

SCRUM 3.0 Rutgers AGRIF UCLA Non-hydrostatic

Reference [28] [25] [61] [73] [35]
Barotropic LF-TR LF-AM3 with | LF-AM3 with Gen. FB Gen. FB
mode FB feedback | FB feedbac (AB3-AM4) (AB3-AM4)
2D Qe iter. | V2, (2fF 1.85, (2) 1.85, (2) 1.78, (1) 1.78, (1)
3-D momenta AB3 AB3 LF-AM3 LF-AM3 AB3 (mod)
Tracers AB3 LF-TR LF-AM3 LF-AM3 AB3 (mod)
Internal AB3 Gen. FB LF-AM3, LF-AM3, Gen. FB
waves (AB3-TR) FB feedback | FB feedback (AB3-AM4)
Qmax, advect. 0.72 0.72 1.587 1.587 0.78
Omax, Cor. 0.72 0.72 1.587 1.587 0.78
Ctmax, 0. W. 0.72, (1) 1.14, (1,2) 1.85, (2) 1.85, (2) 1.78, (1)

Table 3: The time stepping schemes used in the various ROMS versions. a = wdt is the Courant
number and w = ck is the frequency for a wave component with wavenumber k.

4.4 Conservation properties

From Shchepetkin and McWilliams (2005) [73], we have a tracer concentration equation in advective
form:

—— -V)C =0 24
(V) (24)
and also a tracer concentration equation in conservation form:

oC

E + V . (UC) =0. (25)

The continuity equation:
(V-u)=0 (26)

can be used to get from one tracer equation to the other. As a consequence of eq. , if the tracer is
spatially uniform, it will remain so regardless of the velocity field (constancy preservation). On the
other hand, as a consequence of , the volume integral of the tracer concentration is conserved
in the absence of internal sources and fluxes through the boundary. Both properties are valuable
and should be retained when constructing numerical ocean models.

The semi-discrete form of the tracer equation (20) is:

7 €A yaalrall
0 (H.,C ul,”C vH, C —o H,Q) 1 90 (Ky,oC
i 0) s, - = 9 (2 p 2
ot (mn >+5§ (nt >+5’7 (mn >+5 <C mn) mn do (Az 80>+ ct+Fe (27)

Here ¢, 6, and d, denote simple centered finite-difference approximations to 9/9¢, 0/0n and 0/00
with the differences taken over the distances A&, An and Ao, respectively. Az is the vertical

distance from one p point to another. ()7, () and () represent averages taken over the
distances A&, An and Aoc.

The finite volume version of the same equation is no different, except that a quantity C is
defined as the volume-averaged concentration over the grid box AV

mn H.C

C =
H, Jay mn

d¢ ondo (28)

et
The quantity (”Hgéc) is the flux through an interface between adjacent grid boxes.

17

This method of averaging was chosen because it internally conserves first moments in the model
domain, although it is still possible to exchange mass and energy through the open boundaries.
The method is similar to that used in Arakawa and Lamb [2]; though their scheme also conserves
enstrophy. Instead, we will focus on (nearly) retaining constancy preservation while coupling the
barotropic (depth-integrated) equations and the baroclinic equations.

The time step in eq. is assumed to be from time n to time n+ 1, with the other terms being
evaluated at time n + % for second-order accuracy. Setting C to 1 everywhere reduces eq. to:

¢ il
0 (H, uH, vH, H.Q
— 1) 1)) =0 29
8t(mn)+£<n5>+n<m” o mn (29)
If this equation holds true for the step from time n to time n 4 1, then our constancy preservation
will hold.

In a hydrostatic model such as ROMS, the discrete continuity equation is needed to compute
H: (the latter is controlled by changes in ¢ in the

mn

barotropic mode computations). Here, volume flux across the moving grid-box

interface, vertically on the w grid.

H.Q -
mn

The vertical integral of the continuity eq. , using the vertical boundary conditions on §2, is:

3 "N
§t<<>+5§<w>+6 (1’%777):0 (30)

where (is the surface elevation, D = h + (is the total depth, and @, v are the depth-integrated
horizontal velocities. This equation and the corresponding 2-D momentum equations are time
stepped on a shorter time step than eq. and the other 3-D equations. Due to the details in
the mode coupling, it is only possible to maintain constancy preservation to the accuracy of the
barotropic time steps.

4.5 Depth-integrated equations

The depth average of a quantity A is given by:

_ 1 (0
:D[JQMJ (31)
where the overbar indicates a vertically averaged quantity and

D =¢(& n.t) + h(&,m) (32)
is the total depth of the water column. The vertical integral of equation is:
0 Du 8 Duu +g Duv\ Dfv
ot 85 on\ m mn
0 (1 0 [1 D (0¢sy ¢
— () cmwm= (=) pD=_Z2 (2%
P%()w%@ﬂ > (% o)
D

- 1
- (Fut i)+ — (75 —75) (39)

mn

where ¢9 includes the g—g term, Dy, is the horizontal viscosity, and the vertical viscosity only

contributes through the upper and lower boundary conditions. The corresponding vertical integral

18

of equation is:
9 (Dv +g Duv +g Dvo +Dfﬂ
ot \'mn o\ n on \ m mn
9 (1Y 0 (1N p_ D (0 0
i [uvaﬁ < >_uu577 <m>] P (on +98n>

+—(f +th)+i(T—r1) . (34)

mn

)

We also need the vertical integral of equation , shown above as eq. .

The presence of a free surface introduces waves which propagate at a speed of \/gh. These
waves usually impose a more severe time-step limit than any of the internal processes. We have
therefore chosen to solve the full equations by means of a split time step. In other words, the depth
integrated equations , , and are integrated using a short time step and the values of
w and v are used to replace those found by integrating the full equations on a longer time step. A
diagram of the barotropic time stepping is shown in Fig.

Barotropic steps

|||||||||||||||||||||||||||‘||||||| -

m=0 —M m—M
n n+1
Figure 5: The split time stepping used in the model.
Some of the terms in equations and are updated on the short time step while others

are not. The contributions from the slow terms are computed once per long time step and stored.
If we call these terms R, , and R, , equations and become:

9 (Du +2 Duu +g Duv\ Dfv
ot \'mn o€ n on\. m mn

v (1) _a 2 (LY p= _gDoC 1 ¢
[Uvag <n> uvan (m>}D—Ruslow n8£+ Du) (35)

9 /1N __ 8 (1 gD 1
22\ =) —uug- (=)| D=Ry Dﬁ* —)
+ [uva5 (n) uu877 <m)] Ry, m an + o Ty (36)

When time stepping the model, we compute the right-hand-sides for equations and as
well as the right-hand-sides for equations and . The vertical integral of the 3-D right-
hand-sides are obtained and then the 2-D right-hand-sides are subtracted. The resulting fields are
the slow forcings R, and R This was found to be the easiest way to retain the baroclinic
contributions of the non-linear terms such as wu — uw.

Vslow *

19

The model is time stepped from time n to time n+1 by using short time steps on equations ,
and . Equation is time stepped first, so that an estimate of the new D is available for
the time rate of change terms in equations and . A third-order predictor-corrector time
stepping is used. In practice, we actually time step all the way to time (n + dtfast x M*), while
maintaining weighted averages of the values of @, 7 and . The averages are used to replace the
values at time n + 1 in both the baroclinic and barotropic modes, and for recomputing the vertical
grid spacing H,. Fig. [6] shows one option for how these weights might look.

The primary weights, a,,, are used to compute (¢)"* = Zf‘:{;l amC™. There is a related
set of secondary weights b,,, used as <<ﬂ>>”+% = 2%21 bpu™. In order to maintain constancy

preservation, this relation must hold:

(S B I) €)
JE— — JE— _I_ JE— — JE—
Tl it ULIENES UL

(37)
Shchepetkin and McWilliams ([73]) introduce a range of possible weights, but the ones used here

have a shape function:
P q
-l ()])
70 70 70

where p, ¢ are parameters and Ag, 79, and r are chosen to satisfy normalization, consistency, and
second-order accuracy conditions,

(it = ()i — (mn)i;At

*

In:/ T"A(T)dr =1, n=0,1,2 (39)
0

using Newton iterations. 7* is the upper limit of 7 with A(7) > 0. In practice we initially set

(P+2)(p+q+2)

Ay=1,r=0 and 7= ,
° (p+1D(p+q+1)

compute A(7) using eq. (38)), normalize using:

M* M
n;amz) mZZIamMEI, (40)

and adjust r iteratively to satisfy the n = 2 condition of . We are using values of p =2, ¢ =4,
and r = 0.284. This form allows some negative weights for small m, allowing M™* to be less than
1.5M.

ROMS also supports an older cosine weighting option, which isn’t recommended since it is only
first-order accurate.

4.6 Density in the mode coupling

Equation contains the term R, _, computed as the difference between the 3-D right-hand-side
and the 2-D right-hand-side. The pressure gradient therefore has the form:

UL L

n 0& n 0& (41)

where the term in square brackets is the mode coupling term and is held fixed over all the barotropic
steps and
1 [cop
F=—- ——dz (42)
pon J_p 0§

20

m=0 m=M m=M*

Figure 6: Weights for the barotropic time stepping. The upper panel shows the primary weights,
centered at time n+ 1, while the lower panel shows the secondary weights weights, centered at time
1

is the vertically integrated pressure gradient. The latter is a function of the bathymetry, free surface
gradient, and the free surface itself, as well as the vertical distribution of density.

The disadvantage of this approach is that after the barotropic time stepping is complete and
the new free surface is substituted into the full baroclinic pressure gradient, its vertical integral will
no longer be equal to the sum of the new surface slope term and the original coupling term based
on the old free surface. This is one form of mode-splitting error which can lead to trouble because
the vertically integrated pressure gradient is not in balance with the barotropic mass flux.

Instead, let us define the following:

SN RS N AN AT 43
pD/hpz, péDQ/h{/ZpZ}z (43)

Changing the vertical coordinate to o yields:

0 0 0
p= / pdo, p* = 2/ {/ pda'} do (44)
—1 -1 o

which implies that p and p* are actually independent of as long as the density profile p = p(o)
does not change. The vertically integrated pressure gradient becomes:

1g (0 (pD? _~0h 1y L,0C DOop* . _\Oh
ot () R e E e TR e) @

In the case of uniform density pg, we obtain p* = p = pg, but we otherwise have two new terms.
The accuracy of these terms depends on an accurate vertical integration of the density, as described
in Shchepetkin and McWilliams (2005, [73]).

4.7 Time stepping: internal velocity modes and tracers

The momentum equations and are advanced before the tracer equation, by computing all
the terms except the vertical viscosity and then using the implicit scheme described in to
find the new values for 4 and v. The depth-averaged component is then removed and replaced by
the (u) and (v) computed as in §4.5| A third-order Adams-Bashforth (AB3) time stepping is used,
requiring multiple right-hand-side time levels (see Appendix @) These stored up r.h.s. values can
be used to extrapolate to a value at time n + % for use in the barotropic steps as shown in Fig.

The tracer concentration equation (27)) is advanced in a predictor-corrector leapfrog-trapezoidal
step, with great care taken to optimize both the conservation and constancy-preserving properties
of the continuous equations. The corrector step can maintain both, as long as it uses velocities
and column depths which satisfy eq. 1' This also requires tracer values centered at time n + %,
obtained from the predictor step. The vertical diffusion is computed as in §4.12]

The predictor step cannot be both constancy-preserving and conservative; it was therefore
decided to make it constancy-preserving. Also, since it is only being used to compute the advection
for the corrector step, the expensive diffusion operations are not carried out during the predictor
step.

The preceeding notes on tracer advection refer to all but the MPDATA option. The MPDATA
algorithm has its own predictor-corrector with emphasis on not allowing values to exceed their
original range; it therefore gives up the constancy-preservation. This is most noticeable in shallow
areas with large tides.

4.8 Advection schemes

The advection of a tracer C' has an equation of the form

0 H,C 0 0 0
Jire T pé o
ot mn 8£F anF OGF ’ (46)

22

where we have introduced the advective fluxes:

H
e = H:uC (47)
n
H,
o = 200 (48)
m
H.Q
o = H:0C (49)
mn
4.8.1 Second-order Centered
The simplest form of the advective fluxes is the centered second-order:
£ =&
H, uC
FE = f; (50)
n
H,"vC"
m z
F = e (51)
FZUQ*O'
F° = 70 (52)
mn

This scheme is known to have some unfortunate properties in the presence of strong gradients,
such as large over- and under-shoots of tracers, leading to the need for large amounts of horizontal
smoothing. ROMS provides alternative advection schemes with better behavior in many situations,
but retains this one for comparison purposes.

4.8.2 Fourth-order Centered

The barotropic advection is centered fourth-order unless you specifically pick centered second-order
as your horizontal advection scheme. To get fourth-order, create gradient terms:

The fluxes now become:

RS
H _¢ 10G¢
S — _ -
—u (C’ 3¢) (56)
" 19G"
HS [18G°
F —an<C _380>' (58)

4.8.3 Fourth-order Akima

An alternate fourth-order algorithm is that by Akima:

oCc oC oc oC
Gt=2— — /<+) 59
9, 0€ 1/ \ 9, 9¢., %)
GroalC 0 (2000 -
anj 877]+1 877]' 877j+1
o 80 oC oC oC
¢ 80 kOO k- 1/ <80'k * 80k1> (61)

With the fluxes as in [F6H58]

4.8.4 Third-order Upwind

There is a class of third-order upwind advection schemes, both one-dimensional (Leonard [44])
and two-dimensional (Rasch [66] and Shchepetkin and McWilliams [71]). This scheme is known
as UTOPIA (Uniformly Third-Order Polynomial Interpolation Algorithm). Applying flux limiters
to UTOPIA is explored in Thuburn [83], although it is not implemented in ROMS. The two-
dimensional formulation in Rasch contains terms of order w?C and «?C, including cross terms
(uv(C). The terms which are nonlinear in velocity have been dropped in ROMS, leaving one extra
upwind term in the computation of the advective fluxes:

H,u o%C

F¢ = - (C 7(%2) (63)
2

Fﬂ:ffn (C’ 7?»,0) (64)

The second derivative terms are centered on a p point in the grid, but are needed at a u or v point
in the flux. The upstream value is used:
H®

— [max(0, w; j k) Ci—1,jk + min(0, u; j k) Ci j k] - (65)

Ffj,k =
The value of 7 in the model is # while that in Rasch [66] is 2.

Because the third-order upwind scheme is designed to be two-dimensional, it is not used in the
vertical (though one might argue that we are simply performing one-dimensional operations here).
Instead, we use a centered fourth-order scheme in the vertical when the third-order upwind option
is turned on:

F? =

One advantage of UTOPIA over MPDATA is that it can be used on variables having both
negative and positive values. Therefore, it can be used on velocity as well as scalars. For the
u-velocity, we have:

Hw{ 1 9 9 1
mn

0%u\ [H.u 0% (H.u

é.: i - 7Z_ - z
" <“ 785?)[n ”a@(n ﬂ (67)

0%u\ [H.v 0% (H.v

Fn: — - z _ - z
<“ 7an?> [m o (m)] (68)

o H,w 1 9 9 1

F° = . |:_16 z]k 1+ 16 ,]k+16 Z]7k+1—T6ui7j7k+2 (69)

24

while for the v-velocity we have:

v H.u 5?2 H.u
F=\v=15a2) |5 ar \ 70
<U 78§2>[n 78772< n)] (70)

0*v\ [Hv 8% (H,w
Fr={v=755) "0 " ar Ui 71
(v 73n2> [m o (m)] (71)

o HZ'U) 1 9 9 1

F° = i |:_16,Ui7j7k_1 + Tﬁvi,j,k + Evi’j’k—H — TGUi’j’k+2 (72)

In all these terms, the second derivatives are evaluated at an upstream location.

4.9 Determination of the vertical velocity and density fields

Having obtained a complete specification of the w,v,T, and S fields at the next time level by the
methods outlined above, the vertical velocity and density fields can be calculated. The vertical
velocity is obtained by combining equations and to obtain:

0 (H,u o0 (H,v o (H.Q 0 (Du 0 (Dv _0 -
as<>+8n(m)+8<m>_as<>_&7<m) (73)

Solving for H,§2/mn and using the semi-discrete notation of we obtain:

¢ _=n 7€ -7
H.Q uD vD uH, vH,
() o (%) (F) (R

The integral is actually computed as a sum from the bottom upwards and also as a sum from the
top downwards. The value used is a linear combination of the two, weighted so that the surface
down value is used near the surface while the other is used near the bottom.

The density is obtained from temperature and salinity via an equation of state. ROMS provides
a choice of a nonlinear equation of state p = p(T, S, z) or a linear equation of state p = p(T"). The
nonlinear equation of state has been modified and now corresponds to the UNESCO equation
of state as derived by Jackett and McDougall [34]. It computes in situ density as a function of
potential temperature, salinity and pressure.

Warning: although we have used it quite extensively, McDougall (personal communication)
claims that the single-variable (p = p(T)) equation of state is not dynamically appropriate as is.
He has worked out the extra source and sink terms required, arising from vertical motions and the
compressibility of water. They are quite complicated and we have not implemented them to see if
they alter the flow.

4.10 Horizontal mixing

In Chapter [3] the diffusive terms were written simply as D,, D,, Dy, and Dg. The vertical compo-
nent of these terms was described in §4.12] Here we describe the ROMS options for representing
the horizontal component of these terms.

4.10.1 Deviatory stress tensor

Note: this material was copied from the wiki, where it was contributed by Hernan Arango. The hor-
izontal components of the divergence of the stress tensor (Wajsowicz, 1993 [86]) in nondimesional,
orthogonal curvilinear coordinates (£, 77, s) with dimensional, spatially-varying metric factors (=

m?
%, H,) and velocity components (u, v, wH,) are given by:

25

B
g
1l
S
<
N
Il
SlE
| — |
Rl
VY
S
S|
~
~—
Plo
VRS
=
315
anY
3
~_

T o
0s \ mn

0 (1 0 (1 1
o (o) = ooz () = oo

|
e
Il
)
<
N
I
SIE
| — |
Rl
N
&
319
3
ANy
~_—
|
Plo
N
=
SRS
3
3
N~
+
Pl
/N
Q
Sls

where

oee = (Am +v) eee + (v — Anp) ey,
o = (v — An) ege + (An +v) ey,
Oss = 2V €ss,

Oen = One = 2 An ey,

oes = 2 Ky egs,

Ons = 2KM €ns,

and the strain field is:

3=

U
€ce = M—— + mnv

9¢

).
ov
egn =N 7— +mnu

(
oot ()

i@(sz) m 0H, n OH,

“TH os mU o TH o
m 0 (nv) +£8(mu)

Rle Pl
| =

2een = n O m On
1 9 (mu) ow

2ees = mH, O0Os mHZéTF
1 9(nv) ow

26n5—nHZ 95 —f—nHza—n.

—

75)

(76)

(86)
(87)
(88)
(89)

(90)

Here, Ap(€,n) and Kjf(&, 7, s) are the spatially varying horizontal and vertical viscosity coef-
ficients, respectively, and v is another (very small, often neglected) horizontal viscosity coefficient.
Notice that because of the generalized terrain-following vertical coordinates of ROMS, we need to
transform the horizontal partial derivatives from constant ”z-"surfaces to constant ”s-”surfaces.
And the vertical metric or level thickness is the Jacobian of the transformation, H, = %. Also in

wH,

these models, the "vertical” velocity is computed as %

26

and has units of m?/s.

4.10.2 Transverse stress tensor

Assuming transverse isotropy, as in Sadourny and Maynard (1997) [69] and Griffies and Hallberg
(2000) [23], the deviatoric stress tensor can be split into vertical and horizontal sub-tensors. The
horizontal (or transverse) sub-tensor is symmetric, it has a null trace, and it possesses axial sym-
metry in the local vertical direction. Then, transverse stress tensor can be derived from eq.

and , yielding

H.F" = n2m§§ (Hz:mg> + mznaa77 <HZ£W> (91)
H,F* = n2m§§ (Hz:%) + mgn(;?77 <HZT§W]> (92)
where
P =y |0 o], (93)
Fo— Ly |22 motu) |, (94
. % A :Tgagév) + Z@(gz}u): , (95)
FU = %AM :;6g77”) - ZL@(;&“) | (96)

Notice the flux form of eq. and and the symmetry between the F% and F'" terms
which are defined at density points on a C-grid. Similarly, the F*? and F"¢ terms are symmetric
and defined at vorticity points. These staggering positions are optimal for the discretization of the
tensor; it has no computational modes and satisfies first-moment conservation.

