| 1 | !
|
|---|
| 2 | ! ROMS/TOMS Standard Input parameters.
|
|---|
| 3 | !
|
|---|
| 4 | !svn $Id: ocean_lmd_test.in 165 2008-03-13 21:18:13Z arango $
|
|---|
| 5 | !========================================================= Hernan G. Arango ===
|
|---|
| 6 | ! Copyright (c) 2002-2008 The ROMS/TOMS Group !
|
|---|
| 7 | ! Licensed under a MIT/X style license !
|
|---|
| 8 | ! See License_ROMS.txt !
|
|---|
| 9 | !==============================================================================
|
|---|
| 10 | ! !
|
|---|
| 11 | ! Input parameters can be entered in ANY order, provided that the parameter !
|
|---|
| 12 | ! KEYWORD (usually, upper case) is typed correctly followed by "=" or "==" !
|
|---|
| 13 | ! symbols. Any comment lines are allowed and must begin with an exclamation !
|
|---|
| 14 | ! mark (!) in column one. Comments may appear to the right of a parameter !
|
|---|
| 15 | ! specification to improve documentation. Comments will be ignored during !
|
|---|
| 16 | ! reading. Blank lines are also allowed and ignored. Continuation lines in !
|
|---|
| 17 | ! a parameter specification are allowed and must be preceded by a backslash !
|
|---|
| 18 | ! (\). In some instances, more than one value is required for a parameter. !
|
|---|
| 19 | ! If fewer values are provided, the last value is assigned for the entire !
|
|---|
| 20 | ! parameter array. The multiplication symbol (*), without blank spaces in !
|
|---|
| 21 | ! between, is allowed for a parameter specification. For example, in a two !
|
|---|
| 22 | ! grids nested application: !
|
|---|
| 23 | ! !
|
|---|
| 24 | ! AKT_BAK == 2*1.0d-6 2*5.0d-6 ! m2/s !
|
|---|
| 25 | ! !
|
|---|
| 26 | ! indicates that the first two entries of array AKT_BAK, in fortran column- !
|
|---|
| 27 | ! major order, will have the same value of "1.0d-6" for grid 1, whereas the !
|
|---|
| 28 | ! next two entries will have the same value of "5.0d-6" for grid 2. !
|
|---|
| 29 | ! !
|
|---|
| 30 | ! In multiple levels of nesting and/or multiple connected domains step-ups, !
|
|---|
| 31 | ! "Ngrids" entries are expected for some of these parameters. In such case, !
|
|---|
| 32 | ! the order of the entries for a parameter is extremely important. It must !
|
|---|
| 33 | ! follow the same order (1:Ngrids) as in the state variable declaration. The !
|
|---|
| 34 | ! USER may follow the above guidelines for specifying his/her values. These !
|
|---|
| 35 | ! parameters are marked by "==" plural symbol after the KEYWORD. !
|
|---|
| 36 | ! !
|
|---|
| 37 | !==============================================================================
|
|---|
| 38 | !
|
|---|
| 39 | ! Application title.
|
|---|
| 40 |
|
|---|
| 41 | TITLE = Large et al. (1994) KPP Test
|
|---|
| 42 |
|
|---|
| 43 | ! C-preprocessing Flag.
|
|---|
| 44 |
|
|---|
| 45 | MyAppCPP = LMD_TEST
|
|---|
| 46 |
|
|---|
| 47 | ! Input variable information file name. This file needs to be processed
|
|---|
| 48 | ! first so all information arrays can be initialized properly.
|
|---|
| 49 |
|
|---|
| 50 | VARNAME = ROMS/External/varinfo.dat
|
|---|
| 51 |
|
|---|
| 52 | ! Grid dimension parameters. See notes below in the Glossary for how to set
|
|---|
| 53 | ! these parameters correctly.
|
|---|
| 54 |
|
|---|
| 55 | Lm == 10 ! Number of I-direction INTERIOR RHO-points
|
|---|
| 56 | Mm == 10 ! Number of J-direction INTERIOR RHO-points
|
|---|
| 57 | N == 50 ! Number of vertical levels
|
|---|
| 58 |
|
|---|
| 59 | Nbed = 0 ! Number of sediment bed layers
|
|---|
| 60 |
|
|---|
| 61 | NAT = 2 ! Number of active tracers (usually, 2)
|
|---|
| 62 | NPT = 0 ! Number of inactive passive tracers
|
|---|
| 63 | NCS = 0 ! Number of cohesive (mud) sediment tracers
|
|---|
| 64 | NNS = 0 ! Number of non-cohesive (sand) sediment tracers
|
|---|
| 65 |
|
|---|
| 66 | ! Domain decomposition parameters for serial, distributed-memory or
|
|---|
| 67 | ! shared-memory configurations used to determine tile horizontal range
|
|---|
| 68 | ! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].
|
|---|
| 69 |
|
|---|
| 70 | NtileI == 1 ! I-direction partition
|
|---|
| 71 | NtileJ == 1 ! J-direction partition
|
|---|
| 72 |
|
|---|
| 73 | ! Time-Stepping parameters.
