Grid Generation for ROMS

Kate Hedstrom January, 2011

Curvilinear orthogonal grids

- Define the boundary, interior filled in
- Fine resolution at capes, coarse resolution in bays
- Best with four 90 degree corners
- One method allows you to control spacing on two adjacent edges

ARSC

Curvilinear grids, continued

- Algorithm uses complex math, requires flat geometry
- Masking is a useful feature

ARSC
Orthogonal grids on a sphere

- Find the domain boundary in latitude, longitude
- Use conformal map projection to obtain boundary x, y
- Create grid in x, y Euclidean space
- Use inverse map projection
- Recompute grid metrics for spherical geometry

ARSC

Common conformal (anglepreserving) map projections

Mercator

Lambert Conformal Conic

ARSC

Bathymetry datasets

ETOPO5
Smith and Sandwell
Arctic Region Supercomputing Center
Hec

ARSC

Grid Generation Programs

- Seagrid
- Matlab, uses RECT
- Gridpak
- Fortran, uses RECT
- Gridgen - pyroms calls this code
- C, uses Christofel transform
- Delft3D
- Costs \$\$

Using SeaGrid

- Extract coastline
- Pick one of five resolutions from GSHHS
- Pick latitude, longitude range
- Extract bathymetry
- Pick latitude, longitude range of ETOPO5 or find something better for your domain
- Run SeaGrid

Running SeaGrid

- Load coastline
- Load bathymetry
- Set four corners
- Fuss with boundary
- Set number of gridpoints
- Compute mask and bathymetry
- Export to ROMS or POM
<SeaGrid> <View> <Compute> <Toggle> <Help>

Considerations

- Know the oceanography
- Parallel tiling
- (Lm+2, Mm+2)
- Lines are through rho points, outermost are image points

ARSC

- Rho point

ARSC

Still need mask editing

ARSC

ARSC

Prince William Sound grid

Arctic Region Supercomputing Center

ARSC

Bathymetry

Arctic Region Supercomputing Center