The biharmonic friction operator can be computed by applying twice the tensor operator eq.
and , but with the squared root of the biharmonic viscosity coefficient (Griffies and Hall-
berg, 2000 [23]). For simplicity and momentum balance, the thickness H, appears only when
computing the second harmonic operator as in Griffies and Hallberg (2000).

4.10.3 Rotated Transverse Stress Tensor

In some applications with tall and steep topography, it will be advantageous to reduce substantially
the contribution of the stress tensor eq. and to the vertical mixing when operating along
constant s-surfaces. The transverse stress tensor rotated along geopotentials (constant depth) is
then given by

where

27

o (R SRR,
(R) ()
ol (5) LR .

o () ()]
oL (R LR) e
o[) L (R) o
o[} ())

i () ()]

Notice that transverse stress tensor remains invariant under coordinate transformation. The
rotated tensor and retains the same properties as the unrotated tensor and . The
additional terms that arise from the slopes of s-surfaces along geopotentials are discretized using a
modified version of the triad approach of Griffies et al. (1998) [22].

4.10.4 Biharmonic

Biharmonic mixing has less of a physical justification and is used for damping of numerical noise
at the 2Az scale. The biharmonic operator is V4 = V2V?; the corresponding term is computed
using a temporary variable Y:

~mn | O (vaH,m Oy vaH,n oY
=5 Lo %) T oo

0 (H,maY 0 (H,ndY
[85< n 8§)+0n(m 877)] (108)

where 1 is any of u, v, T, and S. Note that u and v are treated as independent scalar quantities
rather than as a vector. The complete Laplacian operator on a vector quantity & contains additional
terms, including v terms in the u equation and vice versa. These extra terms were found to be
small in a test problem and have been left out of the model.

and is

4.11 Vertical mixing schemes

ROMS contains a variety of methods for setting the vertical viscous and diffusive coefficients. The
choices range from simply choosing fixed values to the KPP, generic lengthscale (GLS) and Mellor-
Yamada turbulence closure schemes. See Large [40] for a review of surface ocean mixing schemes.
Many schemes have a background molecular value which is used when the turbulent processes are
assumed to be small (such as in the interior).

28

4.11.1 Mellor-Yamada

One of the more popular closure schemes is that of Mellor and Yamada [56], [57]. They actually
present a hierarchy of closures of increasing complexity. ROMS provides only the “Level 2.5”
closure with the Galperin et al. [20] modifications as described in Allen et al. [I]. This closure
scheme adds two prognostic equations, one for the turbulent kinetic energy (%qz) and one for the
turbulent kinetic energy times a length scale (¢?l).

The turbulent kinetic energy equation is:

D (¢ 0 0 (¢ B

where P is the shear production, P, is the buoyant production and &; is the dissipation of turbulent
kinetic energy. These terms are given by

() < (2] a0

P, = K,N?, (111)
3
q
_ 112
&a Bl (112)

where Bj is a constant. One can also add a traditional horizontal Laplacian or biharmonic diffusion
(Dy) to the turbulent kinetic energy equation. The form of this equation in the model coordinates

becomes
g H.q? +g H,ug? _’_2 H.vg? +£ H.Qq¢? _g K, 87(]2 B
at \ mn 0¢ n on m s mn ds \mnH, 0s |
2H,K,, | (0u\> [0v\?| 2H.K, , 2H.¢* H,
mn [(82) * <8z>] i N mnBil + %Dq' (113)

The vertical boundary conditions are:

top (z = ((2,y.t)) L2 — 0
K, 8¢ BY? 2 2
mn;Iz qu - /;D |:(TS£> + (Tg)
Hsz (%7 gg) = % (7—85;7—;7)
_ _Q
H, KN = RS
and bottom (z = —h(z,y)) % =0

K, o _ B}® £)? 72
mn%]zaiqs = plo |:<Tb) + (Tb)
ou vy _ 1 (& m
H.Kn (52, 53) = Po <Tb’Tb>
H.K;N? =0
The equation is timestepped much like the model tracer equations, including an implicit solve for

the vertical operations and an option for using the third-order upwind advection.
There is also an equation for the turbulent length scale I:

D ., 0 olg? B @ =
D (12 &{Kl&}_ZEl(PﬁPb) oW (114)

29

where W is the wall proximity function:

. I \2
_ 1 1
Ll:(—z+H+z (116)

The form of this equation in the model coordinates becomes

g H.q¢%l +£ H,ug?l +2 H.vg?l +2 H.Q4¢% _g K, 0¢% B
ot _ mn 0¢ n an m 0s mn 0s \mnH, 0s)

HZ qu3 T Hz
lE1(Ps + Py) — w D,. (11
mn 1(Ps+) mnBy + mn at (117)

where D is the horizontal diffusion of the quantity ¢l
Given these solutions for ¢ and [, the vertical viscosity and diffusivity coefficients are:

Km = qlSm + Kmbackground (118)
KS = qlSh + Ksbackground (119)
Kq - qlSq + quackground (120)

and the stability coefficients Sy, S, and S, are found by solving
Sy [l — (342By + 1841 4)Gy] = Ay [1 — 64, B] (121)
Sm [L — 941 42Gp] — S, [Gr(184F + 9A1 A2)Gy] = A1 [1 —3C) — 6A; By (122)

2772

Gy = min(—q—z,0.0QS). (123)
Sq = 0.415,, (124)

The constants are set to (A1, Ag, B1, Be,C1, E1, Ey) = (0.92,0.74,16.6,10.1,0.08,1.8,1.33). The
quantities ¢® and ¢?l are both constrained to be no smaller than 10~® while [is set to be no larger
than 0.53¢/N.

4.11.2 The Large, McWilliams and Doney parameterization

The vertical mixing parameterization introduced by Large, McWilliams and Doney [41] is a versatile
first order scheme which has been shown to perform well in open ocean settings. Its design facilitates
experimentation with additional or modified representations of specific turbulent processes.

Surface boundary layer The Large, McWilliams and Doney scheme (LMD) matches separate
parameterizations for vertical mixing of the surface boundary layer and the ocean interior. A
formulation based on boundary layer similarity theory is applied in the water column above a
calculated boundary layer depth hgy. This parameterization is then matched at the interior with
schemes to account for local shear, internal wave and double diffusive mixing effects.

Viscosity and diffusivities at model levels above a calculated surface boundary layer depth
(hsp) are expressed as the product of the length scale hgy, a turbulent velocity scale w, and a
non-dimensional shape function.

Vyp = hsblwx(U)Gm(O'> (125)

where ¢ is a non-dimensional coordinate ranging from 0 to 1 indicating depth within the surface
boundary layer. The = subscript stands for one of momentum, temperature and salinity.

30

Surface Boundary layer depth The boundary layer depth hgy is calculated as the minimum
of the Ekman depth, estimated as,
he = 0.Tuy/ f (126)

(where w, is the friction velocity u. = /72 +72/p), the Monin-Obukhov depth:

L= u?/(xBy) (127)

(where x = 0.4 is von Karman’s contant and By is the surface buoyancy flux), and the shallowest
depth at which a critical bulk Richardson number is reached. The critical bulk Richardson number
(Ri.) is typically in the range 0.25-0.5. The bulk Richardson number (Ri) is calculated as:

Rip(2) = — (B: — B(d))d

Ve = V(d)|* + Vi*(d)
where d is distance down from the surface, B is the buoyancy, B, is the buoyancy at a near surface
reference depth, V is the mean horizontal velocity, V. the velocity at the near surface reference
depth and V; is an estimate of the turbulent velocity contribution to velocity shear.

The turbulent velocity shear term in this equation is given by LMD as,
_3.3\1/2
V2(d) = (m(cse)—mmws (129)

where C,, is the ratio of interior N to N at the entrainment depth, Gr is ratio of entrainment flux
to surface buoyancy flux, ¢; and € are constants, and w; is the turbulent velocity scale for scalars.
LMD derive based on the expected behavior in the pure convective limit. The empirical rule
of convection states that the ratio of the surface buoyancy flux to that at the entrainment depth be
a constant. Thus the entrainment flux at the bottom of the boundary layer under such conditions
should be independent of the stratification at that depth. Without a turbulent shear term in the
denominator of the bulk Richardson number calculation, the estimated boundary layer depth is too
shallow and the diffusivity at the entrainment depth is too low to obtain the necessary entrainment
flux. Thus by adding a turbulent shear term proportional to the stratification in the denominator,
the calculated boundary layer depth will be deeper and will lead to a high enough diffusivity to
satisfy the empirical rule of convection.

(128)

turbulent velocity scale To estimate w, (where z is m - momentum or s - any scalar)
throughout the boundary layer, surface layer similarity theory is utilized. Following an argument
by Troen and Mahrt [84], Large et al. estimate the velocity scale as

Ky
Wy 52(0) (130)
where (is the surface layer stability parameter defined as z/L. ¢, is a non-dimensional flux profile
which varies based on the stability of the boundary layer forcing. The stability parameter used in
this equation is assumed to vary over the entire depth of the boundary layer in stable and neutral
conditions. In unstable conditions it is assumed only to vary through the surface layer which is
defined as ehgy (where € is set at 0.10) . Beyond this depth (is set equal to its value at ehgp.
The flux profiles are expressed as analytical fits to atmospheric surface boundary layer data. In
stable conditions they vary linearly with the stability parameter ¢ as

¢x =1+ 5€ (131)

In near-neutral unstable conditions common Businger-Dyer forms are used which match with the
formulation for stable conditions at (= 0. Near neutral conditions are defined as

~02<¢<0 (132)

31

for momentum and,
—-1.0<(¢<0 (133)

for scalars. The non dimensional flux profiles in this regime are,

bm = (1 —16¢)"* (134)
s = (1—16¢)"/2 (135)

In more unstable conditions ¢, is chosen to match the Businger-Dyer forms and with the free
convective limit. Here the flux profiles are

dm = (1.26 — 8.38¢) /3 (136)
¢s = (—28.86 — 98.96¢)'/3 (137)

The shape function The non-dimensional shape function G(o) is a third order polynomial
with coefficients chosen to match the interior viscosity at the bottom of the boundary layer and
Monin-Obukhov similarity theory approaching the surface. This function is defined as a 3rd order
polynomial.

G(0) = ap + a10 + az0? + azo? (138)

with the coefficients specified to match surface boundary conditions and to smoothly blend with
the interior,

— (139)

a =1 (140)
B Ve(hspt) — Opve(h) vp(h)Osw,(1)

ay = =2+ 350 T8+ S B (1) (141)
B V:L"(hsbl) aacyw(h) Vx(h)aﬂww(l)

G=1=25 0) w) hwl(l) (142)

where v, (h) is the viscosity calculated by the interior parameterization at the boundary layer depth.

Countergradient flux term The second term of the LMD scheme’s surface boundary layer
formulation is the non-local transport term v which can play a significant role in mixing during
surface cooling events. This is a redistribution term included in the tracer equation separate from
the diffusion term and is written as

B
— 2K~ 14
5,57 (143)

LMD base their formulation for non-local scalar transport on a parameterization for pure free
convection from Mailh6t and Benoit [48]. They extend this parameterization to cover any unstable
surface forcing conditions to give

wly + wilg
-0, — 144
YT wr(o)h (144)
for temperature and
S
o0 (145)

78 = O soh

for salinity (other scalar quantities with surface fluxes can be treated similarly). LMD argue that
although there is evidence of non-local transport of momentum as well, the form the term would
take is unclear so they simply specify ~,, = 0.

32

The interior scheme The interior scheme of Large, McWilliams and Doney estimates the viscos-
ity coefficient by adding the effects of several generating mechanisms: shear mixing, double-diffusive
mixing and internal wave generated mixing.

ve(d) = 5 + v+ 0¥ (146)

Shear generated mixing The shear mixing term is calculated using a gradient Richardson
number formulation, with viscosity estimated as:

1240 ng < 0,
vy =4 vl — (Rig/Rig)?*)® 0 < Riy < Rip, (147)
0 Ri, > Rip.

where 1 is 5.0 x 1073, Rig = 0.7.

Double diffusive processes The second component of the interior mixing parameteriza-
tion represents double diffusive mixing. From limited sources of laboratory and field data LMD
parameterize the salt fingering case (R, > 1.0)

1x 10741 — (Le=12)3 for1.0< R, < RO=1.9

ViR =4 L= Gy o P (148)
0 otherwise.

Vi(R,) = 0.7¢ (149)

For diffusive convection (0 < R, < 1.0) LMD suggest several formulations from the literature
and choose the one with the most significant impact on mixing (Fedorov [12]).

vg = (1.57)(0.909 exp(4.6 exp[—0.54(R, ' — 1)) (150)

for temperature. For other scalars,

(151)

S

4 Jv§(1.85—0.85R)R, for 0.5 <= R, < 1.0,
Vg0.15Rp otherwise.

Internal wave generated mixing Internal wave generated mixing serves as the background
mixing in the LMD scheme. It is specified as a constant for both scalars and momentum. Eddy
diffusivity is estimated based on the data of Ledwell et al. [43]. While Peters et al. [62] suggest
eddy viscosity should be 7 to 10 times larger than diffusivity for gradient Richardson numbers
below approximately 0.7. Therefore LMD use

= 1.0 x 1074m?2s7? (152)
=1.0 x 107 5m?s71 (153)

w
Vm
w
S

14
4.12 Timestepping vertical viscosity and diffusion

The D,, D,, and D¢ terms in equations f represent both horizontal and vertical mixing
processes. The horizontal options will be covered in §4.10.1l The model has several options for
computing the vertical coefficients; these will be described in §4.11] The vertical viscosity and

diffusion terms have the form: 5 K 06
do (Hzmn 80) (154)

33

where ¢ represents one of w, v, or €', and K is the corresponding vertical viscous or diffusive
coefficient. This is timestepped using a semi-implicit Crank-Nicholson scheme with a weighting of
0.5 on the old timestep and 0.5 on the new timestep. Specifically, the equation of motion for ¢ can

be written as:
O(H.9) o (K ¢
B <H 2 80)
where Ry represents all of the forcing terms other than the vertical viscosity or diffusion. Since we
want the diffusion term to be evaluated partly at the current timestep n and partly at the next
timestep n + 1, we introduce the parameter A and rewrite equation as:

(155)

0(H.p) 0 [K 09" 0 (K o¢pntt

o~ Rt =N\ e) T e \ i ae) (156)
The discrete form of equation (156)) is:
H?H¢Z+1 - Hg Z (1 —)‘) Ky, n n Kj—1 n n
k A L= =mnRy + A2 [sz (k41 — %) — 7H2k71 (oF — ¢k—1)}
A e o n Ki-1 n
b | R - o - e - | s
2k 2k—1

where k is used as the vertical level index. This can be reorganized so that all the terms involving
¢! are on the left and all the other terms are on the right. The equation for (;SZH will contain
terms involving the neighbors above and below ((bZﬂ and Z;%) which leads to a set of coupled
equations with boundary conditions for the top and bottom. The general form of these equations
is:

Adptl + Budp ™ + Croft] = Dy (158)
where the boundary conditions are written into the coefficients for the end points. In this case the
coefficients become:

A1) = 0 (159)
A(2:N) = % (160)
B(l) = HZ+1+AAUA2’;£L (161)
B(2:Nm) = HI''+ :ﬁ;gﬁl Zﬁigg% (162)
B(N) = HQJW% (163)
C(1:Nm) = —AAUAQZZL (164)
C(N) = 0 (165)
D) = B0+ Atmniy, + S L 65— o) - S (166)
D(2:Nm) = HI} + AtmnRy, + (167)
B o G o)~ =) (165)

DIN) = Hi68+ AtmnRy — S IR G g, + Son (169)

This is a standard tridiagonal system for which the solution procedure can be found in any standard
reference, such as Press et al. [65].

34

4.13 Boundary Conditions

ROMS comes with a variety of boundary conditions, including open, closed, and periodic. See
Marchesiello et al. [49] for a more thorough exploration of the options. Some options require
a value for the boundary points from either an included analytic expression (§6.5) or from an
external NetCDF file. Here, ¢°** represents the exterior value of a quantity ¢.

4.13.1 Gradient boundary condition

This boundary condition is extremely simple and consists of setting the gradient of a field to zero
at the edge. The outside value is set equal to the closest interior value.

4.13.2 'Wall boundary condition

ROMS now assumes a wall condition if no other boundary condition is chosen. This is a zero
gradient condition for tracers and the surface elevation and zero flow for the normal velocity. For
tangential velocities, the wall is treated as either no-slip or free-slip, depending on the value of
gamma?2 chosen by the user.

4.13.3 Clamped boundary condition

Almost as simple is setting the boundary value to a known exterior value.
¢ = ¢™ (170)

4.13.4 Flather boundary condition

For the normal component of the barotropic velocity, one option is to radiate out deviations from
exterior values at the speed of the external gravity waves (Flather, [14]):

u =™ — /gD (¢ - ¢*) (171)

The exterior values are often used to provide tidal boundary contitions to the barotropic mode.
However, there are times when only the tidal elevation is known. A reduced physics option is
available for estimating u®™' in that case.

4.13.5 Chapman boundary condition

The corresponding condition for surface elevation was investigated by Chapman ([§]), assuming all
outgoing signals leave at the shallow-water wave speed of v/gD. This can be useful when using the
Flather condition on the 2-D momentum equations.

oc g ¢
5% = i\/;(%_ (172)

The time derivative here can be handled either explicitly or implicitly. The model uses an implicit
timestep, with the term %2 being evaluated at the new timestep.

4.13.6 Radiation boundary condition

In realistic domains, open boundary conditions can be extremely difficult to get right. There are
situations in which incoming flow and outgoing flow happen along the same boundary or even at
different depths at the same horizontal location. Orlanski [59] proposed a radiation scheme in which
a local normal phase velocity is computed and used to radiate things out (if it is indeed going out).

35

This works well for a wave propagating normal to the boundary, but has problems when waves
approach the boundary at an angle. Raymond and Kuo [67] have modified the scheme to account
for propagation in all three directions. In ROMS, only the two horizontal directions are accounted
for (with the recommended RADIATION__ 2D option):

9¢ _ 9 99
o <¢§ o€ + ¢y 877)> (173)
where
be= 53— (174)
(%) +(5)
Py = Qng) (175)
))
__9¢
F=-3 (176)

These terms are evaluated at the closest interior point in a manner consistent with the time stepping
scheme used. The phase velocities are limited so that the local CFL condition is satisfied. They are
then applied to the boundary point using equation , again using a consistent time stepping
scheme. Raymond and Kuo give the form used for centered differencing and a leapfrog time step
while ROMS uses one-sided differences.

The radiation approach is appropriate for waves leaving the domain. A check is made to see
which way the phase velocity is headed. If it is entering the domain, a zero gradient condition is
applied unless the next option is also specified.

4.13.7 Mixed radiation-nudging boundary condition

As described in Marchesiello et al. ([49]), ROMS has an option for providing radiation conditions
on outflow and nudging to a known exterior value on inflow. This is implemented as a variation
on the radiation condition, requiring two timescales: the inflow nudging timescale and the outflow
nudging timescale. These timescales are provided in the input to ROMS (

36

5 Ice Model Formulation

The sea-ice component of ROMS is a combination of the elastic-viscous-plastic (EVP) rheology
(Hunke and Dukowicz [33], Hunke [32]) and simple one-layer ice and snow thermodynamics with a
molecular sublayer under the ice (Mellor and Kantha [55]). It is tightly coupled, having the same
grid (Arakawa-C) and timestep as the ocean and sharing the same parallel coding structure for use
with MPI or OpenMP (Budgell [5]).

5.1 Dynamics

The momentum equations describe the change in ice/snow velocity due to the combined effects of
the Coriolis force, surface ocean tilt, air and water stress, and internal ice stress: and (| -

M?;;:va—Mgcw—i-T T (177)
811 C’w
ME:—Mfu—Mga +7y+ 18+ Fy. (178)

In this model, we neglect the nonlinear advection terms as well as the curvilinear terms in the
internal ice stress. Nonlinear formulas are used for both the ocean-ice and air-ice surface stress:

7o = paCalVio|Vio (179)
1

Co = §C'd [1 — cos(27 min(h; + .1,.5)] (180)

T = puwCu|Uw — | (Ty — D). (181)

The force due to the internal ice stress is given by the divergence of the stress tensor o. The rheology
is given by the stress-strain relation of the medium. We would like to emulate the viscous-plastic
rheology of Hibler (1979) [29]:

. . P
0ij = 2éij + (¢ = N)ékndij — 5 0ij (182)
1 (9’11,2 8uj
= = 183
€ 2 <6$3 + 6%'1) ()
P = P*Ah;e (=4 (184)
where the nonlinear viscosities are given by

P

<= 2 2 2 1/2 (185)
2 (e} + €3,)(1 + 1/€2) 4+ de=2e2, + 2e11€02(1 — 1/€2)]
¢

We would also like to have an explicit model that can be solved efficiently on parallel computers.
The EVP rheology has a tunable coefficient F (the Young’s modulus) which can be chosen to make
the elastic term small compared to the other terms. We rearrange the VP rheology:

1 -
— 0y + —— 0104 + = €jj 187
277 J 47](J 4C J ()
then add the elastic term:
1 aO'ij 1 C .
el » 5; iy 1
E ot a2y 4(“’“’“ it 3% = G (188)

37

Much like the ocean model, the ice model has a split timestep. The internal ice stress term is
updated on a shorter timestep so as to allow the elastic wave velocity to be resolved.