|
|---|
| 74 |
|
|---|
| 75 | NTIMES == 720
|
|---|
| 76 | DT == 120.0d0
|
|---|
| 77 | NDTFAST == 10
|
|---|
| 78 |
|
|---|
| 79 | ! Model iteration loops parameters.
|
|---|
| 80 |
|
|---|
| 81 | ERstr = 1
|
|---|
| 82 | ERend = 1
|
|---|
| 83 | Nouter = 1
|
|---|
| 84 | Ninner = 1
|
|---|
| 85 | Nintervals = 1
|
|---|
| 86 |
|
|---|
| 87 | ! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
|
|---|
| 88 | ! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
|
|---|
| 89 | ! analysis. NCV must be greater than NEV (see documentation below).
|
|---|
| 90 |
|
|---|
| 91 | NEV = 2 ! Number of eigenvalues
|
|---|
| 92 | NCV = 10 ! Number of eigenvectors
|
|---|
| 93 |
|
|---|
| 94 | ! Input/Output parameters.
|
|---|
| 95 |
|
|---|
| 96 | NRREC == 0
|
|---|
| 97 | LcycleRST == T
|
|---|
| 98 | NRST == 720
|
|---|
| 99 | NSTA == 1
|
|---|
| 100 | NFLT == 1
|
|---|
| 101 | NINFO == 1
|
|---|
| 102 |
|
|---|
| 103 | ! Output history, average, diagnostic files parameters.
|
|---|
| 104 |
|
|---|
| 105 | LDEFOUT == T
|
|---|
| 106 | NHIS == 60
|
|---|
| 107 | NDEFHIS == 0
|
|---|
| 108 | NTSAVG == 1
|
|---|
| 109 | NAVG == 60
|
|---|
| 110 | NDEFAVG == 0
|
|---|
| 111 | NTSDIA == 1
|
|---|
| 112 | NDIA == 60
|
|---|
| 113 | NDEFDIA == 0
|
|---|
| 114 |
|
|---|
| 115 | ! Output tangent linear and adjoint models parameters.
|
|---|
| 116 |
|
|---|
| 117 | LcycleTLM == F
|
|---|
| 118 | NTLM == 60
|
|---|
| 119 | NDEFTLM == 0
|
|---|
| 120 | LcycleADJ == F
|
|---|
| 121 | NADJ == 60
|
|---|
| 122 | NDEFADJ == 0
|
|---|
| 123 | NSFF == 60
|
|---|
| 124 |
|
|---|
| 125 | ! Output check pointing GST restart parameters.
|
|---|
| 126 |
|
|---|
| 127 | LrstGST = F ! GST restart switch
|
|---|
| 128 | MaxIterGST = 500 ! maximun number of iterations
|
|---|
| 129 | NGST = 10 ! check pointing interval
|
|---|
| 130 |
|
|---|
| 131 | ! Relative accuracy of the Ritz values computed in the GST analysis.
|
|---|
| 132 |
|
|---|
| 133 | Ritz_tol = 1.0d-15
|
|---|
| 134 |
|
|---|
| 135 | ! Harmonic/biharmonic horizontal diffusion of tracer: [1:NAT+NPT,Ngrids].
|
|---|
| 136 |
|
|---|
| 137 | TNU2 == 0.0d0 0.0d0 ! m2/s
|
|---|
| 138 | TNU4 == 0.0d0 0.0d0 ! m4/s
|
|---|
| 139 |
|
|---|
| 140 | ! Harmononic/biharmonic, horizontal viscosity coefficient: [Ngrids].
|
|---|
| 141 |
|
|---|
| 142 | VISC2 == 0.0d0 ! m2/s
|
|---|
| 143 | VISC4 == 0.0d0 ! m4/s
|
|---|
| 144 |
|
|---|
| 145 | ! Vertical mixing coefficients for active tracers: [1:NAT+NPT,Ngrids]
|
|---|
| 146 |
|
|---|
| 147 | AKT_BAK == 1.0d-6 1.0d-6 ! m2/s
|
|---|
| 148 |
|
|---|
| 149 | ! Vertical mixing coefficient for momentum: [Ngrids].
|
|---|
| 150 |
|
|---|
| 151 | AKV_BAK == 1.0d-5 ! m2/s
|
|---|
| 152 |
|
|---|
| 153 | ! Turbulent closure parameters.
|
|---|
| 154 |
|
|---|
| 155 | AKK_BAK == 5.0d-6 ! m2/s
|
|---|
| 156 | AKP_BAK == 5.0d-6 ! m2/s
|
|---|
| 157 | TKENU2 == 0.0d0 ! m2/s
|
|---|
| 158 | TKENU4 == 0.0d0 ! m4/s
|
|---|
| 159 |
|
|---|
| 160 | ! Generic length-scale turbulence closure parameters.