Once the new ice velocities are computed, the ice tracers can be advected using the MPDATA
scheme [77]. The tracers in this case are the ice thickness, ice concentration, snow thickness, internal
ice temperature, and surface melt ponds. The continuity equations describing the evolution of these
parameters (equations (I189)—(191)) also include thermodynamic terms (Sj, Ss and S4), which will
be described in

5= e gy T+ (189)
0Ahy O(uAhy) B(vAhy)
=~ 5y 5D (190)
0A O(ud) O(vA)
T _ < < 1.
5 o 5y, +5a+Da 0<A<1 (191)

The first two equations represent the conservation of ice and snow. Equation [191]is discussed in
some detail in MK89, but represents the advection of ice blocks in which no ridging occurs as long
as there is any open water. An optional ridging term can be added (Gray and Killworth [21]):

0A d(uA) O(wA)

— =— — —Aa(A)V-TH(-V -9)+ S D 0<ALI. 192

b=~ gt~ Aa(A)Y - TH(-V 1) + 54+ Da <A<l (192)
where «(A) is an arbitrary function such that a(0) =0, a(1) =1, and 0 < a(A) < 1. The ridging
term leads to an increase in h; under convergent flow as would be produced by ridging. The function
a(A) should be chosen so that it is near zero until the ice concentration is large enough that ridging
is expected to occur, then should increase smoothly to one.

The symbols used in these equations along with the values for the constants are listed in Table

@

Note that Hibler’s h; variable is equivalent to our Ah; combination - his h; is the average
thickness over the whole gridbox while our h; is the average thickness over the ice-covered fraction
of the gridbox.

5.2 Thermodynamics

The thermodynamics is based on calculating how much ice grows and melts on each of the surface,
bottom, and sides of the ice floes, as well as frazil ice formation (Mellor and Kantha [55]). Once
the ice tracers are advected, the ice concentration and thickness are timestepped according to the
terms on the right:

and 1s:

DA’L o
Df’ :%[A(Wio—Wai)Jr(l—A)WaoJerT] (193)
DA p,A
24 P g1 - AWy + (1 — AWy, <A<l 194
DA e o W+ (AW (199)

The term Ah; is the “effective thickness”, a measure of the ice volume. Its evolution equation
is simply quantifying the change in the amount of ice. The ice concentration equation is more
interesting in that it provides the partitioning between ice melt/growth on the sides vs. on the top
and bottom. The parameter ® controls this and has differing values for ice melt and retreat. In
principle, most of the ice growth is assumed to happen at the base of the ice while rather more of
the melt happens on the sides of the ice due to warming of the water in the leads.

The heat fluxes through the ice are based on a simple one layer Semtner [70] type model
with snow on top. The temperature is assumed to be linear within the snow and within the ice.

38

Variable Value Description
A(z,y,t) ice concentration
a(A) ridging function
Cq nonlinear air drag coefficient
Cy 2.2 x 1073 air drag coeflicient
Cu 10 x 1073 water drag coefficient
(Dn,Ds,D4) diffusion terms
0ij Kronecker delta function
E Young’s modulus
e 2 eccentricity of the elliptical yield curve
€ij(z,y,t) strain rate tensor
n(z,y,t) nonlinear shear viscosity
flz,y) Coriolis parameter
(Fa, Fy) internal ice stress
g 9.8m s~ 2 acceleration of gravity
H Heaviside function
hi(x,y,t) ice thickness of ice-covered fraction
ho 1m ice cutoff thickness
hs(x,y,t) snow thickness on ice-covered fraction
M(z,y,t) ice mass (density times thickness)
P(x,y,t) ice pressure or strength
(P*,C) (2.75 x 10%,20) ice strength parameters
(Sh,Ss,S4) thermodynamic terms
oij(x,y,t) stress tensor
Ta air stress
T water stress
(u,v) the (z,y) components of ice velocity ¥
(‘710, Tw) 10 meter air and surface water velocities
(Pas Pw) (1.3kgm™3,1025 kgm™3) | air and water densities
C(x,y,t) nonlinear bulk viscosity
Cw(z,y,t) height of the ocean surface

Table 4: Variables used in the ice momentum equations

39

The ice contains brine pockets for a total ice salinity of 5. The surface ocean temperature and
salinity is half a dz below the surface. The water right below the surface is assumed to be at
the freezing temperature; a logarithmic boundary layer is computed having the temperature and
salinity matched at freezing.

Here, the W variables are the freeze or melt rates as shown in Fig. [7] and Table [5| The frazil

ice growth Wy, will be discussed further in §5.2.2}—note that it contributes to changes in A as well
as to changes in h;. The other term that contributes to A is Wy,. This term includes a factor ®
which Mellor and Kantha set to different values depending on whether ice is melting or freezing:

®=4.0 Wao >0 (195)
®=0.5 Wao <0 (196)
(197)

Wfr Wz‘
Figure 7: Diagram of the different locations where ice melting and freezing can occur.

Figure |8 shows the locations of the ice and snow temperatures and the heat fluxes. The tem-
perature profile is assumed to be linear between adjacent temperature points. The interior of the

ice contains “brine pockets”, leading to a prognostic equation for the temperature 77.
The surface flux to the air is:

Qui=—H| -LE| —e,LW| —(1 — o) SW| +€,0(T3 + 273)* (198)

The formulas for sensible heat, latent heat, and incoming longwave and shortwave radiations are
the same as in Parkinson and Washington [60] and are shown in Appendix [E| The sensible heat is

i A Qai
~ hs Qs /// Z § Qao //
ﬁ Q 154 AN
12 12
h; Ty '
¢ ? Qio 7
[er

Figure 8: Diagram of internal ice temperatures and fluxes. The hashed layer is the snow.

40

Variable Value Description
Qi 0.10 shortwave albedo of water
«; 0.60 shortwave albedo of wet ice
Q; 0.65 shortwave albedo of dry ice
Qg 0.72 shortwave albedo of wet snow
Qs 0.85 shortwave albedo of dry snow
Ch snow correction factor
Chi 2093 J kg=! K1 specific heat of ice
Cho 3990 J kg=! Kt specific heat of water
€w 0.97 longwave emissivity of water
€ 0.97 longwave emissivity of ice
€s 0.99 longwave emissivity of snow
E(T,r) enthalpy of the ice/brine system
Fr7 heat flux from the ocean into the ice
H| sensible heat
T fraction of the solar heating transmitted
through a lead into the water below
k; 2.04 Wm~ ' K-1 thermal conductivity of ice
kg 0.3l Wm~ ! K1 thermal conductivity of snow
L; 302 MJ m—3 latent heat of fusion of ice
L, 110 MJ m—3 latent heat of fusion of snow
LE] latent heat
LW | incoming longwave radiation
m —0.054°C/PSU coefficient in linear T (S) = mS equation
) contribution to A equation from freezing water
Quai heat flux out of the snow/ice surface
Qo heat flux out of the ocean surface
Qi heat flux up out of the ice
Qio heat flux up into the ice
Qs heat flux up through the snow
r brine fraction in ice
Di 910 m3/kg density of ice
S; 5 PSU salinity of the ice
SW| incoming shortwave radiation
o 5.67 x 1078 W m~—2 K= | Stefan-Boltzmann constant
To temperature of the bottom of the ice
T temperature of the interior of the ice
15 temperature at the upper surface of the ice
T3 temperature at the upper surface of the snow
Ty freezing temperature
Telt i mS; melting temperature of ice
Thelt_s 0° C melting temperature of snow
Wai melt rate on the upper ice/snow surface
Wao freeze rate at the air/water interface
Wiy rate of frazil ice growth
Wio freeze rate at the ice/water interface
Wio Wi rate of run-off of surface melt water

Table 5: Variables used in the ice thermodynamics

41

a function of T3, as is the heat flux through the snow Q;. Setting Q)u; = Qs, we can solve for T3
by setting T §L+1 = T3 + ATz and linearizing in AT3. The temperature T3 is found by an iterative
solution of the surface heat flux balance (using the previous value of 7} in equation . As in
Parkinson and Washington, if T3 is found to be above the melting temperature, it is set to Tinelt
and the extra energy goes into melting the snow or ice:

Qai - Qz‘2
Wy = —— 199
“ poLs (199)
L3 = [E(T3,1) — E(T1, Ry)] (200)
Note that Ls = (1 — r)L; plus a small sensible heat correction. We are not storing water on
the surface in melt pools, so everything melted at the surface is assumed to flow into the ocean

(WTO = Wai)-

Inside the ice there are brine pockets in which there is salt water at the in situ freezing tem-
perature. It is assumed that the ice has a uniform overall salinity of S; and that the freezing
temperature is a linear function of salinity. The brine fraction r is given by

_Sim
=T

The enthalpy of the combined ice/brine system is given by
E(T,r)=r(L; + CpoT) + (1 —r)CpuT (201)

Substituting in for r and differentiating gives:

oF SimLi
=2 O 202
oT T12 + e ()
Inside the snow, we have
k
Q= (T = Ty) (203)
S
The heat conduction in the upper part of the ice layer is
2k;
Qr2 = h—f(Tl —Ty) (204)
1

These can be set equal to each other to solve for Th

T3+ CyTh

T, = 205
2 1+ Ch (205)
where .
O = 08
5T hiks
Substituting into (204), we get:
2k; (T — T3)
s = = —— 206
Qs = Qr2 h (11 Ch) (206)

Note that in the absence of snow, C} becomes zero and we recover the formula for the no-snow
case in which T3 = T5.
At the bottom of the ice, we have

Qro = %(To -Ti) (207)

)

42

Variable Value Definition
b 3.0 factor
E evaporation
k 0.4 von Karman’s constant
v 1.8 x 107%m?2s~1 | kinematic viscosity of seawater
P precipitation
Pr 13.0 molecular Prandtl number
P 0.85 turbulent Prandtl number
So surface salinity
Tio stress on the ocean from the ice
Tao stress on the ocean from the wind
T internal ocean temperature
Ur friction velocity |7 io‘l/ %po 12
20 roughness parameter
Table 6: Ocean surface variables
The difference between Q79 and Qo goes into the enthalpy of the ice:
oFE
pili [81& +7- VE} = Qo — Q2 (208)
We can use the chain rule to obtain an equation for timestepping 77:
OF | 0T}
hi— | — +U- VT | = — 209
Pi Z@T[at + 0 1] Qro — Qr2 (209)
where
2k; (T, — T3)
— = To—1T)) — ———=
Qro— Q2 > [(o—1T11) 110,
2k; T3 — 2+ Cp)T;
_ i B (2+Cp)T
hi 1+ Ck

5.2.1 Ocean surface boundary conditions

The ocean receives surface stresses from both the atmosphere and the ice, according to the ice
concentration:

ouy A 1-A

Kp—2 =18 e 210

m 62 p07—w+ Po Tao ()
v A 1-A

Km—az’ = Eﬁ{ﬁ py Y (211)

where the relevant variables are in table [6l
The surface ocean is assumed to be at the freezing temperature for the surface salinity (7p = m.sS)

where we use the salinity from the uppermost model point at z = —%Az. From this, we can obtain
a vertical temperature gradient for the upper ocean to use in the heat flux formula:
Frp
=—-Cr,(To-T z—0 212
= O =) (212)
where
Cr. = U (213)
== P k=11In(—z/2) + Br
1/2
Br=b (20“7) pr2/3 (214)
v

43

Variable Value Definition

Chi 1994 J kg=! K—! | specific heat of ice

Cpw 3987 J kg=! K~! | specific heat of water
0 MG [My fraction of water that froze
L 3.16e5 J kg~! latent heat of fusion

™m; mass of ice formed

Moy, mass of water before freezing

Moy mass of water after freezing
m —0.0543 constant in freezing equation
n 7.59 x 1074 constant in freezing equation
S1 salinity before freezing

So salinity after freezing

T temperature before freezing
Ty temperature after freezing

Table 7: Frazil ice variables

Once we have a the value for Frr, we can use it to find the ice growth rates:

Wio = pOILO(Qio — Fr) (215)
1
Wao = E(an - FT) (216)
(217)
where
L, =[E(To,1) — E(T1,71)] (218)

The ocean model receives the following heat and salt fluxes:

Pr=AQi, + (1 — A)Quo — WL, (219)
FS = (Wo - AWTO)(Si - SO) + (1 - A)SO(P - E) (220)
Wy = AWio + (1 — A)Woy, (221)

5.2.2 Frazil ice formation

Following Steele et al. [80], we check to see if any of the ocean temperatures are below freezing at
the end of each timestep. If so, frazil ice is assumed to form, changing the local temperature and
salinity. The ice that forms is assumed to instantly float up to the surface and add to the ice layer
there. We assume balances in the mass, heat, and salt before and after the ice is formed:

Moy, = My, + My (222)
M, (prTl + L) = My, (prTg + L) + miCpiTz (223)
M, Sl = mwQSQ. (224)

The variables are defined in Table [7l Defining v = m;/m.,, and dropping terms of order 72 leads
to:

L Chpi
pw pw

SQ = 51(1 + 'y). (226)

44

We also want the final temperature and salinity to be on the freezing line, which we approximate
as:
Ty =mS +nz. (227)

We can then solve for ~:
=T1 +mS1 +nz

LCpu+Ti (1= G2) —mSy

v (228)

The ocean is checked at each depth k and at each timestep for supercooling. If the water is below
freezing, the temperature and salinity are adjusted as in equations (225 and (226]) and the ice
above is thickened by the amount:

Ah = Az (229)

(2

5.2.3 Differences from Mellor and Kantha

We have tried to modify the hakkis model to more closely follow MK89. However, there are also
ways in which we have deviated from it.

e Add advection of snow.

Add lateral melting of snow when ice is melting laterally.

We iterate on the solution of T3.

We added various limiters:

Ice concentration: Apin < A < 1.0, Apin = 0.0.
— Ice thickness: h; > 0.0.
Snow thickness: hg > 0.0.

Brine fraction: r < rpax, Tmax = 0.2

— Surface water: 0.0 < Wy < Wymax, Wsmax = 0.1

45

6 Details of the Code

6.1 Directory structure

The directory structure is as shown in Fig. [9] with the ability to run the ocean alone or coupled to
atmospheric and/or wave models. If running just the ocean, the model can be run forward in time
(the nonlinear model) or as an adjoint, tangent linear, or representer model for data assimilation
purposes. This document describes the uncoupled forward model only, specifically the version used
for the Northeast Pacific domain containing sea ice and other changes from the main trunk code.
Details are subject to change without notice - check your own source code for specific details as
they apply to you.
The directories shown here are:

Apps This directory contains a subdirectory for each of my personal applications. The sub-
directory contains files used by that application: the ROMS header file for setting cpp
definitions, the analytic formulations for fields computed in the model rather than read
from files (bottom heat flux of zero, for instance), and ASCII input files read by ROMS
on startup to set things such as forcing file names and model time-step. Some of these
applications are:

Bering This is a 4 km grid of the Bering Sea, aligned with the Northeast Pacific grid
but at three times the resolution.

Bering_ 10k This is a 10 km grid of the Bering Sea, a subset of the Northeast Pacific
domain, with the same extent as the 4 km grid above.

CGOA This is a 3 km grid of the Gulf of Alaska. It is a subset of the Northeast Pacific
grid, but at four times the resolution.

Circle This is a circular domain wave propagation problem with an analytic solution
used as a test problem ([39]).

NEP This is the Northeast Pacific domain covering the waters off the west coast of
the US, from California to the Bering Sea. It is a rectangular domain at about
11 km resolution when viewed in a conformal conic projection with standard
latitudes of 40 and 60 N.

Paul Budgell’s applications are also here. The application-specific files included in the
main trunk ROMS are elsewhere.

Atmosphere This directory is under development, not currently supported.
Compilers This contains makefile fragments as described in

Data Directories under here contain example forcing, grid, and initial condition NetCDF files.
There is also a directory containing the headers of these files in the format produced by
ncdump (CDL).

Lib The ARPACK and MCT libraries are needed by the data assimilation codes and by the
coupled models, respectively.

makefile This is the standard ROMS makefile as described in §G]

Master The ROMS main program is here, in various forms for the forward model, coupled models

and others. See

ROMS These files are for the ocean model, as opposed to other components of the coupled system.

46

—— Bering/

Apps/ Bering 10k/
Atmosphere/ - CGOA/ —— Adjoint/
Compilers/ - Circle/ - Bin/
Data/ L NEP/ - Drivers/
Libs/ - External/
makefile - Functionals/
Master/ - Include/
ROMS/ License . ROMS.txt
User/ - Modules/
Waves/ - Nonlinear/ ———— Biology/
- Obsolete/ L Sediment/
- Programs/
- Representer/
- Sealce/
- Tangent/
- Utility/
— Version

Figure 9: ROMS directory structure.

Adjoint This is the adjoint of the forward model, for data assimilation.

Bin Various shell and Perl scripts for use with the model. Note that the .sh files are
actually csh scripts, not sh scripts—if it were up to me, I'd rename them all to
.csh.

Drivers The main program includes one of these files, depending on how you are running
the model. The forward model is in nl__ocean.h.

External ROMS reads an ASCII file on startup. Here are examples for various applica-
tions, also examples of the optional files for extra components such as a sediment
model.

Functionals The file analytical.F can include one or more code bits for the analytic
specification of for instance the initial conditions. Here are examples for the
supported model test problems.

Include Each application has a header file with C preprocessor options for that applica-
tion. For instance, the UPWELLING case has the include file upwelling.h
containing C preprocessor options for its periodic channel domain. The full list
of available options is in cppdefs.h.

License_ ROMS.txt The open source license under which ROMS is copyrighted.

Modules The ROMS data structures are now in Fortran 90 module files, located here.

Nonlinear The routines used by the nonlinear forward model are here, implementing the
physics described in

Biology The files for the ecosystem parts of the forward model are here.

47

mpi__init —— initialize__parallel

<loop>
ROMS__initialize wclock__on get__data
ROMS_run—— inp_ par — main3d or main2d
ROMS_ finalize - mod__arrays
mpi_ finalize initial
L get_ data

—— if (trouble) wrt__rst

wclock_ off

L— close__io

Figure 10: ROMS main structure.

Sediment The files for the sediment parts of the forward model are here.
Obsolete Long unused versions of the boundary conditions are stored here.

Programs Not all computer architectures or compilers are the same. The types.F pro-
gram checks your compiler for the sizes of the Fortran floating point types.

Representer This is the representer of the forward model, for data assimilation.
Sealce The sea ice model described in §j|is here.
Tangent This is the tangent linear of the forward model, for data assimilation.

Utility Here are utility functions used by the various ROMS routines, many dealing with
I/0.

Version A file containing the time and date of this svn revision, also the svn URL.

User Some might choose to use this directory rather than the Apps directory. It serves the
same purpose but is arranged by file type rather than by application.

Waves The SWAN wave model is here.

6.2 Main subroutines
6.2.1 master.F

The main program is in master.F. It is simply a shell, including one of mct__coupler.h,
esmf_coupler.h or ocean.h. In our case, ocean.h contains the actual main program, which
initializes MPI (if needed), calls ROMS__initialize, calls ROMS__run with arguments for how
many steps to take, then ROMS__ finalize, and finally wraps up the MPI. See Fig.

6.2.2 ocean_ control.F

This is again a shell which includes one of many other files to do the actual work. In this case, the
worker files all contain ROMS__initialize, ROMS_ run and ROMS__finalize and live in the
ROMS /Drivers directory. The driver file we will be looking at is nl__ocean.h.

6.2.3 ROMS _initialize

This is called at the beginning of the run and therefore starts off by finding out how many parallel

processes are running and which one this is, then calls the following ROMS routines:

48

initialize_ parallel is in the mod__parallel module and sets up a few variables, including some
for the built-in profiling.

wclock_ on is in timers.F and initializes a timer for the built-in profiling.
inp_ par reads in the ASCII input file(s) used by ROMS.

mod__arrays allocates and initializes the dynamically sized arrays in ROMS based on the grid
sizes read in by inp__par.

initial reads in the initial conditions from a NetCDF file or computes them analytically. Likewise
for the grid, plus it sets up the vertical grid spacing to be used and many other details.

get__data reads in the first record of time-varying forcing fields, boundary conditions, etc.

6.2.4 ROMS_ run

This loops over all the steps from the starting iteration to the ending iteration in its argument list.
The loop consists of calls to:

get__data reads in the second and subsequent records of time-varying forcing fields, boundary
conditions, etc.

main3d or main2d solves the full equations described in (main3d) or the depth-integrated
version only (main2d).

6.2.5 ROMS_finalize

This is called at the end of the run, whether it was otherwise successful or not. The routines called
are:

wrt__rst if the run had an error code set, it will write out a restart record of the current model
fields in case they are useful in diagnosing the trouble.

wclock__off ends the built-in timers and causes them to print out a report.

close__io closes all open files so as to flush the buffers and put NetCDF files into a finished state.

6.2.6 main3d

This solves the full three-dimensional equations described in It has siblings main2d for solving
the depth-integrated equations and main3d__offline for reading files from a prior simulation and
using them to advect the biological tracers or the Lagrangian floats. The full version is shown in Fig.
Note that many subroutines are optional and only get called if the appropriate C preprocessor
switches have been set. The subroutines are described as follows:

set__data time interpolates between the records read in by get_ data.
ini_ zeta checks for wet/dry cells if needed and initializes all the time levels of zeta.

ini_ fields initializes the 2-D velocities to match the vertical integral of the 3-D velocities, making
all the time levels match.

H,u

and Hzv,
n m

set__massflux computes horizontal mass fluxes,

rho__eos computes the nonlinear equation of state.

49

set__data
i ana__vmix
first step only: rhs3d
Imd_ vmix
ini_ zeta my25_ prestep
bvf mix
ini_ fields . gls_ prestep
hmixing
set_ massflux <loop>
omega
rho__eos . step2d
wvelocity
diag step2d
set_ zeta
radiation__ stress . step3d__uv
set__diags
cawdir__eval omega
set_ filter
ccsm__flux my25__corstep
set__avg
bulk_ flux gls_ corstep
set__avg2
ncep_ flux biology
output
bblm . sediment
ex1t 1t last
set__vbc step3d__t
step done
set_ tides ice_ frazil
seaice step__floats
Figure 11: Flow chart of the model main program.
diag computes some global sums, prints them, and checks them to see if they are sensible. If

not, it stops the model run.
radiation__stress computes the radiation stresses due to wave-current interactions ([53] and [54]).
cawdir__eval computes a 24-hour mean albedo at the marine surface. Not in the trunk code.

ccsm__flux computes the surface fluxes from the atmosphere based on a marine boundary layer.
This version comes from CCSM and is reputed to do better outside of the tropics. Not
in the trunk code.

bulk_ flux computes the surface fluxes from the atmosphere based on a marine boundary layer.
This version comes from COARE version 3.0 ([11], [82] and [58]).

ncep__flux computes the surface fluxes from the NCEP atmospheric model. Not in the trunk
code.

bblm compute the bottom stresses from one of three bottom boundary layer models.

set__vbc computes the surface and bottom fluxes and stresses that aren’t computed elsewhere—set
vertical boundary conditions.

set__tides computes the tidal boundary conditions from the tidal constituents.

seaice runs the sea ice model described in It changes the surface boundary conditions for
the ocean and therefore gets called before the call to output or anything else that would
be needing the surface boundary conditions. Not in the trunk code.

50

ana_ vmix is called if there’s an analytic profile for the vertical mixing coefficient.

Imd_ vmix is called when using the K-profile parameterization of vertical mixing ([41] and [40]).
bvf_mix computes the vertical mixing as a function of the Brunt-Vaisala frequency.

hmixing computes time-dependent horizontal mixing coefficients ([76], [31], [88] and [23]).
omega computes the €2 vertical velocity from the horizontal divergences.

wvelocity computes the physical vertical velocity for the model output.

set__zeta sets the surface elevation to the time-mean over the last baroclinic time-step.
set__diags accumulates the time-average of the diagnostics fields.

set__ filter accumulates a weighted sum using a Lanczos filter for detiding the most important of
the output fields. Not in the trunk code.

set__avg accumulates time-averaged fields for the averages output.

set__avg2 accumulates the time-averaged surface fields for the second averages output. Not in the
trunk code.

output writes to various output NetCDF files.
rhs3d computes right-hand-sides of the three-dimensional velocity and tracer fields.

my25_ prestep computes the predictor step for turbulent kinetic energy prognostic variables, tke
and gls.

gls_ prestep computes the predictor step for turbulent kinetic energy prognostic variables, tke
and gls.

step2d computes the depth-integrated time-step. It is called in a loop over all the short time-
steps, first as a predictor step, then as a corrector step.

step3d__uv completes the time-step for the three-dimensional velocities.
omega computes the € vertical velocity.

my25__corstep performs the corrector step for turbulent kinetic energy and length scale prog-
nostic variables, tke and gls ([57] and [20]).

my25__corstep performs the corrector step for turbulent kinetic energy and length scale prog-
nostic variables, tke and gls ([85]).

biology computes the changes to the biological tracers due to biological activity using one of
several options for the ecosystem model.

sediment computes changes to the sediment tracers ([87]).
step3d__t completes the tracer time-step.
ice_ frazil computes the frazil ice growth, if any. Not in the trunk code.

step__floats time-steps the Lagrangian floats.

51

6.3 Initialization

checkdefs Reports on which C preprocessor variables have been #defined and checks their con-
sistency.

ana_ grid Computes the grid internally.
ana__mask Computes the land mask internally.
get__grid Reads in the curvilinear coordinate arrays as well as f and h from a grid NetCDF file.

set__scoord Sets and initializes relevant variables associated with the vertical transformation to
nondimensional o-coordinate described in Appendix [B]

set__weights Sets the barotropic time-step average weighting function.

metrics Computes the metric term combinations which do not depend on the surface elevation
and therefore remain constant in time.

ana__hmixcoef Computes the horizontal mixing coefficients.

ana_ nudgcoef Computes the nudging time scales.

ana__initial Analytic initial conditions for momentum and active tracers.
ana__passive Analytic initial conditions for passive tracers.
ana__biology Analytic initial conditions for ecosystem tracers.
ana__sediment Analytic initial conditions for sediment tracers.
ana__ice Analytic initial conditions for ice variables.

get__state Reads initial fields from disk—either restart or from some other source which has been
converted to the appropriate format of NetCDF file.

set__depth Compute time-evolving depths.
set__massflux Compute initial horizontal mass fluxes.
get__idata Read in time-invariant forcing data.
stiffness Compute grid stiffness.

grid__coords Convert initial float and station locations to fractional grid coordinates.

6.4 Modules

Now that we are using Fortran 90, the method of choice for managing data structures is modules.
The ROMS/Modules directory contains all of the ROMS modules that contain globally used
variables. The complete list is:

mod__arrays.F This actually has no data structures, but has the routine that calls the allocate
and initialize routines for all the others.

mod__average.F If AVERAGES is defined, this will provide the storage for the running means
of the fields you are averaging.

52

mod__average2.F If AVERAGES2 is defined, this will provide the storage for the surface run-
ning means of the fields you are averaging.

mod_ bbl.F If BBL_ MODEL is defined, this will provide the storage for the bottom boundary
fields.

mod__biology.F If BIOLOGY is defined, this will provide the storage for the biology interaction
parameters.

mod_ boundary.F This contains the storage for the open boundary conditions. If they aren’t
provided analytically, this will also provide the storage for fields read from a file that need
to be time-interpolated.

mod_ _clima.F If one of CLIMATOLOGY or several other options is defined, this will provide
the storage for the climatology fields.

mod__coupler.F If either MODEL__ COUPLING or ESMF__LIB is defined, this will set up
the requisite fields and data structures for the coupling.

mod__coupling.F If SOLVE3D is defined, this will provide the storage for the fields used in
coupling the 2-D and 3-D components of the simulation.

mod__diags.F If DIAGNOSTICS is defined, this will provide the storage for the various ten-
dency terms.

mod__eclight.F If both BIOLOGY and ECOSIM are defined, this will set up the spectral

irradiance variables.

mod__eoscoef.F If NONLIN__EOS is defined, this will provide the polynomial expansion coef-
ficients for the nonlinear equation of state for sea water.

mod__filter.F If FILTERED is defined, this will provide the storage for the weighted means
used in detiding the averages.

mod__floats.F If FLOATS is defined, this will provide the storage for the float tracking variables.
mod__forces.F This provides the storage for the surface and bottom forcing fields.

mod__fourdvar.F If either FOUR__DVAR or VERIFICATION is defined, this will set up
the variational data assimilation variables.

mod__grid.F This provides the storage for the model grid fields.
mod__ice.F If ICE__ MODEL is defined, this will provide storage for the ice fields.

mod__iounits.F This contains a number of variables used by the I/O, including file names and
file IDs.

mod__kinds.F This contains the integers associated with the various integer and real Fortran
types. If you find more systems supporting 128-bit reals, let us know.

mod__mixing.F This contains the arrays for the various optional horizontal and vertical mixing
parameterizations.

mod_ ncparam.F This contains all sorts of parameters relating to the NetCDF 1/0 files, includ-
ing that read from the varinfo.dat file. The parameters MV and NV are set here, giving
the maximum number of variables that can be read [this is a change from the trunk code].

93

mod_ nesting.F If NESTING is defined, this module defines generic structures used for nesting,
composed, and mosaic grids. Not yet functional.

mod__netcdf.F This brings in netcdf.mod and defines a few type variables based upon it.

mod_ obs.F If either ASSIMILATION or NUDGING is defined, this contains variables for
the observed fields.

mod__ocean.F This contains the 2-D and 3-D fields of the primitive ocean variables and optionally
the sediment variables.

mod__parallel.F This sets up some global variables such as Master, which is true for the master
thread or process. It also initializes the internal ROMS profiling arrays.

mod_ param.F This contains the sizes of each grid used, plus things like how many tidal con-
stituents are being used. Many of these are read from the input files during initialization,
not known at compile time.

mod__scalars.F This contains a large number of scalars, i.e. values which don’t have spatial
dependence. Some are fixed constants such as itemp referring to the temperature tracer.
Others could have a different value on each grid.

mod_ sediment.F If either SEDIMENT or BBL_ MODEL is defined, this contains parame-
ters for the respective model.

mod__sources.F If one of UV_PSOURCE, TS__ PSOURCE or Q_ PSOURCE is defined,
this contains the variables used for point sources.

mod__stepping.F This contains the time-stepping variables used to point to the relevant time
level.

mod__storage.F If PROPAGATOR is defined, this module defines the work space for the
Generalized Stability Theory (GST) Analysis package (ARPACK).

mod_ strings.F This contains strings such as a title for the run, the list of cpp options defined,
and the names of the sections of code being profiled.

mod__tides.F If SSH_ TIDES and/or UV__TIDES is defined, this will provide the storage for
the tidal constituents.

6.5 Functionals

The Functionals directory contains analytical.F which conditionally includes code bits for com-
puting analytic values for a wide variety of fields. Many are alternates for reading from NetCDF
files, especially for idealized problems.

ana__aiobc Computes open boundary conditions for the ice concentration.
ana_ biology Computes analytic initial conditions for the biology tracers.
ana_ bmflux Computes analytic kinematic bottom momentum flux.

ana_ btflux Computes analytic kinematic bottom flux of tracer type variables.
ana__cloud Computes analytic cloud fraction.

ana__diag Computes customized diagnostics.

o4

ana_ fsobc Computes analytic open boundary conditions for the free surface.

ana_ grid Sets up an analytic grid.

ana__hiobc Computes open boundary conditions for the ice thickness.

ana__hmixcoef Computes spatially variable horizontal mixing coefficients.
ana__hsnobc Computes open boundary conditions for the snow thickness.

ana__humid Computes analytic atmospheric humidity.

ana__ice Computes analytic initial conditions for the sea ice.

ana__initial Sets up analytic initial conditions for the ocean.

ana__m2clima Sets up an analytic climatology for the two-dimensional momentum.
ana__m2obc Computes open boundary conditions for the two-dimensional momentum.
ana__m3clima Sets up an analytic climatology for the three-dimensional momentum.
ana__m3obc Computes open boundary conditions for the three-dimensional momentum.
ana_ mask Sets up an analytic mask.

ana_ ncep Sets up analytic fields as if they came from NCEP.

ana_ nudgcoef Sets up spatially dependent nudging coefficients for nudging to a climatology.
ana_ pair Computes analytic sea-level air pressure.

ana__passive Computes analytic initial conditions for passive tracers.

ana_ perturb Computes analytic perturbations to the initial conditions.

ana__psource Computes analytic point source fluxes.

ana_ rain Computes analytic rainfall.

ana__scope Sets adjoint sensitivity spatial scope masking arrays.

ana_ sediment Computes analytic initial conditions for the sediment tracers.
ana__smflux Computes analytic kinematic surface momentum flux (wind stress).
ana__specir Sets surface solar downwelling spectral irradiance at just beneath the sea surface.

ana_ spinning Sets time-variable rotation force as the sum of Coriolis and Centripetal accelera-
tions. This is used in polar coordinate applications (annulus grid).

ana__srflux Computes analytic kinematic surface shortwave radiation.
ana__ssh Computes analytic sea surface height.
ana__sss Computes analytic sea surface salinity.

ana_ sst Computes analytic sea surface temperature and dQdSST which are used in the surface
heat flux correction.

ana_ stflux Computes analytic kinematic surface flux of tracer type variables.

95

ana__tair Computes analytic air temperature.
ana_ tclima Computes analytic tracer climatology fields.

ana__tobc Computes analytic open boundary conditions for all tracers (active, passive, biology,
and sediment).

ana__vmix Computes analytic vertical mixing coefficients.
ana_ winds Computes analytic winds.

ana_ wwave Computes analytic wind-induced wave amplitude, direction and period.

6.6 Other subroutines and functions

NetCDF I/0

def * Creates the ROMS NetCDF file of the appropriate type, including dimensions,
attributes, and variables.

def info Adds some standard scalar variables to any NetCDF file.
get_ srflux Reads shortwave radiation flux

wrt__* Writes to the ROMS NetCDF file of the appropriate type.

6.7 C preprocessor variables

Before it can be compiled, the model must be run through the C preprocessor cpp, as described
in Appendix The C preprocessor has its own variables, which may be defined either with an
explicit #define command or with a command line option to cpp. We have chosen to define these
variables in an application-specific include file, except for some machine-dependent ones, which are
defined in the makefile. These variables allow you to conditionally compile sections of the code.
For instance, if MASKING is not defined, the masking code will not be seen by the compiler,
and the masking variables will not be declared. These cpp variables can be grouped into several
categories:

Momentum terms The default horizontal advection is 3rd-order upstream bias for 3D momen-
tum and 4th-order centered for 2D momentum. The default vertical advection is 4th-order
centered for 3D momentum. If this is the case, no flags for momentum advection need to
be activated except for UV__ADV.

The 3rd-order upstream split advection (UV_U3ADV__SPLIT) can be used to correct
for the spurious mixing of the advection operator in terrain-following coordinates. If this
is the case, the advection operator is split in advective and viscosity components and
several internal flags are activated in globaldefs.h. Notice that horizontal and vertical
advection of momentum is 4th-order centered plus biharmonic viscosity to correct for
spurious mixing.

UV__ADYV Define to compute the momentum advection terms.

CURVGRID Define to compute the extra non-linear advection terms which arise when
using curvilinear coordinates.

UV__COR Define to compute the Coriolis term.
UV_U3BADV_SPLIT Define for 3rd-order upstream split momentum advection.
UV_C2ADVECTION Define for 2nd-order centered advection.

96

UV_C4ADVECTION Define for 4rd-order centered advection.

UV_SADVECTION Define for splines vertical advection (for shallow, vertically well-
resolved domains).

UV__VIS2 Define to compute the horizontal Laplacian viscosity.
UV__VIS4 Define to compute the horizontal biharmonic viscosity.
UV_SMAGORINSKY Define for Smagorinsky-like viscosity.
UV_LOGDRAG Define for logarithmic bottom friction.
UV_LDRAG Define for linear bottom friction.

UV_QDRAG Define for quadratic bottom friction.
RDRG__GRID Define for spatially variable bottom drag.
DRAG_ LIMITER Define for bottom drag limiter.
UV_PSOURCE Define for point sources/sinks.
Q_PSOURCE Define for mass point sources/sinks.

Tracers The default horizontal and vertical advection is 4th-order centered.

The 3rd-order upstream split advection (TS__U3ADV__SPLIT) can be used to cor-
rect for the spurious diapycnal diffusion of the advection operator in terrain-following
coordinates. If this is the case, the advection operator is split in advective and diffusive
components and several internal flags are activated in globaldefs.h. Notice that hori-
zontal and vertical advection of tracer is 4th-order centered plus biharmonic diffusion to
correct for spurious diapycnal mixing. The total time-dependent horizontal mixing coef-
ficient are computed in hmixing.F. It is also recommended to use the rotated mixing
tensor along geopotentials (MIX__GEO__TS) for the biharmonic operator.
TS__U3ADV_SPLIT Define for 3rd-order upstream split tracer advection.

TS A4HADVECTION Define for 4nd-order Akima horizontal advection.

TS C2HADVECTION Define for 2nd-order centered horizontal advection.

TS C4HADVECTION Define for 4rd-order centered horizontal advection.
TS__MPDATA Define for recursive MPDATA 3D advection ([50]).
TS_U3HADVECTION Define for 3nd-order upstream horizontal advection.

TS A4VADVECTION Define for 4nd-order Akima vertical advection.

TS C2VADVECTION Define for 2nd-order centered vertical advection.

TS C4VADVECTION Define for 4rd-order centered vertical advection.

TS_SADVECTION Define for splines vertical advection (for shallow, vertically well-
resolved domains).

TS_ DIF2 Define to compute horizontal Laplacian diffusion.
TS__DIF4 Define to compute horizontal biharmonic diffusion.
TS__SMAGORINSKY Define for Smagorinsky-like diffusion.

TS__FIXED Define for a diagnostic calculation in which the tracer fields do not change
in time.

T__PASSIVE Define for passive tracers.
SALINITY Define if salinity is used as one of the active tracers.
NONLIN__EOS Define to use the nonlinear equation of state.

57

QCORRECTION Define to use the net heat flux correction.
SCORRECTION Define to use freshwater flux correction.
SOLAR__SOURCE Define to use solar radiation source term.
SRELAXATION Define to use salinity relaxation as a freshwater flux.
TS_PSOURCE Define for point sources/sinks.

Pressure gradient options If no option is selected, the pressure gradient term is computed
using standard density Jacobian algorithm. Notice that there are two quartic pressure
Jacobian options. They differ on how the WENO reconciliation step is done and in the
monotonicity constraining algorithms.

DJ__GRADPS Define for splines density Jacobian ([72]).

PJ_GRADP Define for finite volume Pressure Jacobian ([45]).

PJ_GRADPSQ2 Define for quartic 2 Pressure Jacobian ([72]).

PJ_GRADPSQ4 Define for quartic 4 Pressure Jacobian ([72]).

DJ__GRADPS Define for weighted density Jacobian ([78]).

ATM_ PRESS Define to impose atmospheric sea-level pressure onto the sea surface.

Atmospheric boundary layer There are three ways to provide longwave radiation in the at-
mospheric boundary layer: (1) Compute the net longwave radiation internally using the
Berliand (1952) equation (LONGWAVE) as function of air temperature, sea surface
temperature, relative humidity, and cloud fraction; (2) provide (read) longwave down-
welling radiation only and then add outgoing longwave radiation (LONGWAVE__ OUT)

as a function of the model sea surface temperature; (3) provide net longwave radiation
(default).

The shortwave radiation can be computed using the global albedo equation with a cloud
correction. Alternatively, input shortwave radiation data computed from averaged data
(with snapshots greater or equal than 24 hours) can be modulated by the local diurnal
cycle which is a function longitude, latitude and day-of-year.

BULK__FLUXES Define for bulk flux computation.
CCSM__FLUXES Define for CCSM version of bulk flux computation.
NCEP__FLUXES Define if NCEP forcing files are used.

NL_BULK__FLUXES Define to use bulk fluxes computed by nonlinear (forward)
model.

COOL__SKIN Define for cool skin correction.

LONGWAVE Define to compute net longwave radiation.

LONGWAVE_ OUT Define to compute outgoing longwave radiation.

EMINUSP Define to compute evaporation minus precipitation.

COARE_TAYLOR_ YELLAND Define to use Taylor and Yelland wave roughness
(182]).

COARE__OOST Define to use Oost et al. wave roughness ([58]).

DEEPWATER_ WAVES Define to use deep water waves approximation.
ALBEDO Define to use albedo equation for shortwave radiation.