|
|---|
| 161 |
|
|---|
| 162 | GLS_P == 3.0d0 ! K-epsilon
|
|---|
| 163 | GLS_M == 1.5d0
|
|---|
| 164 | GLS_N == -1.0d0
|
|---|
| 165 | GLS_Kmin == 7.6d-6
|
|---|
| 166 | GLS_Pmin == 1.0d-12
|
|---|
| 167 |
|
|---|
| 168 | GLS_CMU0 == 0.5477d0
|
|---|
| 169 | GLS_C1 == 1.44d0
|
|---|
| 170 | GLS_C2 == 1.92d0
|
|---|
| 171 | GLS_C3M == -0.4d0
|
|---|
| 172 | GLS_C3P == 1.0d0
|
|---|
| 173 | GLS_SIGK == 1.0d0
|
|---|
| 174 | GLS_SIGP == 1.30d0
|
|---|
| 175 |
|
|---|
| 176 | ! Constants used in surface turbulent kinetic energy flux computation.
|
|---|
| 177 |
|
|---|
| 178 | CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
|
|---|
| 179 | ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
|
|---|
| 180 | SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
|
|---|
| 181 | CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking
|
|---|
| 182 |
|
|---|
| 183 | ! Constants used in momentum stress computation.
|
|---|
| 184 |
|
|---|
| 185 | RDRG == 3.0d-04 ! m/s
|
|---|
| 186 | RDRG2 == 3.0d-03 ! nondimensional
|
|---|
| 187 | Zob == 0.02d0 ! m
|
|---|
| 188 | Zos == 0.02d0 ! m
|
|---|
| 189 |
|
|---|
| 190 | ! Height (m) of atmospheric measurements for Bulk fluxes parameterization.
|
|---|
| 191 |
|
|---|
| 192 | BLK_ZQ == 10.0d0 ! air humidity
|
|---|
| 193 | BLK_ZT == 10.0d0 ! air temperature
|
|---|
| 194 | BLK_ZW == 10.0d0 ! winds
|
|---|
| 195 |
|
|---|
| 196 | ! Minimum depth for wetting and drying.
|
|---|
| 197 |
|
|---|
| 198 | DCRIT == 0.10d0 ! m
|
|---|
| 199 |
|
|---|
| 200 | ! Various parameters.
|
|---|
| 201 |
|
|---|
| 202 | WTYPE == 1
|
|---|
| 203 | LEVSFRC == 15
|
|---|
| 204 | LEVBFRC == 1
|
|---|
| 205 |
|
|---|
| 206 | ! Vertical S-coordinates parameters, [1:Ngrids].
|
|---|
| 207 |
|
|---|
| 208 | THETA_S == 1.0d-4 ! 0 < THETA_S < 20
|
|---|
| 209 | THETA_B == 0.0d0 ! 0 < THETA_B < 1
|
|---|
| 210 | TCLINE == 50.0d0 ! m
|
|---|
| 211 |
|
|---|
| 212 | ! Mean Density and Brunt-Vaisala frequency.
|
|---|
| 213 |
|
|---|
| 214 | RHO0 = 1025.0d0 ! kg/m3
|
|---|
| 215 | BVF_BAK = 1.0d-5 ! 1/s2
|
|---|
| 216 |
|
|---|
| 217 | ! Time-stamp assigned for model initialization, reference time
|
|---|
| 218 | ! origin for tidal forcing, and model reference time for output
|
|---|
| 219 | ! NetCDF units attribute.
|
|---|
| 220 |
|
|---|
| 221 | DSTART = 0.0d0 ! days
|
|---|
| 222 | TIDE_START = 0.0d0 ! days
|
|---|
| 223 | TIME_REF = 0.0d0 ! yyyymmdd.dd
|
|---|
| 224 |
|
|---|
| 225 | ! Nudging/relaxation time scales, inverse scales will be computed
|
|---|
| 226 | ! internally, [1:Ngrids].
|
|---|
| 227 |
|
|---|
| 228 | TNUDG == 2*0.0d0 ! days
|
|---|
| 229 | ZNUDG == 0.0d0 ! days
|
|---|
| 230 | M2NUDG == 0.0d0 ! days
|
|---|
| 231 | M3NUDG == 0.0d0 ! days
|
|---|
| 232 |
|
|---|
| 233 | ! Factor between passive (outflow) and active (inflow) open boundary
|
|---|
| 234 | ! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
|
|---|
| 235 | ! than on outflow (recommended).
|
|---|
| 236 |
|
|---|
| 237 | OBCFAC == 0.0d0 ! nondimensional
|
|---|
| 238 |
|
|---|
| 239 | ! Linear equation of State parameters:
|
|---|
| 240 |
|
|---|
| 241 | R0 == 1027.0d0 ! kg/m3
|
|---|
| 242 | T0 == 10.0d0 ! Celsius
|
|---|
| 243 | S0 == 35.0d0 ! PSU
|
|---|
| 244 | TCOEF == 1.7d-4 ! 1/Celsius
|
|---|
| 245 | SCOEF == 7.6d-4 ! 1/PSU
|
|---|
| 246 |
|
|---|
| 247 | ! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)
|
|---|
| 248 |
|
|---|
| 249 | GAMMA2 == -1.0d0
|
|---|
| 250 |
|
|---|
| 251 | ! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
|
|---|
| 252 | ! DstrS must be less or equal to DendS. If both values are zero, their
|
|---|
| 253 | ! values are reset internally to the full range of the adjoint integration.