DIURNAL_SRFLUX Define to impose the local diurnal cycle onto the shortwave
radiation.

58

General model configuration

SOLVE3D Define to solve the 3-D primitive equations.

MASKING Define if there is land in the domain to be masked out.

BODYFORCE Define to apply the surface stress as a body force.

PROFILE Define for time profiling.

AVERAGES Define to write out time-averaged model fields.

AVERAGES2 Define to write out secondary time-averaged model fields.
AVERAGES__AKYV Define to write out time-averaged AKv.

AVERAGES__AKT Define to write out time-averaged AKt.

AVERAGES__AKS Define to write out time-averaged AKs.
AVERAGES__DETIDE Define to write out time-averaged detided fields, one method.
FILTERED Define to write out time-averaged detided fields, using a Lanczos filter.
AVERAGES_FLUXES Define to write out time-averaged surface fluxes.
AVERAGES_NEARSHORE Define to write out time-averaged nearshore stresses.
AVERAGES__QUADRATIC Define to write out time-averaged quadratic terms.
AVERAGES_BEDLOAD Define to write out time-averaged bed load.

ICESHELF Define for ice shelf cavities.

SPHERICAL Define if lat/lon coordinates rather than x/y.

SPLINES Define for conservative, parabolic spline reconstruction of vertical derivatives.
STATIONS Define to write out time-series information at specific points in the model.
STATIONS__CGRID Define if stations are on native C-grid.

FLOATS Define for simulated Lagrangian drifters.

FLOATS_ VWALK Define if floats do vertical random walk.
VWALK_FORWARD Define for forward time stepping of vertical random walk.
DEBUGGING Define to suppress timestamps for easier comparisons between files.

Analytic fields

ANA_BIOLOGY Define for analytic biology initial conditions.
ANA_ BPFLUX Define for an analytic bottom passive tracer flux.
ANA_ BSFLUX Define for an analytic bottom salt flux.
ANA_BTFLUX Define for an analytic bottom heat flux.
ANA__CLOUD Define for an analytic cloud fraction.

ANA__DIAG Define for customized diagnostics.

ANA__FSOBC Define for analytic free-surface boundary conditions.
ANA__GRID Define for an analytic model grid set-up.
ANA_HUMIDITY Define for analytic surface air humidity.
ANA__ICE Define for analytic ice initial conditions.
ANA__INITIAL Define for analytic initial conditions.
ANA__M2CLIMA Define for an analytic 2D momentum climatology.
ANA_ M20OBC Define for analytic 2D momentum boundary conditions.

99

ANA__M3CLIMA Define for an analytic 3D momentum climatology.
ANA__M3OBC Define for analytic 3D momentum boundary conditions.
ANA_ MASK Define for an analytic mask.

ANA_ PAIR Define for an analytic surface air pressure.

ANA_ PASSIVE Define for analytic initial conditions for inert tracers.
ANA_ PERTURB Define for analytic perturbation of initial conditions.
ANA__PSOURCE Define for analytic point sources.

ANA_ RAIN Define for analytic rain fall rate.

ANA_SEDIMENT Define for analytic sediment initial fields.
ANA_SMFLUX Define for an analytic kinematic surface momentum stress.
ANA__SPFLUX Define for analytic surface passive tracers fluxes.
ANA_ SPINNING Define for an analytic time-varying rotation force.
ANA_ SRFLUX Define for an analytic kinematic surface shortwave radiation.
ANA_ SSFLUX Define for an analytic kinematic surface freshwater flux.
ANA _ SSH Define for an analytic sea surface height.

ANA __SSS Define for an analytic sea surface salinity.

ANA__SST Define for an analytic SST and 0Q/9SST.
ANA__STFLUX Define for an analytic kinematic surface heat flux.
ANA_ TAIR Define for analytic surface air temperature.
ANA__TCLIMA Define for an analytic tracer climatology.

ANA_ TOBC Define for analytic tracer open boundary conditions.
ANA__VMIX Define for analytic vertical mixing coefficients.

ANA__ WIND Define for analytic surface winds.

ANA_WWAVE Define for an analytic wind induced wave field.

Horizontal mixing of momentum

MIX__GEO_UYV Define for viscosity along constant z (geopotential) surfaces.
MIX__S__ UV Define for viscosity along constant s surfaces.
VISC__GRID Define for horizontally variable viscosity coefficient.

Horizontal mixing of tracers

DIFF__GRID Define for horizontally variable diffusion coefficient.
MIX__GEO_TS Define for diffusion along constant z (geopotential) surfaces.

MIX__ISO_TS Define for diffusion along constant potential density (epineutral) sur-
faces.

MIX__S_ TS Define for diffusion along constant s surfaces.
CLIMA_TS__MIX Define for diffusion of tracer perturbation T'— T'clm

Vertical mixing

BVF__MIXING Define to activate Brunt-Vaiséla frequency mixing.
GLS__ MIXING Define for Generic Length-Scale mixing.

60

CANUTO__A Define for Canuto A-stability function formulation.
CANUTO_ B Define for Canuto B-stability function formulation.
CHARNOK Define for Charnok surface roughness from wind stress.
CRAIG_BANNER Define for Craig and Banner wave breaking surface flux.
KANTHA_ CLAYSON Define for Kantha and Clayson stability function.
K_C2ADVECTION Define for 2th-order centered advection.
K_C4ADVECTION Define for 4th-order centered advection.
N2S2__HORAVG Define for horizontal smoothing of buoyancy/shear.
Z0OS__HSIG Define for surface roughness from wave amplitude.
TKE__WAVEDISS Define for wave breaking surface flux from wave amplitude.
LMD_ MIXING Define to activate Large/McWilliams/Doney interior closure.
LMD_ BKPP Define to add a bottom boundary layer from a local K-Profile
Parameterization (KPP).
LMD_ CONVEC Define to add convective mixing due to shear instabilities.
LMD_ DDMIX Define to add double-diffusive mixing.
LMD__NONLOCAL Define to add convective nonlocal transport.
LMD_ RIMIX Define to add diffusivity due to shear instabilities.
LMD__SHAPIRO Define to Shapiro filtering boundary layer depths.
LMD_ SKPP Define to add a surface boundary layer from a local K-Profile
Parameterization (KPP).
MY25__MIXING Define to activate Mellor/Yamada Level-2.5 closure.
KANTHA__ CLAYSON Define for Kantha and Clayson stability function.
K_C2ADVECTION Define for 2th-order centered advection.
K_C4ADVECTION Define for 4th-order centered advection.
N2S2__HORAVG Define for horizontal smoothing of buoyancy/shear.
PP__MIXING Define to activate Pacanowski/Philander closure.
RI__HORAVG Define for horizontal Richardson number smoothing.

RI__VERAVG Define for vertical Richardson number smoothing.

Bottom boundary layer The Options MB_ ZOBL and MB_ ZORIP should be activated con-
currently.

MB__BBL Define to activate Meinte Blaas BBL closure.

MB_ CALC_ZNOT Define to compute bottom roughness internally.
MB__ CALC__UB Define to compute bottom orbital velocity internally.
MB_ Z0BIO Define for biogenic bedform roughness for ripples.

MB_ Z0BL Define for bedload roughness for ripples.

MB_ ZORIP Define for bedform roughness for ripples.

SG__BBL Define to activate Styles/Glenn bottom boundary layer formulation.
SG_CALC_ZNOT Define to compute bottom roughness internally.
SG__CALC_UB Define to compute bottom orbital velocity internally.
SG__LOGINT Define for logarithmic interpolation of (Ur,Vr).

SSW__BBL Define to activate Sherwood/Signell/Warner bottom boundary layer closure.
SSW__CALC__ZNOT Define to compute bottom roughness internally.

61

Sea ice

SSW__ CALC__UB Define to compute bottom orbital velocity internally.
SSW__LOGINT Define for logarithmic interpolation of (Ur,Vr).
SSW__FORM_ DRAG_ COR Define to activate form drag coefficient.
SSW_ Z0BIO Define for biogenic bedform roughness for ripples.

SSW_ Z0OBL Define for bedload roughness for ripples.

SSW__ZORIP Define for bedform roughness for ripples.

ICE_MODEL Define to use ice component of the model (see §)).

ICE__THERMO Define for ice thermodynamics.

ICE__MK Define for Mellor-Kantha ([55]) ice thermodynamics—this is the only
choice.

ICE_SMOOTH Define to smooth some ice fields.

ICE__ALB__EC92 Define for albedo computations from Ebert and Curry ([10]).
ICE_MOMENTUM Define for momentum component of the ice.
ICE_MOM_ BULK Define for alternate ice-water stress computation.
ICE__EVP Define for elastic-viscous-plastic rheology ([33] and [32]).
ICE__ADVECT Define for advection of ice tracers.

ICE_SMOLAR Define to use MPDATA for ice tracers (no other option).
ICE_UPWIND Define for upwind advection (not available).
ICE_BULK__FLUXES Define for ice part of bulk flux computation.

Boundary conditions

EW_ PERIODIC Define for periodic boundaries in the ¢-direction.
SPONGE Define to use SSH climatology as 2D inflow data.

NS__ PERIODIC Define for periodic boundaries in the n-direction.
RADIATION_ 2D Define for tangential phase speed in radiation conditions.

Detailed eastern open boundary conditions Other sides have similar. If none of these are

defined, it is assumed to be a closed wall.

EAST_ FSCHAPMAN Define for a Chapman condition on the free surface.
EAST_FSGRADIENT Define for a gradient condition on the free surface.

EAST FSRADIATION Define for a radiation condition on the free surface.
EAST_FSNUDGING Define for an active/passive nudging term on the free surface.
EAST_ FSCLAMPED Define for a clamped free surface.

EAST M2FLATHER Define for a Flather condition on the 2-D momentum.
EAST_M2GRADIENT Define for a gradient condition on the 2-D momentum.
EAST M2RADIATION Define for a radiation condition on the 2-D momentum.
EAST_ M2REDUCED Define for a reduced physics condition on the 2-D momentum.

EAST__M2NUDGING Define for an active passive nudging term on the 2-D momen-
tum.

EAST_ M2CLAMPED Define for clamped 2-D momentum.
EAST__M3GRADIENT Define for a gradient condition on the 3-D momentum.

62

EAST M3RADIATION Define for a radiation condition on the 3-D momentum.

EAST_M3NUDGING Define for an active passive nudging term on the 3-D momen-
tum.

EAST_M3CLAMPED Define for clamped 3-D momentum.

EAST_ KGRADIENT Define for a gradient condition on the TKE fields.
EAST KRADIATION Define for a radiation condition on the TKE fields.
EAST_TGRADIENT Define for a gradient condition on the tracers.

EAST TRADIATION Define for a radiation condition on the tracers.
EAST_TNUDGING Define for an active passive nudging term on the tracers.
EAST_ TCLAMPED Define for clamped tracers.

EAST_VOLCONS Define for Eastern edge mass conservation enforcement.

Tides The tidal data is processed in terms of tidal constituents, classified by period. The tidal
forcing is computed for the full horizontal grid. If requested, the tidal forcing is added to
the processed open boundary data.
Both tidal elevation and tidal currents are required to force the model properly. However,
if only the tidal elevation is available, the tidal currents at the open boundary can be esti-
mated by reduced physics. Only the pressure gradient, Coriolis, and surface and bottom
stresses terms are considered at the open boundary. See u2dbc__im.F or v2dbc_ im.F
for details. Notice that there is an additional option (FSOBC__REDUCED) for the
computation of the pressure gradient term in both Flather or reduced physics conditions
(*_M2FLATHER, *_ M2REDUCED).
SSH__ TIDES Define if imposing tidal elevation.
UV__TIDES Define if imposing tidal currents.
RAMP__TIDES Define if ramping (over one day) tidal forcing from zero.
ADD_ FSOBC Define to tidal elevation to processed OBC data.
ADD_ M2OBC Define to tidal currents to processed OBC data.
TIDES__ASTRO Define to add contributions from the long-period tides as done by

Foreman.
Climatology

M2CLIMATOLOGY Define for processing the 2-D momentum climatology arrays.
M3CLIMATOLOGY Define for processing the 3-D momentum climatology arrays.
OCLIMATOLOGY Define for processing the vertical momentum climatology arrays.
TCLIMATOLOGY Define for processing the tracer climatology arrays.
ZCLIMATOLOGY Define for processing the sea surface height climatology arrays.
M2CLM__NUDGING Define for nudging to 2-D momentum climatology.
M3CLM_ NUDGING Define for nudging to 3-D momentum climatology.
TCLM__NUDGING Define for nudging to tracer climatology.

ZCLM_ NUDGING Define for nudging to sea surface height climatology.

Ecosystem models

BIO__FENNEL Define for Fennel ([I3]) nitrogen-based model.

63

BIO_SEDIMENT Define to restore fallen material to the nutrient pool.
CARBON Define to add carbon constituents.

DENITRIFICATION Define to add denitrification processes.

OXYGEN Define to add oxygen dynamics.

OCMIP__OXYGEN__SC Define if Schmidt number from Keeling et al. ([36]).
RIVER__BIOLOGY Define for river biology point-sources.
TALK__NONCONSERV Define for nonconservative computation of alkalinity.

BEST__NPZ Define for Gibson et al. (personal communication) Bering Sea model.

STATIONARY Define for extra output.
BENTHIC Define for benthic components.
ICE_ BIO Define for ice algae.

JELLY Define for jellyfish.
CLIM__ICE 1D Define if 1-D with ice.

BIO__UMAINE Define for Chai et al. ([7]) model.

BIO__GOANPZ Define for Hinckley et al. ([30]) Gulf of Alaska model.
NPZD_FRANKS Define for NPZD model of Franks et al. ([1§]).
NPZD_IRON Define for NPZD model with iron limitation.
NPZD_POWELL Define for NPZD model of Powell et al. ([64]).
IRON__LIMIT Define for iron limitation on phytoplankton growth.
IRON__ RELAX Define for nudging to iron over the shelf.

ECOSIM Define for bio-optical EcoSim model.

NEMURO Define for Nemuro ecosystem model ([38]). Need to choose a zooplankton
grazing option (HOLLING__GRAZING or IVLEV__ EXPLICIT). The de-
fault implicit IVLEV algorithm does not work yet.

BIO_SEDIMENT Define to restore fallen material to the nutrient pool.

HOLLING_ GRAZING Define for Holling-type s-shaped curve grazing (im-
plicit).
IVLEV__EXPLICIT Define for Ivlev explicit grazing algorithm.

Sediment transport model

SEDIMENT Define to activate sediment transport model ([87]).
BEDLOAD_ MPM Define to activate Meyer-Peter-Mueller bed load.
BEDLOAD__SOULSBY Define to activate Soulsby wave/current bed load.
RIVER_SEDIMENT Define to activate river sediment point-sources.
SED__DENS Define to allow sediment to affect equation of state.

SED_ MORPH Define to allow bottom model elevation to evolve.
SUSPLOAD Define to activate suspended load transport.

Nearshore options

WET__DRY Define to allow wetting and drying of cells.
NEARSHORE_ MELLOR Define for radiation stress terms from waves.

NetCDF input/output

64

DEFLATE Define to set compression of NetCDF-4/HDF5 format files.
NETCDF4 Define to create NetCDF-4/HDF5 format files.

PARALLEL_ IO Define to create NetCDF-4/HDF5 format files with MPI-1/O.
NO_READ__ GHOST Define to not include ghost points during read/scatter.
NO__WRITE_ GRID Define to omit writing grid arrays.
PERFECT__RESTART Define to include perfect restart variables.

READ_ WATER Define to only read water points.

WRITE__WATER Define to only write water points.

RST__SINGLE Define to write single precision restart fields.
OUT_DOUBLE Define to write double precision output fields.

INLINE_ 2DIO Define to read/write 3D fields level by level.

6.8 Important parameters

The following is a list of the important parameters in the model. These are in mod__param.F
and many of them are read from the standard input file as described in §7.1.12

Lm Number of interior grid points in the &-direction.
Mm Number of interior grid points in the n-direction.
N Number of grid points in the vertical.

NAT Number of active tracers (usually 2 for temperature and salinity).

NBT Number of biological tracers. This will depend on the ecosystem model used.
NST Number of sediment tracers.

NPT Number of passive tracers.

NT Total number of tracer fields. NT = NAT4+NBT+NST+NPT

Nfloats Number of Lagrangian floats to track.

Nstation Number of stations for station output.

MTC Maximum number of tidal constituents.

NtileI Number of tiles in the &-direction.

NtileJ Number of tiles in the n-direction.

6.9 Domain decomposition

ROMS supports serial, OpenMP, and MPI computations, with the user choosing between them at
compile time. The serial code can also take advantage of multiple small tiles which can be sized
to fit in cache. All are accomplished through domain decomposition in the horizontal. All of the
horizontal operations are explicit with a relatively small footprint, so the tiling is a logical choice.
Some goals in the parallel design of ROMS were:

e Minimize code changes.

e Don’t hard-code the number of processes.

65

e MPI and OpenMP share the same basic structure.

e Don’t break the serial optimizations.

e Same result as serial code for any number of processes.
e Portability—able to run on any (Unix) system.

First, some cpp options. If we're compiling for MPI, the option -DMPI gets added to the
argument list for cpp. Then, in globaldefs.h, we have:

#if defined MPI
define DISTRIBUTE
#endif

The rest of the code uses DISTRIBUTE to identify distributed memory jobs. The OpenMP case
is more straightforward, with -D__ OPENMP getting passed to cpp and _ OPENMP being the
tag to check within ROMS.

The whole horizontal ROMS grid is shown in Fig. The computations are done over the
cells inside the darker line; the cells are numbered 1 to Lm in the £-direction and 1 to Mm in the
n-direction. Those looking ahead to running in parallel would be wise to include factors of two in
their choice of Lm and Mm. ROMS will run in parallel with any values of Lm and Mm, but the
computations might not be load-balanced.

6.9.1 ROMS internal numbers

A domain with tiles is shown in Fig. The overlap areas are known as ghost points or halo
points. Each tile is an MPI process, an OpenMP thread, or a discrete unit of computation in a
serial run. The tile contains enough information to time-step all the interior points, so the number
of ghost points is dictated by the footprint of the algorithm using the largest number of neighbor
points. In ROMS, the halo area would be two grids points wide unless the MPDATA advection
scheme is used, in which case it needs three. The variable GHOST__POINTS is set accordingly:

#if defined TS_MPDATA || defined UV_VIS4

define GHOST_POINTS 3

if defined DISTRIBUTE || defined EW_PERIODIC || defined NS_PERIODIC
define THREE_GHOST

endif

#else

define GHOST_POINTS 2

#endif

The number of tiles is set in the input file as Ntilel and NtileJ. For an MPI job, the product
of the two must equal the number of MPI processes. For an OpenMP job, the number of threads
must be a multiple of the number of tiles. For instance, for NtileI= 4 and NtileJ= 6, you must
have 24 MPI processes while 2, 3, 4, 6, 8, 12 and 24 are all valid numbers of OpenMP threads.
Also, a serial run could have 24 tiles and would just compute them sequentially.

Once the input file has been read, we can compute the tile sizes:

ChunkSizeI = (Lm+NtileI-1)/Ntilel
ChunkSizeJ = (Mm+NtileJ-1)/NtileJ
Marginl = (NtileI*ChunkSizeI-Lm)/2
MarginJ = (NtileJ*ChunkSizeJ-Mm)/2

66

Mo X o X o X o X o X o X o X o

M o = = & = = = ul

Mm o o) o) o o) o) o) o}

Mm o = =] = =] =] = O

(e} O (e} (o] (e} (e} (e} (e}

O = =] = =] =] = O

* 2 o o o o o o o o
n 2 o =] = =) =) =) =] ul
1 o o o e} e} o o) o)

1 o = = = = = = O

Y

X — u points
O — v points

O — p points

Figure 12: The whole grid. Note that there are Lm by Mm interior computational points. The
points on the thick outer line and those outside it are provided by the boundary conditions.

67

ChunkSizel

ChunkSizedJ

Jtile=0

MarginJ

ltile = 0 1 A

Figure 13: A tiled grid with some ROMS tile variables.

Some internal ROMS numbers are shown in Fig. and are in the BOUNDS structure in
mod__param.F. MarginlI and MarginJ are zero if the numbers work out perfectly, i.e. Lm/Ntilel
and Mm/NtileJ are integers. The tile numbers match the MPI process numbers.

In picking a numbering scheme for indices within a tile, there are two common choices, as shown
in Fig. Each tile can be numbered from 1 to Chunksizel or it can retain the numbering it
would have in the whole grid. We have chosen this second option for ease when debugging features
such as river inputs which apply to specific locations on the grid. It is simple to do using Fortran
90 dynamic memory allocation.