|
|---|
| 254 |
|
|---|
| 255 | DstrS == 0.0d0 ! starting day
|
|---|
| 256 | DendS == 0.0d0 ! ending day
|
|---|
| 257 |
|
|---|
| 258 | ! Starting and ending vertical levels of the 3D adjoint state variables
|
|---|
| 259 | ! whose sensitivity is required.
|
|---|
| 260 |
|
|---|
| 261 | KstrS == 1 ! starting level
|
|---|
| 262 | KendS == 1 ! ending level
|
|---|
| 263 |
|
|---|
| 264 | ! Logical switches (TRUE/FALSE) to specify the adjoint state variables
|
|---|
| 265 | ! whose sensitivity is required.
|
|---|
| 266 |
|
|---|
| 267 | Lstate(isFsur) == F ! free-surface
|
|---|
| 268 | Lstate(isUbar) == F ! 2D U-momentum
|
|---|
| 269 | Lstate(isVbar) == F ! 2D V-momentum
|
|---|
| 270 | Lstate(isUvel) == F ! 3D U-momentum
|
|---|
| 271 | Lstate(isVvel) == F ! 3D V-momentum
|
|---|
| 272 |
|
|---|
| 273 | ! Logical switches (TRUE/FALSE) to specify the adjoint state tracer
|
|---|
| 274 | ! variables whose sensitivity is required (NT values are expected).
|
|---|
| 275 |
|
|---|
| 276 | Lstate(isTvar) == F F ! tracers
|
|---|
| 277 |
|
|---|
| 278 | ! Stochastic optimals time decorrelation scale (days) assumed for
|
|---|
| 279 | ! red noise processes.
|
|---|
| 280 |
|
|---|
| 281 | SO_decay == 2.0d0 ! days
|
|---|
| 282 |
|
|---|
| 283 | ! Logical switches (TRUE/FALSE) to specify the state surface forcing
|
|---|
| 284 | ! variable whose stochastic optimals is required.
|
|---|
| 285 |
|
|---|
| 286 | SOstate(isUstr) == T ! surface u-stress
|
|---|
| 287 | SOstate(isVstr) == T ! surface v-stress
|
|---|
| 288 |
|
|---|
| 289 | ! Logical switches (TRUE/FALSE) to specify the surface tracer forcing
|
|---|
| 290 | ! variable whose stochastic optimals is required (NT values are expected).
|
|---|
| 291 |
|
|---|
| 292 | SOstate(isTsur) == F F ! surface tracer flux
|
|---|
| 293 |
|
|---|
| 294 | ! Stochastic optimals surface forcing standard deviation for
|
|---|
| 295 | ! dimensionalization.
|
|---|
| 296 |
|
|---|
| 297 | SO_sdev(isUstr) == 1.0d0 ! surface u-stress
|
|---|
| 298 | SO_sdev(isVstr) == 1.0d0 ! surface v-stress
|
|---|
| 299 | SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux
|
|---|
| 300 |
|
|---|
| 301 | ! Logical switches (TRUE/FALSE) to activate writing of fields into
|
|---|
| 302 | ! HISTORY output file.
|
|---|
| 303 |
|
|---|
| 304 | Hout(idUvel) == T ! 3D U-velocity
|
|---|
| 305 | Hout(idVvel) == T ! 3D V-velocity
|
|---|
| 306 | Hout(idWvel) == T ! 3D W-velocity
|
|---|
| 307 | Hout(idOvel) == T ! omega vertical velocity
|
|---|
| 308 | Hout(idUbar) == T ! 2D U-velocity
|
|---|
| 309 | Hout(idVbar) == T ! 2D V-velocity
|
|---|
| 310 | Hout(idFsur) == T ! free-surface
|
|---|
| 311 | Hout(idBath) == T ! time-dependent bathymetry
|
|---|
| 312 |
|
|---|
| 313 | Hout(idTvar) == T T ! temperature and salinity
|
|---|
| 314 |
|
|---|
| 315 | Hout(idUsms) == T ! surface U-stress
|
|---|
| 316 | Hout(idVsms) == T ! surface V-stress
|
|---|
| 317 | Hout(idUbms) == T ! bottom U-stress
|
|---|
| 318 | Hout(idVbms) == T ! bottom V-stress
|
|---|
| 319 |
|
|---|
| 320 | Hout(idUbrs) == F ! bottom U-current stress
|
|---|
| 321 | Hout(idVbrs) == F ! bottom V-current stress
|
|---|
| 322 | Hout(idUbws) == F ! bottom U-wave stress
|
|---|
| 323 | Hout(idVbws) == F ! bottom V-wave stress
|
|---|
| 324 | Hout(idUbcs) == F ! bottom max wave-current U-stress
|