With the tile sizes known, we can assign beginning and ending indices for each tile. Some of
the details depend on whether or not the domain is periodic in that direction, as shown in Fig.

6.9.2 MPI exchange

For MPI jobs, the ghost points need to be updated between interior point computations. The
routines mp__exchange2d, mp_ exchange3d and mp__exchange4d can be used to update the
halo points of up to four arrays at a time. Each of these routines call tile_ neighbors to figure
out which tiles are neighboring and whether or not there really is a neighboring tile on each side.
The mp__exchangexd routines then call:

mpi_irecv
mpi_send
mpi_wait

The exchanges happen first in the east-west direction, then in the north-south direction, saving

the need for diagonal exchanges. A figure with interior points colored by tile and grey halo points
needing an update is shown in Fig. [16|(a). The updated halo points are shown in Fig. [L6{b).

68

12 3 45 6 7 8 9101112131415

Y N

1 2 3/4 5 12 3 4 5 1 213 4 5

(b)

1 2 3 4 5 6 7 8 910 11 1213 14 15

Figure 14: A choice of numbering schemes: (a) each tile is numbered the same, and (b) each tile
retains the numbering of the parent domain.

6.9.3 Code syntax

In main3d, many function calls are surrounded by OpenMP parallel code such as:

'$0MP PARALLEL DO PRIVATE(thread,subs,tile) SHARED(ng,numthreads)
DO thread=0,numthreads-1
subs=NtileX(ng)*NtileE(ng) /numthreads
DO tile=subs*thread,subs*(thread+1)-1,+1
CALL set_data (ng, TILE)
END DO
END DO
'$0MP END PARALLEL DO

What isn’t obvious from this is that the argument TILE means different things depending on if
we're using OpenMP or MPI:

#ifdef DISTRIBUTE

define TILE MyRank
#else

define TILE tile
#endif

Likewise, NtileX also depends on whether or not we’re using MPI:

#ifdef DISTRIBUTE

NtileX(1:Ngrids)=1
#else

NtileX(1:Ngrids)=NtileI(1:Ngrids)
#endif

In other words, for MPI, TILE becomes the process number and the loop is only executed once.
In looking at a typical routine that’s called from main3d, the routine is usually quite short,
calling a __ tile version of itself in which the actual work happens:

69

Non-periodic

western tile central tile eastern tile
Istr Iend Istr Iend Istr Iend
+ X X X X X X +
IstrR IendR IstrR IendR IstrR IendR
0 1 2 3 4 5 6 7 8 Lm L
Periodic
western tile central tile eastern tile
Istr Iend Istr Iend Istr Iend
X X K X X X
IstrR IendR IstrR IendR IstrR IendR
1 2 3 4 5 6 7 8 Lm

Figure 15: Some ROMS variables for tiles, for both a periodic and non-periodic case. Shown are
the variables in the i-direction, the j-direction is similar.

SUBROUTINE set_data (ng, tile)
include "tile.h"

CALL set_data_tile (ng, tile, &
& LBi, UBi, LBj, UBj, &
& IminS, ImaxS, JminS, JmaxS)
RETURN

END SUBROUTINE set_data

Here, there are two sets of array lower and upper bounds, those in the LBi family and those in the
IminS family. Both depend on the Istr family shown in Fig. The IminS family is for work
arrays that are local to an MPI process or to an OpenMP thread, also local to a __tile routine.
They are initialized:

IminS=BOUNDS(ng)%Istr(tile)-3
ImaxS=BOUNDS (ng)%Iend(tile)+3
JminS=BOUNDS (ng) %Jstr(tile)-3
JmaxS=BOUNDS (ng) %Jend (tile)+3

and used:
real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: workl
real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: work?2

The Istr and LBi families are dimensioned by the number of tiles once it is known by inp__par:

DO ng=1,Ngrids
Ntiles=NtileI(ng)*NtileJ(ng)-1
allocate (BOUNDS(ng) % LBi (-1:Ntiles))

allocate (BOUNDS(ng) % Jend (-1:Ntiles))
END DO

70

P

Figure 16: A tiled grid with out-of-date halo regions shown in grey and the interior points color-
coded by tile: (a) before an exchange and (b) after an exchange.

71

They are then initialized in calls to the routines in get__bounds.F. If a tile is on the “western”
edge (Itile= 0), then UBI is set to LOWER__BOUND_ 1.

Imin=LOWER_BOUND_TI

IF ((Itile.eq.-1).or.(Itile.eq.0)) THEN
LBi=Imin

ELSE
LBi=Istr-Nghost

END IF

Tracking the origins of LOWER,__ BOUND__I, we find it in globaldefs.h:

#ifdef EW_PERIODIC

define LOWER_BOUND_I -GHOST_POINTS
#else

define LOWER_BOUND_I O

t#tendif

In the case of set__data, we are simply passing array indices for the tiled arrays. To access the
tiled arrays from within set__data_ tile, we need to use the relevant modules and then refer to
the array with its full name:

USE mod_forces

CALL set_2dfld_tile (ng, tile, iNLM, idCfra,
LBi, UBi, LBj, UBj,
FORCES (ng) %cloudG,
FORCES (ng) %cloud,
update)

L5 S S i
5SS i =

In other cases, the parent routine would have the use, then would pass the relevant array to the
__tile routine:

USE mod_grid

CALL.prsgrd_tile (ng, tile, &
& | GRID(ng) % Hz, &
SUBRC:JUTINE prsgrd_tile (ng, tile, &
& . Hz, z_r, z_w, &

real(r8), intent(in) :: Hz(LBi:,LBj:,:)
This allows the __tile routine to use Hz with the same syntax as the pre-parallel, pre-module code
once had.
6.9.4 Input/output

In ROMS, the distributed memory I/O is all happening on the master process (0) unless you
specifically ask it to use MPI-I/O, which requires both the NETCDF4 and PARALLEL_ 10
cpp flags to be defined. If you do this, you will be reading and writing HDF'5 files and will need

72

to update your pre- and post-processing tools accordingly. I have tentatively tried the parallel 1/O
and found it to be exceedingly slow—I’ve been told since that this is the fault of the Net CDF-4
layer sitting on top of HDF5—HDF5 alone should be fast.

In the case of having all the I/O pass through the master process, we can still read and write
classic NetCDF-3 files. Care must be taken though, in the event of an error. ROMS has been
cleaned up so that the master process will broadcast its return state to the other processes and
they can all die gracefully together when there is a problem.

An example of a routine which reads from disk is get_ grid, called from initial. Each MPI
process calls get__grid:

CALL get_grid (ng, iNLM)
ifdef DISTRIBUTE

CALL mp_bcasti (ng, iNLM, exit_flag)
endif

if (exit_flag.ne.NoError) RETURN

If any one of the processes has trouble, it will enter into the exit__flag which is then shared by all.
To read in an array variable, all processes in get__grid uses nf fread2d and friends:

status=nf_fread2d(ng, model, ncname, ncGRDid(ng),
var_name(it), var_id(it),
0, gtype, Vsize,
LBi, UBi, LBj, UBj,
Fscl, Fmin, Fmax,
GRID(ng) % rmask,
GRID(ng) % rmask)
IF (status.ne.nf90_noerr) THEN
exit_flag=2
ioerror=status
EXIT
END IF

5 S S S S S
PRI

Within nf_fread2d, we get to a call to the NetCDF library from just the master process:

IF (InpThread) THEN
status=nf90_get_var(ncid, ncvarid, wrk, start, total)

END IF
ifdef DISTRIBUTE
CALL mp_bcasti (ng, model, status)
endif
IF (status.ne.nf90_noerr) THEN
exit_flag=2
ioerror=status
nf_fread2d=status
RETURN
END IF

At this point, the master process has the entire 2-D array stored in wrk. This then needs to be

divvied out to the various tiles to their copy of the array in question (stored in the A argument to
nf_fread2d):

73

ifdef DISTRIBUTE
CALL mp_scatter2d (ng, model, LBi, UBi, LBj, UBj,

& Nghost, MyType, Amin, Amax,
if defined READ_WATER && defined MASKING

& NWpts, SCALARS(ng)’%IJwater(:,wtype),
endif

& Npts, wrk, A)

Something similar happens when writing to output files.

74

7 Configuring ROMS for a Specific Application

This chapter describes the parts of ROMS for which the user is responsible when configuring it
for a given application. Section describes the process in a generic fashion while and
step through the application of ROMS to upwelling/downwelling and wind-driven Northeast Pacific
problems, respectively. As distributed, ROMS is ready to run quite a few examples, where the C
preprocessor flags determine which is to be executed. Some of these examples are described in
Haidvogel and Beckmann [26], some are listed here:

BASIN This is a rectangular, flat-bottomed basin with double-gyre wind forcing. When run, it
produces a western boundary current flowing into a central “Gulf Stream” which goes
unstable and generates eddies. The goal is to run adiabatically to study the homogeniza-
tion of potential vorticity. It earned its nickname of Big Bad Basin by taking a long time
to run and causing difficulties for the spectral versions of SPEM.

GRAV__ADJ The gravitational adjustment problem takes place in a long narrow domain which
is initialized with dense water at one end and light water at the other. At time zero, the
water is released and it generates two propagating fronts as the light water rushes to fill
the top and the dense water rushes to fill the bottom. This configuration was used to test
various advection schemes.

OVERFLOW This configuration is similar to the GRAV__ADJ problem, but is initialized with
dense water in the shallow part of a domain with a sloping bottom.

SEAMOUNT The seamount test was used to test the pressure gradient errors. It has an idealized
seamount in a periodic channel. See Beckmann and Haidvogel [4] and McCalpin [51] for
more information.

UPWELLING The upwelling/downwelling example was contributed by Anthony Macks and Ja-
son Middleton [47] and consists of a periodic channel with shelves on each side. There
is along-channel wind forcing and the Coriolis term leads to upwelling on one side and
downwelling on the other side. If you run it for several days without vertical mixing, you
end up with dense water over light water.

Some NetCDF input files for the ROMS examples can be found under Data/ROMS in the ROMS
distribution. The ASCII input files are under ROMS /External.

7.1 Configuring ROMS

The four main sections you need to change in ROMS are the makefile or build.bash, an include
file with cpp options, any analytic functions, and the ASCII input file. If more realistic fields are
desired, you will have to provide other input files as well, for instance for the grid and the wind
forcing.

7.1.1 Case Name

First, you need to decide on a name for your particular application or configuration. This name is
provided via the ROMS__APPLICATION in either the makefile or the build script. This name
should be reasonably short, all uppercase, with spaces converted to underscores. For example, let’s
say we pick the name WIKI__TEST. This name gets defined during the build, so you can add
code protected by #ifdef WIKI__TEST as needed. This would be a good time to either copy
the makefile or the build Script to create one specific to this case prior to editing it.

75

7.1.2 Case-specific Include File

Each application has its own include file, included by cppdefs.h. The name of this file is the name of
your application (WIKI__TEST here) turned into lower case, with ".h’ appended (wiki__test.h).
The location of this file is set by MY__HEADER,_ DIR, pointing to User/Include or some
other location of your choosing.

The complete list of options to be set prior to compilation are listed in Place those you
need in the wiki__test.h file. These include algorithm choices (e.g. advection and turbulence
closure schemes), boundary conditions, output options (averages, diagnostics, stations, floats), and
application modules (biology, sediments). Each line should be of the form:

#define SOME_VAR

Note that any undefined variable need not be mentioned.

Also note that if you copy a predefined application from ROMS /Include as a template for
your application, you must rename it. If you don’t change the name, ROMS will use the one in
ROMS /Include and your file will be ignored during the build procedure.

7.1.3 Functionals

Some of the cpp Options have names beginning with ANA_ . For each one of these, you will be
expected to provide an analytic expression for the field in question in the corresponding include file.
These files are listed in and their location is determined by MY__ANALYTICAL_ DIR.
You may chose to copy those from User /Functionals to some new directory and place your version
of the assignments within

#ifdef WIKI_TEST
! Set weird and wonderful winds

#endif

This makes it easy to search for later, if nothing else.

7.1.4 checkdefs.F

For each new cpp variable other than your application name, it is recommended that you also add
the appropriate code to checkdefs.F, such as:

#ifdef SLEET
IF (Master) WRITE(stdout,20) ’SLEET’, &
& ’Sleet falling on the ice option.’
is=lenstr(Coptions)+1
Coptions(is:is+7)=’ SLEET,’
#endif /* ICE */

Note that the number “7” on the Coptions line must be set according to the length of the string
you are adding. In this case 7 is for “ SLEET,”, including the comma and the space. Again, you
do not need to do this for your application name (WIKI__TEST here), since checkdefs will print
whatever is in My AppCPP.

7.1.5 Model domain

One of the first things the user must decide is how many grid points to use, and can be afforded.
There are three parameters in ocean.in which specify the grid size and one parameter for the
number of active tracers:

76

Lm Number of finite-difference points in &.

Mm Number of finite-difference points in 7.

N Number of finite-difference points in the vertical.
NAT Number of active tracers.

The number of biological tracers is set in the biology.in file. There are no constraints on these
except Lm > 2, Mm > 2, N > 2 and NAT > 1. Lm and Mm should be at least 3 if the domain
is periodic in that direction.

7.1.6 x,y grid

The subroutine get__grid or ana__grid is called by initial to set the grid arrays, the bathymetry,
and the Coriolis parameter. Most of the simple test problems have their grid information specified
in ana__grid.h in the directory ROMS /Functionals. More realistic problems require a NetCDF
grid file, produced by the grid generation programs described in Wilkin and Hedstrom [89], by the
Matlab SeaGrid, or by some other method. The variables which are read by get_ grid are:

xl, el, spherical, f, h, pm, pn, x_rho, y_ rho, lon_ rho, lat_ rho, angle.
If the grid is curved, get_ grid will also read:

dndx, dmde.
Likewise, if MASKING is defined, it will read:

mask_ rho, mask_ u, mask_ v, mask_ psi.

7.1.7 &,n grid

Before providing initial conditions and boundary conditions, the user must understand the model
grid. The fields are laid out on an Arakawa C grid as in Fig.[I[] The overall grid is shown in Fig.
The thick outer line shows the position of the model boundary. The points inside this boundary
are those which are advanced in time using the model physics. The points on the boundary and
those on the outside must be supplied by the boundary conditions.

The three-dimensional model fields are carried in four-dimensional arrays, where the fourth
array index refers to one of two or three time levels. The tracers have a fifth array index telling
which tracer is being referred to. For instance, itemp = 1 refers to potential temperature while
isalt = 2 refers to salinity. The integers ¢, j, and k are used throughout the model to index the
three spatial dimensions:

i Index variable for the &-direction.
j Index variable for the n-direction.
k Index variable for the o-direction. k = 1 refers to the bottom

while £ = N refers to the surface.

7.1.8 Initial conditions

The initial values for the model fields are provided by either ana__initial or get__state. get__state
is also used to read a restart file if the model is being restarted from a previous run.

Also in initial, rho__eos is called to initialize the density field. rho__eos also computes rhoA,
the vertically averaged density, and rhoS, the density perturbation. Both rhoA and rhoS are
used in the barotropic pressure gradient.

77

7.1.9 Equation of state

The equation of state is defined in the subroutine rho__eos. Two versions are provided in ROMS:
a nonlinear p = p(T', S, z) from Jackett and McDougall [34] and a linear p(7),.S). The linear form is

p = RO — Tcoef - (T — T0) + Scoef - (S — S0)

or
p = RO + Tcoef - (T — T0),

depending on whether or not SALINITY is defined. Specify which equation of state you would
like to use with the NONLIN__EOS C preprocessor flag in your application include file. The
linear coefficients R0, TO, Tcoef, SO, and Scoef are set in ocean.in. Note that we are computing
in situ density from potential temperature and salinity. Some of the vertical mixing schemes require
potential density and some other fields, which are computed by rho__eos as well.

7.1.10 Boundary conditions

The horizontal boundary conditions are provided by the subroutines in u8dbc__im, v3dbc__im,
u2dbc__im, v2dbc_ im, t3dbc_ im, and zetabc. They are called every time-step and provide
the boundary values for the fields u,v,w,v, all tracers, and (, respectively. They are currently
configured for a closed basin, a periodic channel, a doubly periodic domain or a domain with
various open boundary conditions. Each side is controlled independently with WEST being the
i=1 boundary, EAST being the i=L boundary, SOUTH being the j=1 boundary, and NORTH
being the j=M boundary. These choices are made via the cpp options in your include file.

Many of the choices for open boundaries require that the model have some boundary val-
ues for the field in question. These can be specified in the appropriate ana_ xxx.h file for say
ANA__TOBC or they can be read from a boundary NetCDF file. There is logic in globaldefs.h
by which ROMS decides whether or not it needs to read a boundary file.

7.1.11 Model forcing

(a) Winds and thermal fluxes

There are two different ways to apply a wind forcing: as a surface momentum flux in the vertical
viscosity term, or as a body force over the upper water column. Usually, we set the vertical o-
coordinate parameters to retain some resolution near the surface and apply the fluxes as boundary
conditions to the vertical viscosity/diffusivity. In either case, the surface and bottom fluxes are
either defined analytically, read from a forcing file, or computed inside ROMS using a bulk flux
formula from the appropriate atmospheric fields (air temperature and winds, for instance). You
must either edit the appropriate ana_ xxx.h or create a NetCDF forcing file in the format expected
by ROMS. Note that it is quite common to put the surface variables in the forcing file while having
an analytic bottom heat flux. ROMS now has the capability of reading in a list of forcing fields—it
can be convenient to have one file per field rather than stuffing tides, winds, river inputs all into
one file.

In the past, our vertical resolution was relatively coarse and the vertical viscosity would have
to have been unreasonably large for us to resolve the surface Ekman layer. If that is your situation,
define BODYFORCE in cppdefs.h and provide a value for levsfrc in ocean.in. The forcing is
applied over the levels from levsfrc to N. The above caution about vertical resolution also applies
to the surface fluxes of T' and S, although BODYFORCE only refers to wind stress, not the
surface tracer fluxes.

(b) Climatology
One way to force the model is via a nudging to the tracer and/or momentum climatologies.
Nudging to tracers was used in the North Atlantic simulations in sponge layers along the northern

78

and southern boundaries. Set the climatologies in ana_ tclima.h or in a file read by get_ data,
set TCLM_ NUDGING in wiki__test.h and also set the array Tnudgcof in ana_ nudgcoef.h.
(c) Tides

There is also more than one way to force with tides. One way is to provide boundary conditions
with enough temporal resolution to resolve the tides. Another is to provide ROMS with the tidal
constituents at all grid points and to have ROMS reconstruct the tidal currents (UV__TIDES)
and/or elevations (SSH__TIDES) for any given time. An example of such a tidal forcing file is in
Data/ROMS /Forcing/test__head__frc.nc.

The non-trunk code with ice, etc. includes the TIDES__ASTRO option to add on the long-
period tides from Foreman ([I5] and [16]). There is also an option to include the tidal potential
forcing term (POT__TIDES), requiring the tidal potential to be included in the tides forcing file.
(d) Rivers

Point sources can be used to provide river inflow to the model. These too can be specified in a
forcing file if not provided via ana__psource.

7.1.12 ocean.in

ROMS expects to read a number of variables from an ASCII file as described in Example input
files are in ROMS /External with names like ocean__grav__adj.in, where “grav_adj” refers to
the name of the application. Lines beginning with “!” are comments and will be ignored by ROMS
on reading them.

The input is organized as key/value pairs, separated by one or two equals signs. It is possible
for ROMS to run on more than one grid simultaneously, with the number of grids being set at
compile time via the build script and/or the makefile. If there is one equals sign (=), ROMS
will use the corresponding value for all grids. If there are two (==), ROMS will read a value for
each grid. Thus far, our domains have used just one grid since the inter-grid coupling has not been
released.

ROMS will ignore the parameters not needed by the current simulation, e.g., the GLS param-
eters will not be read if you are not using that mixing scheme. However, I believe all the example
files contain all possible parameters (except the ice branch ones). The input parameters are in
groups, as follows:

Header

TITLE A text string to put in the output files.

MyAppCPP The shorthand name for this application.

VARNAME The location of the varinfo.dat file containing information about fields to
read/write from/to NetCDF files.

Grid-dimension parameters

Lm Number of i-direction INTERIOR RHO-points.
Mm Number of j-direction INTERIOR RHO-points.
N Number of vertical levels.

Nbed Number of sediment bed layers.

NAT Number of active tracers (usually 2).

NPT Number of passive tracers.

NCS Number of cohesive (mud) sediment tracers.

NNS Number of non-cohesive (sand) sediment tracers.

79

Domain-decomposition parameters

Ntilel Number of i-direction partitions.

NtileJ Number of j-direction partitions.
Time-stepping parameters

NTIMES Number of time-steps to evolve the 3-D equations in the current run. This is
actually the total number, including any previous segments of the same run. For
instance, if you already did a three-month run and wish to continue for another
three months, set NTIMES to the number of steps needed for six months.

DT Time-step in seconds for the 3-D equations.
NDTFAST Number of time-steps for the 2-D equations to be executed each dt.

Model iteration loops parameters

ERstr Starting ensemble run number.

ERend Ending ensemble run number.

Nouter Maximum number of 4DVAR outer loop iterations.
Ninner Maximum number of 4DVAR inner loop iterations.

Nintervals Number of time interval divisions for stochastic optimals computations.
Generalized Stability Theory (GST) parameters

NEV Number of eigenvalues.
NCV Number of eigenvectors.

Input/Output parameters

ROMS has several possible output files. The output files can include a restart file, a
history file, an averages file, and a station file, for instance. The restart file often contains
only two records with the older record being overwritten during the next write. The
history file can contain a subset of the restart fields, for instance just the surface elevation
and the surface temperature. The averages file contains time-averages of the model fields,
for instance daily or monthly means, depending on NAVG. The station file contains
timeseries for specified points, possibly quite frequently since each record is small. For
some, machinery is in place to write multiple files, numbering them _ 0001, 0002, etc.

NRREC Record number of the restart file to read as the initial conditions. Set to 0 at
the beginning of the run, -1 to read the latest record.

LcycleRST Logical, true to cycle between two records of the restart file.

NRST Number of time-steps between writing of restart fields.

NSTA Number of time-steps between writing fields into the stations file.

NFLT Number of time-steps between writing fields into the floats file.

NINFO Number of time-steps between calling diag to write some global information
and check for NaN values.

History, average, diagnostic output parameters

LDEFOUT True for creating new output files for stations, history, floats, etc. If false,
output is appended to these files.

80

NHIS Number of time-steps between writing history records.
NDEFHIS Number of time-steps between starting new history files.

NTSAVG Starting time-step for the accumulation of output time-averaged data. For
instance, you might want to average over the last day of a thirty-day run.

NAVG Number of time-steps between writing time-averaged data into the averages file.
NDEFAVG Number of time-steps between starting new averages files.

NTSDIA Starting time-step for the accumulation of output diagnostics data. For in-
stance, you might want to write diagnostics for the last day of a thirty-day run.

NDIA Number of time-steps between writing diagnostics data into the diagnostics file.

NDEFDIA Number of time-steps between starting new diagnostics files.
Tangent linear and adjoint output parameters

LcycleTLM Logical, true to cycle between two records

NTLM Number of time-steps between writing tangent linear data.

NDEFTLM Number of time-steps between starting new tangent linear files.
LcycleADJ Logical, true to cycle between two records of the restart file.

NADJ Number of time-steps between writing adjoint data.

NDEFADJ Number of time-steps between starting new adjoint files.

NSFF Number of time-steps between 4DVAR, adjustment of surface forcing fluxes.
NOBC Number of time-steps between 4DVAR, adjustment of open boundary fields.

Check-pointing GST restart parameters

LrstGST GST restart switch.
MaxIterGST Maximum number of iterations.
NGST Check-pointing interval.

Ritz GST parameter
Ritz_ tol Relative accuracy of the Ritz values computed in the GST analysis.
Horizontal mixing of tracers

TNU2 Constant mixing coefficient for the horizontal Laplacian diffusion of each tracer.
A value is expected for each of the NAT+NPT tracers.

TNU4 Constant mixing coefficient for the horizontal biharmonic diffusion of each tracer.
A value is expected for each of the NAT+NPT tracers.

Horizontal viscosity coefficients

VISC2 Constant mixing coefficient for the horizontal Laplacian viscosity.

VISC4 Constant mixing coefficient for the horizontal biharmonic viscosity.
Vertical mixing coefficients for tracers

AKT_ BAK Background vertical mixing coefficient for the tracers (NAT4+NPT val-
ues).

Vertical mixing coefficient for momentum

81

AKYV_ BAK Background vertical mixing coefficient for momentum.
Turbulent closure parameters

AKK__BAK Background vertical mixing coefficient for turbulent kinetic energy.
AKP_BAK Background vertical mixing coefficient for turbulent kinetic energy.

TKENU2 Constant mixing coefficient for the horizontal Laplacian diffusion of turbulent
kinetic energy.

TKENU4 Constant mixing coefficient for the horizontal biharmonic diffusion of turbu-
lent kinetic energy.

Generic length-scale turbulence closure parameters

GLS__P Stability exponent.

GLS__ M Turbulent kinetic energy exponent.

GLS__ N Turbulent length scale exponent.

GLS_ Kmin Minimum value of specific turbulent kinetic energy.
GLS_ Pmin Minimum value of dissipation.

GLS__ CMUO Stability coefficient.

GLS__C1 Shear production coefficient.

GLS__C2 Dissipation coeflicient.

GLS__C3M Buoyancy production coefficient (minus).
GLS__C3P Buoyancy production coefficient (plus).

GLS_ SIGK Constant Schmidt number (non-dimensional) for turbulent kinetic energy
diffusivity.

GLS__SIGP Constant Schmidt number (non-dimensional) for turbulent generic statisti-
cal field, “psi”.

Constants used in surface TKE flux computation

CHARNOK__ALPHA Charnok surface roughness.
Z0OS__HSIG__ALPHA Roughness from wave amplitude.
SZ__ALPHA Roughness from wave dissipation.
CRGBAN_ CW Craig and Banner wave breaking.

Bottom drag coefficients

RDRG Linear bottom drag coefficient.
RDRG2 Quadratic bottom drag coefficient.
Zob Bottom roughness.

Zos Surface roughness (under ice shelves).
Height of atmospheric measurements for bulk flux parameterizations

BLK__ZQ Height of air humidity values.
BLK__ZT Height of air temperature values.
BLK__ZW Height of wind values.

82

Wetting and drying parameter
DCRIT Minimum depth for dry cells.
Various parameters

WTYPE Jerlov water type.

LEVSFRC Deepest level to apply surface momentum stresses as a body force. Used
when the C-preprocessor option BODYFORCE is defined.

LEVBFRC Shallowest level to apply bottom momentum stresses as a body force. Used
when the C-preprocessor option BODYFORCE is defined.

Vertical coordinate parameters

Vtransform Transformation equation, 1 for old style.

Vstretching Stretching function, 1 for old style.
Vertical o-coordinates parameters

theta__s o-coordinate surface control parameter, [0 < theta__s < 20].

theta__ b o-coordinate bottom control parameter, [0 < theta_b < 1].

Tcline Width of the surface or bottom boundary layer in which higher vertical resolution
is required during stretching.

Mean Density and Brunt-Vaisila frequency

RHOO Mean density used in the Boussinesq approximation.
BVF_ BAK Background Brunt-Viisala frequency squared.

Time parameters

DSTART Time stamp assigned to model initialization (days).
TIDE__START Time of tidal origin relative to model origin.
TIME_ REF Reference time in the format yyyymmdd.dd or else a special value for
specific calendars as documented in the ocean.in files.
Nudging time scales
TNUDG Time scale (days) of nudging towards tracer climatology at the interior and at
the boundaries. A value is expected for each active tracer.

ZNUDG Time scale (days) of nudging towards free surface climatology at the interior
and at the boundaries.

M2NUDG Time scale (days) of nudging towards 2-D momentum climatology at the
interior and at the boundaries.

M3NUDG Time scale (days) of nudging towards 3-D momentum climatology at the
interior and at the boundaries.

Open boundary factor
OBCFAC Ratio of inflow and outflow nudging time scales.

Linear equation of state parameters

83

RO Background density value used in the linear equation of state.
TO Background potential temperature constant.

SO0 Background salinity constant.

TCOEF Thermal expansion coefficient in the linear equation of state.

SCOEF Saline contraction coefficient in the linear equation of state.
Slipperiness parameter

gamma?2 Slipperiness variable, either 1.0 (free slip) or —1.0 (no slip).
Adjoint sensitivity time parameters

DstrS Starting day.
DendS Ending day.

Adjoint sensitivity vertical level parameters

KstrS Starting level.
KendS Ending level.

Adjoint sensitivity logical parameters

Lstate(isFsur) Free surface.

Lstate(isUbar) 2D u-momentum.
Lstate(isVbar) 2D v-momentum.
Lstate(isUvel) 3D w-momentum.
Lstate(isVvel) 3D v-momentum.

Lstate(isTvar) Tracers (NT values expected).

Stochastic optimals time scale

SO__decay Stochastic optimals time decorrelation scale (days) assumed for red noise
processes.

Logicals for stochastic optimals

SOstate(isUstr) Surface u-stress.
SOstate(isVstr) Surface v-stress.

Lstate(isTsur) Surface tracer flux (NT values expected).
Stochastic optimals surface standard deviations

SO__sdev(isUstr) Surface u-stress.
SO_ sdev(isVstr) Surface v-stress.
SO__sdev(isTsur) Surface tracer flux (NT values expected).

Logical switches to activate the writing of history/averages fields

Hout(idUvel) 3-D wu-velocity component.
Hout(idVvel) 3-D v-velocity component.
Hout(idWvel) 3-D w-velocity component.

84

Hout(idOvel) 3-D Q vertical velocity.
Hout(idUbar) 2-D w-velocity component.
Hout(idVbar) 2-D v-velocity component.
Hout(idFsur) Free-surface.

Hout(idBath) Time-dependent bathymetry.

Hout(idTvar) Tracer type variables: potential temperature, salinity, etc.

Hout(idUsms) Surface u-stress.
Hout(idVsms) Surface v-stress.
Hout(idUbms) Bottom u-stress.
Hout(idVbms) Bottom v-stress.

Hout(idUbrs) Bottom u-current stress.
Hout(idVbrs) Bottom v-current stress.
Hout(idUbws) Bottom u-wave stress.
Hout(idVbws) Bottom v-wave stress.
Hout(idUbcs) Bottom max wave-current u-stress.

Hout(idVbcs) Bottom max wave-current v-stress.

Hout(idUbot) Bed wave orbital u-velocity.
Hout(idVbot) Bed wave orbital v-velocity.
Hout(idUbur) Bottom max wave-current u-stress.

Hout(idVbur) Bottom max wave-current v-stress.

Hout(idW2xx) 2D radiation stress, Sy, component.
Hout(idW2xy) 2D radiation stress, S;, component.
Hout(idW2yy) 2D radiation stress, Sy, component.
Hout(idU2rs) 2D u-radiation stress.
Hout(idV2rs) 2D v-radiation stress.
Hout(idU2Sd) 2D wu-Stokes velocity.
Hout(idV2Sd) 2D v-Stokes velocity.

Hout(idW3xx) 3D radiation stress, Sy, component.
Hout(idW3xy) 3D radiation stress, S, component.
Hout(idW3yy) 3D radiation stress, Sy, component.
Hout(idW3zx) 3D radiation stress, S,, component.
Hout(idW3zy) 3D radiation stress, 5., component.
Hout(idU3rs) 3D wu-radiation stress.
Hout(idV3rs) 3D v-radiation stress.
Hout(idU3Sd) 3D u-Stokes velocity.
Hout(idV3Sd) 3D wv-Stokes velocity.

Hout(idWamp) Wave height.

85

Hout(idWlen) Wave length.
Hout(idWdir) Wave direction.

Hout(idTsur) Surface net heat and salt flux (NAT values).
Hout(idLhea) Latent heat flux.

Hout(idShea) Sensible heat flux.

Hout(idLrad) Longwave radiation flux.

Hout(idSrad) Shortwave radiation flux.

Hout(idEmPf) E-P flux.

Hout(idevap) Evaporation rate.

Hout(idrain) Precipitation rate.

Hout(idDano) Density anomaly.

Hout(idVvis) Vertical viscosity coefficient.

Hout (idTdif) Vertical diffusion coefficient for temperature.
Hout(idSdif) Vertical diffusion coefficient for salinity.
Hout(idHsbl) Depth of the surface boundary layer.
Hout(idHbbl) Depth of the bottom boundary layer.
Hout(idMtke) Turbulent kinetic energy.

Hout(idMtls) Turbulent length scale.

Ice fields

Hout(idUice) Ice u-velocity.

Hout(idVice) Ice v-velocity.

Hout(idAice) Ice concentration.

Hout(idHice) Ice thickness.

Hout(idTice) Ice surface temperature.
Hout(idHsno) Snow thickness.

Hout(idTimid) Ice internal temperature.
Hout(idSfwat) Surface water (melt ponds).
Hout(idTauiw) Tauiw.

Hout(idChuiw) Chuiw.

Hout(idAgeice) Ice age.

Hout(idSig11) Ice internal stress, 11 component.
Hout(idSig12) Ice internal stress, 12 component.
Hout(idSig22) Ice internal stress, 22 component.
Hout(idSOmk) Under-ice salinity.
Hout(idTOmk) under-ice temperature.
Hout(idWfr) Frazil ice growth rate.
Hout(idWai) Air-ice melt rate.

Hout(idWao) Air-ocean ice growth rate.

86

Hout(idWio) Ice-ocean ice melt/growth rate.

Hout(idWro) Surface water runoff rate.
Inert (passive) tracers

Hout(inert) Passive tracers (NPT values).
Sediment tracers

Hout(idBott) Sediment tracers (MBOTP values).
User parameters

NUSER Number of user parameters
USER Values of user parameters (NUSER values).

NetCDF-4/HDF5 parameters

NC_SHUFFLE If non-zero, turn on shuffle filter.
NC_DEFLATE If non-zero, turn on deflate filter.
NC_DLEVEL Deflate level (0-9).

Input NetCDF file names

GRDNAME Grid file.

ININAME Initial conditions file.

ITLNAME Initial tangent linear file.
IRPNAME Initial representer file.
TIADNAME Initial adjoint file.

CLMNAME Climatology file.

BRYNAME Boundary condition file.
FWDNAME Forward model file.
ADSNAME Adjoint sensitivity functional file.

Forcing NetCDF files

NFFILES Number of forcing files.
FRCNAME Forcing files.

Output NetCDF file names

GSTNAME GST analysis restart file.
RSTNAME Restart file.
HISNAME History file.
TLMNAME Tangent linear file.

TLFNAME Impulse forcing file (for tangent linear model).

ADJNAME Adjoint file.
AVGNAME Averages file.
STANAME Stations file.
FLTNAME Lagrangian floats file.

87

ASCII input file names

APARNAM Assimilation parameters.
SPOSNAM Stations positions.
FPOSNAM Initial drifter positions.
IPARNAM Ice parameters.
BPARNAM Biology parameters.
SPARNAM Sediment parameters.
USRNAME User’s generic input.

The bottom of the sample files contain comments describing some of these in greater detail.

7.1.13 User variables and subroutines

It is possible for the user to add new variables and functionality, though it is discouraged. The
design goal is to isolate the most common features a user would change to the cpp switches (,
the ana_ xx.h files (§6.5) and the ASCII input file (§7.1.12). A query on the ROMS forum might
be in order if you have something specific in mind.

If you do choose to add bits, know that the makefile fragments called Module.mk will attempt
to compile anything with a .F extension in the directories already populated with such code.

7.2 Upwelling/Downwelling Example

The application which ROMS is configured to run as distributed is a wind-driven upwelling and
downwelling example, described in Macks and Middleton [47]. There is a shelf on each wall of
a periodic channel and an along-channel wind forcing, which drives upwelling at one wall and
downwelling at the other. This problem depends on the Ekman layer, so a surface stress is used
with vertical viscosity. The Ekman depth is estimated to be 9 m if A, = 0.01m?/s, so the vertical
grid spacing must resolve this. The maximum depth is 150 m and our choice of the vertical grid
parameters leads to a surface Az of 4.0 m.

7.2.1 cppdefs.h

The C preprocessor variable UPWELLING is used for the upwelling configuration of the model.
The makefile will direct cppdefs.h to include the file upwelling.h:

#define UV_ADV

#define UV_COR

#define UV_LDRAG
#define UV_VIS2

#undef MIX_GEO_UV
#define MIX_S_UV
#define TS_U3HADVECTION
#define TS_C4VADVECTION
#undef TS_MPDATA
#define DJ_GRADPS
#define TS_DIF2

#undef TS_DIF4

#undef MIX_GEO_TS
#define MIX_S_TS

88

#define SALINITY
#define SOLVE3D
#define SPLINES
#define AVERAGES
#define DIAGNOSTICS_TS
#define DIAGNOSTICS_UV
#define EW_PERIODIC

#define ANA_GRID

#define ANA_INITIAL
#define ANA_SMFLUX
#define ANA_STFLUX
#define ANA_SSFLUX
#define ANA_BTFLUX
#define ANA_BSFLUX

#if defined GLS_MIXING || defined MY25_MIXING
define KANTHA_CLAYSON

define N2S2_HORAVG

#else

define ANA_VMIX

#endif

#if defined BIO_FENNEL || defined ECOSIM || \
defined NPZD_POWELL || defined NEMURO || \
defined BIO_UMAINE

define ANA_BIOLOGY

define ANA_SPFLUX

define ANA_BPFLUX

define ANA_SRFLUX

#endif

#if defined NEMURO

define HOLLING_GRAZING
undef IVLEV_EXPLICIT
#endif

#ifdef BIO_FENNEL

define CARBON

define DENITRIFICATION
define BIO_SEDIMENT

define DIAGNOSTICS_BIO
#endif

#ifdef BIO_UMAINE
define OXYGEN

undef CARBON
#endif

#ifdef PERFECT_RESTART

89

undef AVERAGES

undef DIAGNOSTICS_BIO
undef DIAGNOSTICS_TS
undef DIAGNOSTICS_UV
define OUT_DOUBLE
#endif

Here we have declared that we want a periodic channel (EW__PERIODIC) but no masking. There
is salinity but we’re using a linear equation of state. The momentum equations have advection,
Coriolis force and pressure gradients. There is both horizontal viscosity and diffusion, but they are
along constant o-surfaces and if you check the input file, you find that the horizontal diffusion is
set to zero.

There are ifdefs for various biology cases, none of which have been defined. Likewise, we are
using the default of ANA__ VMIX as distributed. We are asking for many other analytic functions
too, including the grid. We are asking for diagnostic output with the DIAGNOSTICS_ TS and
DIAGNOSTICS_UV.

7.2.2 Model domain

The flow does not vary in z, so Lm can be small. Set the values for Lm, Mm, N and NT in the
input file:

Lm == 41 I Number of I-direction INTERIOR RHO-points
Mm == 80 ! Number of J-direction INTERIOR RHO-points
N == 16 ! Number of vertical levels

NAT = 2 ! Number of active tracers (usually, 2)

7.2.3 ana_ grid

For this geometry one has a choice of using one of the external grid-generation programs or of using
ana_ grid to create the grid analytically. The code in ana_ grid.h was modified to produce a
bathymetry with a shelf on both walls of the channel when UPWELLING is defined. The fluid
depth ranges from 27 m on the shelves to 150 m in the center of the channel. The horizontal grid
spacing is uniform at 1 km and the Coriolis parameter f is set to a constant value suitable for
Sydney, Australia.

7.2.4 Initial conditions and the equation of state

We would like the initial conditions to be a motionless fluid with an exponential stratification. The
UPWELLING section of ana__initial.h is configured accordingly.

The stratification can be provided by either T" or S, or by both T and S. For simplicity we
will only have an active temperature field and we will use the linear equation of state by setting
NONLIN__EOS to #undef. We want the density to be 26.35 at the bottom and 24.22 at the top
with an e-folding scale of 50 meters. The initial temperature is set to TO+8¢*/°0 in ana__initial.
The linear equation of state parameters are set in ocean__upwelling.in:

RO == 1027.0d40 ! kg/m3

TO == 14.040 I Celsius

S0 == 35.0d0 ! PSU
TCOEF == 1.7d-4 I 1/Celsius
SCOEF == 0.0d0 ! 1/PSU

90

Since density does not depend on salinity, we have a choice of how to handle the second tracer.
The salinity is set to a uniform value of SO, though it could be left out entirely if we undefine
SALINITY and set NAT to 1.

7.2.5 Boundary conditions

The option EW__PERIODIC has been chosen for the eastern and western edges. None of the
open boundary options have been selected for the Northern and Southern edges; they are both then
given the default wall conditions and no boundary values are required.

7.2.6 Model forcing

In this problem we want to resolve the surface Ekman layer and to use a surface wind stress
rather than a body force. We want the amplitude of the wind to ramp up with time so we modify
ana_ smflux.h accordingly. The wind will build to an amplitude of 0.1 Pascals / p,, or 10~4m?2s~2.