|---|
| 325 | Hout(idVbcs) == F ! bottom max wave-current V-stress
|
|---|
| 326 |
|
|---|
| 327 | Hout(idUbot) == F ! bed wave orbital U-velocity
|
|---|
| 328 | Hout(idVbot) == F ! bed wave orbital V-velocity
|
|---|
| 329 | Hout(idUbur) == F ! bottom U-velocity above bed
|
|---|
| 330 | Hout(idVbvr) == F ! bottom V-velocity above bed
|
|---|
| 331 |
|
|---|
| 332 | Hout(idW2xx) == F ! 2D radiation stress, Sxx component
|
|---|
| 333 | Hout(idW2xy) == F ! 2D radiation stress, Sxy component
|
|---|
| 334 | Hout(idW2yy) == F ! 2D radiation stress, Syy component
|
|---|
| 335 | Hout(idU2rs) == F ! 2D radiation U-stress
|
|---|
| 336 | Hout(idV2rs) == F ! 2D radiation V-stress
|
|---|
| 337 | Hout(idU2Sd) == F ! 2D U-Stokes velocity
|
|---|
| 338 | Hout(idV2Sd) == F ! 2D V-Stokes velocity
|
|---|
| 339 |
|
|---|
| 340 | Hout(idW3xx) == F ! 3D radiation stress, Sxx component
|
|---|
| 341 | Hout(idW3xy) == F ! 3D radiation stress, Sxy component
|
|---|
| 342 | Hout(idW3yy) == F ! 3D radiation stress, Syy component
|
|---|
| 343 | Hout(idW3zx) == F ! 3D radiation stress, Szx component
|
|---|
| 344 | Hout(idW3zy) == F ! 3D radiation stress, Szy component
|
|---|
| 345 | Hout(idU3rs) == F ! 3D U-radiation stress
|
|---|
| 346 | Hout(idV3rs) == F ! 3D V-radiation stress
|
|---|
| 347 | Hout(idU3Sd) == F ! 3D U-Stokes velocity
|
|---|
| 348 | Hout(idV3Sd) == F ! 3D V-Stokes velocity
|
|---|
| 349 |
|
|---|
| 350 | Hout(idWamp) == F ! wave height
|
|---|
| 351 | Hout(idWlen) == F ! wave length
|
|---|
| 352 | Hout(idWdir) == F ! wave direction
|
|---|
| 353 |
|
|---|
| 354 | Hout(idTsur) == F F ! surface net heat and salt flux
|
|---|
| 355 | Hout(idLhea) == F ! latent heat flux
|
|---|
| 356 | Hout(idShea) == F ! sensible heat flux
|
|---|
| 357 | Hout(idLrad) == F ! longwave radiation flux
|
|---|
| 358 | Hout(idSrad) == F ! shortwave radiation flux
|
|---|
| 359 | Hout(idevap) == F ! evaporation rate
|
|---|
| 360 | Hout(idrain) == F ! precipitation rate
|
|---|
| 361 |
|
|---|
| 362 | Hout(idDano) == T ! density anomaly
|
|---|
| 363 | Hout(idVvis) == T ! vertical viscosity
|
|---|
| 364 | Hout(idTdif) == T ! vertical T-diffusion
|
|---|
| 365 | Hout(idSdif) == T ! vertical Salinity diffusion
|
|---|
| 366 | Hout(idHsbl) == T ! depth of surface boundary layer
|
|---|
| 367 | Hout(idHbbl) == T ! depth of bottom boundary layer
|
|---|
| 368 | Hout(idMtke) == F ! turbulent kinetic energy
|
|---|
| 369 | Hout(idMtls) == F ! turbulent length scale
|
|---|
| 370 |
|
|---|
| 371 | ! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
|
|---|
| 372 | ! tracers other than biological and sediment tracers. An inert passive tracer
|
|---|
| 373 | ! is one that it is only advected and diffused. Other processes are ignored.
|
|---|
| 374 | ! These tracers include, for example, dyes, pollutants, oil spills, etc.
|
|---|
| 375 | ! NPT values are expected. However, these switches can be activated using
|
|---|
| 376 | ! compact parameter specification.
|
|---|
| 377 |
|
|---|
| 378 | Hout(inert) == T ! inert passive tracers
|
|---|
| 379 |
|
|---|
| 380 | ! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
|
|---|
| 381 | ! layer properties into HISTORY output file. Currently, MBOTP properties
|
|---|
| 382 | ! are expected for the bottom boundary layer and/or sediment models:
|
|---|
| 383 | !
|
|---|
| 384 | ! Hout(idBott(isd50)), isd50 = 1 ! mean grain diameter
|
|---|
| 385 | ! Hout(idBott(idens)), idens = 2 ! mean grain density
|
|---|
| 386 | ! Hout(idBott(iwsed)), iwsed = 3 ! mean settling velocity
|
|---|
| 387 | ! Hout(idBott(itauc)), itauc = 4 ! critical erosion stress
|
|---|
| 388 | ! Hout(idBott(irlen)), irlen = 5 ! ripple length
|
|---|
| 389 | ! Hout(idBott(irhgt)), irhgt = 6 ! ripple height
|
|---|
| 390 | ! Hout(idBott(ibwav)), ibwav = 7 ! wave excursion amplitude
|
|---|
| 391 | ! Hout(idBott(izdef)), izdef = 8 ! default bottom roughness
|
|---|
| 392 | ! Hout(idBott(izapp)), izapp = 9 ! apparent bottom roughness
|
|---|
| 393 | ! Hout(idBott(izNik)), izNik = 10 ! Nikuradse bottom roughness
|
|---|
| 394 | ! Hout(idBott(izbio)), izbio = 11 ! biological bottom roughness
|
|---|
| 395 | ! Hout(idBott(izbfm)), izbfm = 12 ! bed form bottom roughness
|
|---|
| 396 | ! Hout(idBott(izbld)), izbld = 13 ! bed load bottom roughness
|
|---|
| 397 | ! Hout(idBott(izwbl)), izwbl = 14 ! wave bottom roughness
|
|---|
| 398 | ! Hout(idBott(iactv)), iactv = 15 ! active layer thickness
|
|---|
| 399 | ! Hout(idBott(ishgt)), ishgt = 16 ! saltation height
|
|---|
| 400 | !
|
|---|
| 401 | ! 1 1 1 1 1 1 1
|
|---|
| 402 | ! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
|
|---|
| 403 |
|
|---|
| 404 | Hout(idBott) == T T T T T T T T T F F F F F F F
|
|---|
| 405 |
|
|---|
| 406 | ! Generic User parameters, [1:NUSER].
|
|---|
| 407 |
|
|---|
| 408 | NUSER = 0
|
|---|
| 409 | USER = 0.d0
|
|---|
| 410 |
|
|---|
| 411 | ! Input NetCDF file names, [1:Ngrids].
|
|---|
| 412 |
|
|---|
| 413 | GRDNAME == ocean_grd.nc
|
|---|
| 414 | ININAME == ocean_ini.nc
|
|---|
| 415 | ITLNAME == ocean_itl.nc
|
|---|
| 416 | IRPNAME == ocean_irp.nc
|
|---|
| 417 | IADNAME == ocean_iad.nc
|
|---|
| 418 | CLMNAME == ocean_clm.nc
|
|---|
| 419 | BRYNAME == ocean_bry.nc
|
|---|
| 420 | FWDNAME == ocean_fwd.nc
|
|---|
| 421 | ADSNAME == ocean_ads.nc
|
|---|
| 422 |
|
|---|
| 423 | ! Input forcing NetCDF file name(s). The USER has the option to enter
|
|---|
| 424 | ! several file names for each nested grid. For example, the USER may
|
|---|
| 425 | ! have different files for wind products, heat fluxes, rivers, tides,
|
|---|
| 426 | ! etc. The model will scan the file list and will read the needed data
|
|---|
| 427 | ! from the first file in the list containing the forcing field. Therefore,
|
|---|
| 428 | ! the order of the file names is very important. If using multiple forcing
|
|---|
| 429 | ! files per grid, first enter all the file names for grid 1, then grid 2,
|
|---|
| 430 | ! and so on. Use a single line per entry with a continuation (\) symbol
|
|---|
| 431 | ! at the each entry, except the last one.
|
|---|
| 432 |
|
|---|
| 433 | NFFILES == 1 ! number of forcing files
|
|---|
| 434 |
|
|---|
| 435 | FRCNAME == ocean_frc.nc ! forcing file 1, grid 1
|
|---|
| 436 |
|
|---|
| 437 | ! Output NetCDF file names, [1:Ngrids].
|
|---|
| 438 |
|
|---|
| 439 | GSTNAME == ocean_gst.nc
|
|---|
| 440 | RSTNAME == ocean_rst.nc
|
|---|
| 441 | HISNAME == ocean_his.nc
|
|---|
| 442 | TLMNAME == ocean_tlm.nc
|
|---|
| 443 | TLFNAME == ocean_tlf.nc
|
|---|
| 444 | ADJNAME == ocean_adj.nc
|
|---|
| 445 | AVGNAME == ocean_avg.nc
|
|---|
| 446 | DIANAME == ocean_dia.nc
|
|---|
| 447 | STANAME == ocean_sta.nc
|
|---|
| 448 | FLTNAME == ocean_flt.nc
|
|---|
| 449 |
|
|---|
| 450 | ! Input ASCII parameter filenames.
|
|---|
| 451 |
|
|---|
| 452 | APARNAM = ROMS/External/s4dvar.in
|
|---|
| 453 | SPOSNAM = ROMS/External/stations_lmd_test.in
|
|---|
| 454 | FPOSNAM = ROMS/External/floats.in
|
|---|
| 455 | BPARNAM = ROMS/External/bioFasham.in
|
|---|
| 456 | SPARNAM = ROMS/External/sediment.in
|
|---|
| 457 | USRNAME = ROMS/External/MyFile.dat
|
|---|
| 458 |
|
|---|
| 459 | !
|
|---|
| 460 | ! GLOSSARY:
|
|---|
| 461 | ! =========
|
|---|
| 462 | !