We need to edit ana__vmix.h to make sure that the vertical viscosity Akv is set to the value
we want. This must be large at the surface (1072m?s~1) to create a thick Ekman layer, but has
been chosen to decrease with depth. We also need to check that ana_ sbflux, ana_ stflux, etc.
are set correctly, in this case taking the default of zero rather than explicitly setting anything for
UPWELLING. However, we do set ana__srflux to be non-zero in case we opt to turn on one of

the biology models.

7.2.7 ocean.in

The model has been set up to run for five days with an internal time-step of 300 s and an external
time-step of 10 s.

NTIMES == 1440
DT == 300.0d0
NDTFAST == 30

We will write history, averages, and diagnostics records every 1/4 day, restart records once a day.

NRREC == 0
LcycleRST == T
NRST == 288
LDEFOUT == T
NHIS == 72
NDEFHIS == 0
NTSAVG == 1
NAVG == 72
NDEFAVG == 0
NTSDIA == 1
NDIA == 72
NDEFDIA == 0

The value of the linear bottom friction coefficient rdrg is set to 3.0 x 10~% and the channel walls
are set to be free-slip:

RDRG == 3.0d-04 I m/s
GAMMA2 == 1.0d0

The vertical stretching is set to a modest value of theta_ s= 3:

91

Vtransform == 1 I transformation equation

Vstretching == 1 | stretching function
THETA_S == 3.0d0 | surface stretching parameter
THETA_B == 0.0d0 ! bottom stretching parameter
TCLINE == 50.0d0 ! critical depth (m)

7.2.8 Output

The model writes some information to standard out, after setting ninfo to 72:

Process Information:
Thread # 0 (pid= 32022) is active.

Model Input Parameters: ROMS/TOMS version 3.2
Friday - October 30, 2009 - 9:11:20 AM

Wind-Driven Upwelling/Downwelling over a Periodic Channel

Operating system : Linux

CPU/hardware 1 x86_64

Compiler system : pgi

Compiler command : /usr/local/pkg/pgi/current/1inux86-64/6.1/bin/pgf0
Compiler flags : -03 -tp k8-64 -Mfree

SVN Root URL : https://www.myroms.org/svn/omlab/branches/kate/trunk
SVN Revision

Local Root : /export/staffdata/kate/roms/kate_svn
Header Dir : /export/staffdata/kate/roms/kate_svn/ROMS/Include
Header file : upwelling.h

Analytical Dir: /export/staffdata/kate/roms/kate_svn/ROMS/Functionals

Resolution, Grid 01: 0041x0080x016, Parallel Threads: 1, Tiling: 001x001

Physical Parameters, Grid: 01

1440 ntimes Number of timesteps for 3-D equatiomns.
300.000 dt Timestep size (s) for 3-D equatiomns.
30 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
288 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information

92

to standard output.

T 1ldefout Switch to create a new output NetCDF file(s).
72 nHIS Number of timesteps between the writing fields
into history file.
1 ntsAVG Starting timestep for the accumulation of output
time-averaged data.
72 nAVG Number of timesteps between the writing of
time-averaged data into averages file.
1 ntsDIA Starting timestep for the accumulation of output
time-averaged diagnostics data.
72 nDIA Number of timesteps between the writing of
time-averaged data into diagnostics file.
.0000E+00 tnu2(01) Horizontal, harmonic mixing coefficient (m2/s)
for tracer 01: temp
.0000E+00 tnu2(02) Horizontal, harmonic mixing coefficient (m2/s)
for tracer 02: salt
.0000E+00 visc2 Horizontal, harmonic mixing coefficient (m2/s)
for momentum.
.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)
for tracer 02: salt
.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
.0000E-04 rdrg Linear bottom drag coefficient (m/s).
.0000E-03 rdrg2 Quadratic bottom drag coefficient.
.0000E-02 Zob Bottom roughness (m).
1 Vtransform S-coordinate transformation equation.
1 Vstretching S-coordinate stretching function.
.0000E+00 theta_s S-coordinate surface control parameter.
.0000E+00 theta_b S-coordinate bottom control parameter.
50.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1025.000 rhoO Mean density (kg/m3) for Boussinesq approximation.
0.000 dstart Time-stamp assigned to model initialization (days).
0.00 time_ref Reference time for units attribute (yyyymmdd.dd)
.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
.0000E+00 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.
.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
.0000E+00 obcfac Factor between passive and active
open boundary conditions.
14.000 TO Background potential temperature (C) constant.
35.000 SO Background salinity (PSU) constant.

93

1027.000 RO Background density (kg/m3) used in linear Equation

of State.
1.7000E-04 Tcoef Thermal expansion coefficient (1/Celsius).
0.0000E+00 Scoef Saline contraction coefficient (1/PSU).
1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idOvel) Write out omega vertical velocity.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt

Output/Input Files:

Output Restart File: ocean_rst.nc
Output History File: ocean_his.nc
Output Averages File: ocean_avg.nc
Output Diagnostics File: ocean_dia.nc
I0 Variable Information File: ROMS/External/varinfo.dat

Tile partition information for Grid 01: 0041x0080x0016 tiling: 001x001

tile Istr Iend Jstr Jend Npts
Number of tracers: 2
0 1 41 1 80 52480

Tile minimum and maximum fractional grid coordinates:
(interior points only)

tile Xmin Xmax Ymin Ymax grid
0 -2.50 43.50 -0.50 82.50 RHO-points
0 -2.50 43.50 -0.50 82.50 U-points
0 -2.50 43.50 -0.50 82.50 V-points

Activated C-preprocessing Options:

UPWELLING Wind-Driven Upwelling/Downwelling over a Periodic Channel
ANA_BSFLUX Analytical kinematic bottom salinity flux.

ANA_BTFLUX Analytical kinematic bottom temperature flux.

ANA_GRID Analytical grid set-up.

ANA_INITIAL Analytical initial conditions.

ANA_SMFLUX Analytical kinematic surface momentum flux.

94

ANA_SSFLUX Analytical kinematic surface salinity flux.

ANA_STFLUX Analytical kinematic surface temperature flux.
ANA_VMIX Analytical vertical mixing coefficients.
ASSUMED_SHAPE Using assumed-shape arrays.

AVERAGES Writing out time-averaged fields.

DIAGNOSTICS_TS Computing and writing tracer diagnostic terms.
DIAGNOSTICS_UV Computing and writing momentum diagnostic terms.
DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002).
DOUBLE_PRECISION Double precision arithmetic.

EW_PERIODIC East-West periodic boundaries.

MIX_S_TS Mixing of tracers along constant S-surfaces.

MIX_S_UV Mixing of momentum along constant S-surfaces.
NONLINEAR Nonlinear Model.

!NONLIN_EOS Linear Equation of State for seawater.

POWER_LAW Power-law shape time-averaging barotropic filter.
PROFILE Time profiling activated .

'RST_SINGLE Double precision fields in restart NetCDF file.
SALINITY Using salinity.

SOLVE3D Solving 3D Primitive Equatioms.

SPLINES Conservative parabolic spline reconstruction.
TS_U3HADVECTION Third-order upstream horizontal advection of tracers.
TS_CAVADVECTION Fourth-order centered vertical advection of tracers.
TS_DIF2 Harmonic mixing of tracers.

UV_ADV Advection of momentum.

UV_COR Coriolis term.

UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum.
UV_C4VADVECTION Fourth-order centered vertical advection of momentum.
UV_LDRAG Linear bottom stress.

UV_VIS2 Harmonic mixing of momentum.

VAR_RHO_2D Variable density barotropic mode.

INITIAL: Configuring and initializing forward nonlinear model ...

Vertical S-coordinate System:

level S-coord Cs-curve at_hmin over_slope at_hmax
16 0.0000000 0.0000000 0.000 0.000 0.000
15 -0.0625000 -0.0188264 -1.575 -2.750 -3.925
14 -0.1250000 -0.0383166 -3.150 -5.541 -7.932
13 -0.1875000 -0.0591578 -4.725 -8.417 -12.108
12 -0.2500000 -0.0820849 -6.300 -11.422 -16.544
11 -0.3125000 -0.1079063 -7.875 -14.608 -21.342
10 -0.3750000 -0.1375324 -9.450 -18.032 -26.614
9 -0.4375000 -0.1720078 -11.025 -21.758 -32.492
8 -0.5000000 -0.2125480 -12.600 -25.863 -39.126
7 -0.5625000 -0.2605826 -14.175 -30.436 -46.696
6 -0.6250000 -0.3178051 -15.750 -35.581 -55.412
5 -0.6875000 -0.3862333 -17.325 -41.426 -65.527

95

-77.341
-91.216
-107.586
-126.971
-150.000

Accumulated to Current Step

4 -0.7500000 -0.4682798 -18.900 -48.121
3 -0.8125000 -0.5668375 -20.475 -55.846
2 -0.8750000 -0.6853816 -22.050 -64.818
1 -0.9375000 -0.8280918 -23.625 -75.298
0 -1.0000000 -1.0000000 -25.200 -87.600
Time Splitting Weights: ndtfast = 30 nfast = 42
Primary Secondary
1-0.0008094437383769 0.0333333333333333-0.0008094437383769
2-0.0014053566728197 0.0333603147912792-0.0022148004111966
3-0.0017877524645903 0.0334071600137066-0.0040025528757869
4-0.0019566842408176 0.0334667517625262-0.0059592371166046
5-0.0019122901320372 0.0335319745705535-0.0078715272486418
6-0.0016548570247459 0.0335957175749547-0.0095263842733877
7-0.0011849025289723 0.0336508794757796-0.0107112868023601
8-0.0005032751608632 0.0336903762267453-0.0112145619632232
9 0.0003887272597151 0.0337071520654408-0.0108258347035082
10 0.0014892209965583 0.0336941944901169-0.0093366137069498
11 0.0027955815694920 0.0336445537902317-0.0065410321374578
12 0.0043042707117221 0.0335513677379153-0.0022367614257357
13 0.0060106451121704 0.0334078920475245 0.0037738836864347
14 0.0079087469427945 0.0332075372104522 0.0116826306292293
15 0.0099910761708919 0.0329439123123590 0.0216737068001212
16 0.0122483446563884 0.0326108764399960 0.0339220514565096
17 0.0146692120341107 0.0322025982847830 0.0485912634906203
18 0.0172400033810439 0.0317136245503127 0.0658312668716642
19 0.0199444086685725 0.0311389577709445 0.0857756755402367
20 0.0227631639997064 0.0304741441486588 0.1085388395399431
21 0.0256737146312911 0.0297153720153352 0.1342125541712341
22 0.0286498597812016 0.0288595815276255 0.1628624139524358
23 0.0316613792205220 0.0279045862015855 0.1945237931729577
24 0.0346736416507075 0.0268492068942347 0.2291974348236652
25 0.0376471948657328 0.0256934188392112 0.2668446296893980
26 0.0405373376992232 0.0244385123436867 0.3073819673886213
27 0.0432936737565710 0.0230872677537126 0.3506756411451923
28 0.0458596469320356 0.0216441452951603 0.3965352880772279
29 0.0481720587108285 0.0201154903974257 0.4447073467880564
30 0.0501605672561820 0.0185097551070648 0.4948679140442383
31 0.0517471682814031 0.0168377361985254 0.5466150823256414
32 0.0528456577069106 0.0151128305891453 0.5994607400325521
33 0.0533610761022577 0.0133513086655816 0.6528218161348097
34 0.0531891349131380 0.0115726061288397 0.7060109510479476
35 0.0522156244733761 0.0097996349650684 0.7582265755213236
36 0.0503158038019030 0.0080591141492892 0.8085423793232266
37 0.0473537721847154 0.0063819206892258 0.8558961515079421
38 0.0431818225418188 0.0048034616164019 0.8990779740497608
39 0.0376397765791564 0.0033640675316746 0.9367177506289172
40 0.0305543017255206 0.0021094083123694 0.9672720523544379

96

O O O O O O OO OO OO OO OO O OO OO OOOOO OO0 OO OOOO OO

.0333333333333333
.0666936481246126
.1001008081383191
.1335675599008453
.1670995344713988
.2006952520463535
.2343461315221331
.2680365077488784
.3017436598143192
.3354378543044362
.3690824080946679
.4026337758325830
.4360416678801077
.4692492050905598
.5021931174029188
.5348039938429148
.5670065921276978
.5987202166780104
.6298591744489550
.6603333185976138
.6900486906129490
.7189082721405745
.7468128583421599
.7736620652363947
.7993554840756058
.8237939964192925
.8468812641730052
.8685254094681655
.8886408998655913
.9071506549726561
.9239883911711814
.9391012217603267
.9524525304259083
.9640251365547480
.9738247715198163
.9818838856691065
.9882658063583314
.9930692679747333
.9964333355064079
.9985427438187774

41 0.0217382098544504 0.0010909315881854 0.9890102622088882 0.9996336754069628
42 0.0109897377911118 0.0003663245930371 1.0000000000000000 0.9999999999999998

ndtfast, nfast = 30 42 nfast/ndtfast = 1.40000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):
1.000000000000 1.047601458608 0.523800729304 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.18933

.00000000E+00 km
.00000000E+00 km
.00000000E+00 km
.00000000E+00 km
.57503054E+00 m
.30290891E+01 m

Minimum X-grid spacing, DXmin =
Maximum X-grid spacing, DXmax =
Minimum Y-grid spacing, DYmin =
Maximum Y-grid spacing, DYmax =
Minimum Z-grid spacing, DZmin =
Maximum Z-grid spacing, DZmax =

N P, P PP

2.22358627E-01
5.42494240E-01
2.47800000E-02

Minimum barotropic Courant Number
Maximum barotropic Courant Number
Maximum Coriolis Courant Number

Maximum grid stiffness ratios: rx0
rxl

6.931666E-02 (Beckmann and Haidvogel)
1.188435E+00 (Haney)

Initial basin volumes: TotVolume = 3.8843755884E+11 m3
MinVolume = 1.6168290365E+06 m3
MaxVolume = 2.3029089059E+07 m3

Max/Min = 1.4243366824E+01

NL ROMS/TOMS: started time-stepping: (Grid: 01 TimeSteps: 00000001 - 00001440)

STEP Day HH:MM:SS KINETIC_ENRG POTEN_ENRG TOTAL_ENRG NET_VOLUME

0 0 00:00:00 0.000000E+00 6.579497E+02 6.579497E+02 3.884376E+11
DEF_HIS - creating history file: ocean_his.nc
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000001
DEF_AVG - creating average file: ocean_avg.nc
DEF_DIAGS - creating diagnostics file: ocean_dia.nc

72 0 06:00:00 8.366194E-06 6.579497E+02 6.579497E+02 3.884376E+11
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000002
WRT_AVG - wrote averaged fields into time record = 0000001
WRT_DIAGS - wrote diagnostics fields into time record = 0000001

144 0 12:00:00 7.416156E-05 6.579497E+02 6.579498E+02 3.884376E+11
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000003
WRT_AVG - wrote averaged fields into time record = 0000002
WRT_DIAGS - wrote diagnostics fields into time record = 0000002

216 0 18:00:00 2.317054E-04 6.579497E+02 6.579499E+02 3.884376E+11
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000004

97

WRT_AVG - wrote
WRT_DIAGS - wrote

288 1 00:00:00
WRT_HIS - wrote
WRT_AVG - wrote
WRT_DIAGS - wrote
WRT_RST - wrote

1440 5 00:00:00

3.884376E+11

WRT_HIS - wrote
= 0000021

WRT_AVG - wrote
0000020

WRT_DIAGS - wrote
0000020

WRT_RST - wrote
= 0000001

averaged fields into time record = 0000003

diagnostics fields into time record = 0000003
5.382882E-04 6.579497E+02 6.579503E+02 3.884376E+11
history fields (Index=1,1) into time record = 0000005
averaged fields into time record = 0000004

diagnostics fields into time record = 0000004

re-start fields (Index=1,1) into time record = 0000001

2.476731E-02 6.579533E+02 6.579781E+02
history fields (Index=1,1) into time record
averaged fields into time record =
diagnostics fields into time record =

re-start fields (Index=1,1) into time record

Elapsed CPU time (seconds):

Thread # O CPU: 557.021
Total: 557.021

Nonlinear model elapsed time profile:

Initializationveuniiiiiiniin i 0.015 (0.0027 %)
Reading of input datac..oeeiniininennnenn. 0.002 (0.0004 %)
Processing of input data 0.127 (0.0229 %)
Processing of output time averaged data 55.303 (9.9284 %)
Computation of vertical boundary conditions 0.419 (0.0752 %)
Computation of global information integrals 2.316 (0.4159 %)
Writing of output data, 1.923 (0.3453 %)
Model 2D Kernelveuniinenneeeneaeen. 365.560 (65.6278 %)
2D/3D coupling, vertical metrics 1.950 (0.3500 %)
Omega vertical velocityo, 3.135 (0.5628 %)
Equation of state for seawater 1.645 (0.2954 %)
3D equations right-side terms 14.268 (2.5615 %)
3D equations predictor Stepciiin... 31.518 (5.6583 %)
Pressure gradient i, 10.157 (1.8235 %)
Harmonic mixing of tracers, S-surfaces 4.130 (0.7414 %)
Harmonic stress tensor, S-surfaces 8.211 (1.4741 %)
Corrector time-step for 3D momentum 27.976 (5.0225 %)
Corrector time-step for tracers 19.558 (3.5112 %)
Total: 548.216 98.4193
A1l percentages are with respect to total time = 557.021

ROMS/TOMS - Output NetCDF summary for Grid O1:
number of time records written in HISTORY file = 00000021

98

00000002
00000020

number of time records written in RESTART file
number of time records written in AVERAGE file

Analytical header files used:

ROMS/Functionals/ana_btflux.h
ROMS/Functionals/ana_grid.h
ROMS/Functionals/ana_initial.h
ROMS/Functionals/ana_smflux.h
ROMS/Functionals/ana_stflux.h
ROMS/Functionals/ana_vmix.h

ROMS/TOMS: DONE... Friday - October 30, 2009 - 9:20:38 AM

Note that it ends by printing out a profile of where the time was used—the ratios will vary depending
on the application.

NetCDF history and restart files are also created, containing the model fields at the requested
times. We have asked it to save restart records every day. In this case, the restart file has been told
to “cycle”, or to write over the second last record. The restart file at the end of the run contains
the fields at day 4 and day 5. The history file contains records for 0, 1/4, 1/2, 3/4, and 1 day, etc.,
while the averages and diagnostics files are at 1/8, 3/8, 5/8, and 7/8 day, etc.. Plots can be made
from any one of these files, using the plotting software described in Selected frames from such

plots are shown in Fig. [17 to

7.3 Northeast Pacific example

The upwelling/downwelling examples is one in which all the start-up fields are defined analytically.
The other extreme is one in which everything is read from files, as in our Northeast Pacific simu-
lations. Figure [21] shows the bathymetry and the extent of this domain, which is rectangular in a
conic map projection.

7.3.1 nep5.h

The C preprocessor variable NEP5 has been chosen to label our Northeast Pacific domain, using
the fifth generation grid file. The header include file then becomes nep5.h:

/*
** (Options for Northeast Pacific (NEP5) simulation

*/

#undef NETCDF4
#undef PARALLEL_IO
#undef OFFLINE_FLOATS

/* general */

#define CURVGRID
#define MASKING
#define NONLIN_EOS
#define SOLVE3D
#define SALINITY
#ifdef SOLVE3D

99

ROMS 3.2

Upwelling

150.0
143.8
137.5
131.3
125.0
118.8
112.6
106.3
100.1
93.8
87.6
81.4
75.1
68.9
62.6
56.4
50.2
43.9
vy
31.4

Okmb— 1 1« 1 1T 1 1 4] 25 2
Min= 2.5200E+01 Max= 1.5000E-+02

Bathymetry at RHO—points {m)

Figure 17: The upwelling/downwelling bathymetry.

100

ROMS 3.2

Upwelling

1.00 Day

y by iy by by by By y H 15-9
vin

15.5
o o e o 15.1
14.6
14.2
B 7 13.8
13.4
12.9
12.5
12.1
- - 11.7
11.2
10.8
10.4

Lk

9.1
B.7
B.3

7.8
e e "4

Min= 7.4098E+00 Max= 1.5813E+01
Total Velocity Vectors {cm/s) at Level 18

e e e e e e

Figure 18: Surface velocities after one day, showing the flow to the left of the wind (southern
hemisphere).

101

ROMS 3.2

Upwelling

1.00 Day

0 - 0 :
m E m .
100 - 100 —5:
0 km 50 - 0 km 50 4
Min=—16903E+01 Max-——889623E—01 Min=—43737E+00 Max- 1 BESB3E+DD
Total U-velocity (cm/s} Total V—velocity (cm/s)

0 .