|
|---|
| 463 | !------------------------------------------------------------------------------
|
|---|
| 464 | ! Application tile (string with a maximum of eighty characters) and
|
|---|
| 465 | ! C-preprocessing flag.
|
|---|
| 466 | !------------------------------------------------------------------------------
|
|---|
| 467 | !
|
|---|
| 468 | ! TITLE Application title.
|
|---|
| 469 | !
|
|---|
| 470 | ! MyAppCPP Application C-preprocessing option.
|
|---|
| 471 | !
|
|---|
| 472 | !------------------------------------------------------------------------------
|
|---|
| 473 | ! Variable information file name (string with a maximum of eighty characters).
|
|---|
| 474 | !------------------------------------------------------------------------------
|
|---|
| 475 | !
|
|---|
| 476 | ! VARNAME Input/Output variable information file name. This file needs to
|
|---|
| 477 | ! be processed first so all information arrays and indices can be
|
|---|
| 478 | ! initialized properly in "mod_ncparam.F".
|
|---|
| 479 | !
|
|---|
| 480 | !------------------------------------------------------------------------------
|
|---|
| 481 | ! Grid dimension parameters.
|
|---|
| 482 | !------------------------------------------------------------------------------
|
|---|
| 483 | !
|
|---|
| 484 | ! These parameters are very important since they determine the grid of the
|
|---|
| 485 | ! application to solve. They need to be read first in order to dynamically
|
|---|
| 486 | ! allocate all model variables.
|
|---|
| 487 | !
|
|---|
| 488 | ! WARNING: It is trivial and possible to change these dimension parameters in
|
|---|
| 489 | ! ------- idealized applications via analytical expressions. However, in
|
|---|
| 490 | ! realistic applications any change to these parameters requires redoing all
|
|---|
| 491 | ! input NetCDF files.
|
|---|
| 492 | !
|
|---|
| 493 | ! Lm Number of INTERIOR grid RHO-points in the XI-direction for
|
|---|
| 494 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
|---|
| 495 | ! input, Lm=xi_rho-2 where "xi_rho" is the NetCDF file
|
|---|
| 496 | ! dimension of RHO-points. Recall that all RHO-point
|
|---|
| 497 | ! variables have a computational I-range of [0:Lm+1].
|
|---|
| 498 | !
|
|---|
| 499 | ! Mm Number of INTERIOR grid RHO-points in the ETA-direction for
|
|---|
| 500 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
|---|
| 501 | ! input, Mm=eta_rho-2 where "eta_rho" is the NetCDF file
|
|---|
| 502 | ! dimension of RHO-points. Recall that all RHO-point
|
|---|
| 503 | ! variables have a computational J-range of [0:Mm+1].
|
|---|
| 504 | !
|
|---|
| 505 | ! N Number of vertical terrain-following levels at RHO-points,
|
|---|
| 506 | ! [1:Ngrids].
|
|---|
| 507 | !
|
|---|
| 508 | ! Nbed Number of sediment bed layers, [1:Ngrids]. This parameter
|
|---|
| 509 | ! is only relevant if CPP option SEDIMENT is activated.
|
|---|
| 510 | !
|
|---|
| 511 | ! Mm+1 ___________________ _______ Kw = N
|
|---|
| 512 | ! | | | |
|
|---|
| 513 | ! Mm | _____________ | | | Kr = N
|
|---|
| 514 | ! | | | | |_______|
|
|---|
| 515 | ! | | | | | |
|
|---|
| 516 | ! Jr | | | | | |
|
|---|
| 517 | ! | | | | |_______|
|
|---|
| 518 | ! | | | | | |
|
|---|
| 519 | ! 1 | |_____________| | | |
|
|---|
| 520 | ! | | |_______|
|
|---|
| 521 | ! 0 |___________________| | |
|
|---|
| 522 | ! Ir | | 1
|
|---|
| 523 | ! 0 1 Lm Lm+1 h(i,j) |_______|
|
|---|
| 524 | ! ::::::::: 0
|
|---|
| 525 | ! :::::::::
|
|---|
| 526 | ! ::::::::: Nbed-1
|
|---|
| 527 | ! ::::::::: Nbed
|
|---|
| 528 | !
|
|---|
| 529 | ! NAT Number of active tracer type variables. Usually, NAT=2 for
|
|---|
| 530 | ! potential temperature and salinity.
|
|---|
| 531 | !
|
|---|
| 532 | ! NPT Number of inert (dyes, age, etc) passive tracer type variables
|
|---|
| 533 | ! to advect and diffuse only. This parameter is only relevant
|
|---|
| 534 | ! if CPP option T_PASSIVE is activated.
|
|---|
| 535 | !
|
|---|
| 536 | ! NCS Number of cohesive (mud) sediment tracer type variables. This
|
|---|
| 537 | ! parameter is only relevant if CPP option SEDIMENT is
|
|---|
| 538 | ! activated.
|
|---|
| 539 | !
|
|---|
| 540 | ! NNS Number of non-cohesive (sand) sediment tracer type variables.
|
|---|
| 541 | ! This parameter is only relevant if CPP option SEDIMENT is
|
|---|
| 542 | ! activated.
|
|---|
| 543 | !
|
|---|
| 544 | ! The total number of sediment tracers is NST=NCS+NNS. Notice
|
|---|
| 545 | ! that NST must be greater than zero (NST>0).
|
|---|
| 546 | !
|
|---|
| 547 | !------------------------------------------------------------------------------
|
|---|
| 548 | ! Domain tile partition parameters.
|
|---|
| 549 | !------------------------------------------------------------------------------
|
|---|
| 550 | !
|
|---|
| 551 | ! Model tile decomposition parameters for serial and parallel configurations
|
|---|
| 552 | ! which are used to determine tile horizontal range indices (Istr,Iend) and
|
|---|
| 553 | ! (Jstr,Jend). In some computers, it is advantageous to have tile partitions
|
|---|
| 554 | ! in serial applications.
|
|---|
| 555 | !
|
|---|
| 556 | ! NtileI Number of domain partitions in the I-direction (XI-coordinate).
|
|---|
| 557 | ! It must be equal to or greater than one.
|
|---|
| 558 | !
|
|---|
| 559 | ! NtileJ Number of domain partitions in the J-direction (ETA-coordinate).
|
|---|
| 560 | ! It must be equal to or greater than one.
|
|---|
| 561 | !
|
|---|
| 562 | ! WARNING: In shared-memory (OpenMP), the product of NtileI and NtileJ must
|
|---|
| 563 | ! be a MULTIPLE of the number of parallel threads specified with
|
|---|
| 564 | ! the OpenMP environmental variable OMP_NUM_THREADS.
|
|---|
| 565 | !
|
|---|
| 566 | ! In distributed-memory (MPI), the product of NtileI and NtileJ
|
|---|
| 567 | ! must be EQUAL to the number of parallel nodes specified during
|
|---|
| 568 | ! execution with the "mprun" or "mpirun" command.
|
|---|
| 569 | !
|
|---|
| 570 | !------------------------------------------------------------------------------
|
|---|
| 571 | ! Time-Stepping parameters.
|
|---|
| 572 | !------------------------------------------------------------------------------
|
|---|
| 573 | !
|
|---|
| 574 | ! NTIMES Total number time-steps in current run. If 3D configuration,
|
|---|
| 575 | ! NTIMES is the total of baroclinic time-steps. If only 2D
|
|---|
| 576 | ! configuration, NTIMES is the total of barotropic time-steps.
|
|---|
| 577 | !
|
|---|
| 578 | ! DT Time-Step size in seconds. If 3D configuration, DT is the
|
|---|
| 579 | ! size of the baroclinic time-step. If only 2D configuration,
|
|---|
| 580 | ! DT is the size of the barotropic time-step.
|
|---|
| 581 | !
|
|---|
| 582 | ! NDTFAST Number of barotropic time-steps between each baroclinic time
|
|---|
| 583 | ! step. If only 2D configuration, NDTFAST should be unity since
|
|---|
| 584 | ! there is no need to split time-stepping.
|
|---|
| 585 | !
|
|---|
| 586 | !------------------------------------------------------------------------------
|
|---|
| 587 | ! Model iteration loops parameters.
|
|---|
| 588 | !------------------------------------------------------------------------------
|
|---|
| 589 | !
|
|---|
| 590 | ! ERstr Starting ensemble run (perturbation or iteration) number.
|
|---|
| 591 | !
|
|---|
| 592 | ! ERend Ending ensemble run (perturbation or iteration) number.
|
|---|
| 593 | !
|
|---|
| 594 | ! Nouter Maximum number of 4DVAR outer loop iterations.
|
|---|
| 595 | !
|
|---|
| 596 | ! Ninner Maximum number of 4DVAR inner loop iterations.
|
|---|
| 597 | !
|
|---|
| 598 | ! Nintervals Number of time interval divisions for stochastic optimals
|
|---|
| 599 | ! computations. It must be a multiple of NTIMES. The tangent
|
|---|
| 600 | ! linear model (TLM) and the adjoint model (ADM) are integrated
|
|---|
| 601 | ! forward and backward at different intervals. For example,
|
|---|
| 602 | ! if Nintervals=3,
|
|---|
| 603 | !
|
|---|
| 604 | ! 1 NTIMES/3 2*NTIMES/3 NTIMES
|
|---|
| 605 | ! +..................+..................+..................+
|
|---|
| 606 | ! <========================================================> (1)
|
|---|
| 607 | ! <=====================================> (2)
|
|---|
| 608 | ! <==================> (3)
|
|---|
| 609 | !
|
|---|
| 610 | ! In the first iteration (1), the TLM is integrated forward from
|
|---|
| 611 | ! 1 to NTIMES and the ADM is integrated backward from NTIMES to 1.
|
|---|
| 612 | ! In the second iteration (2), the TLM is integrated forward from
|
|---|
| 613 | ! NTIMES/3 to NTIMES and the ADM is integrated backward from
|
|---|
| 614 | ! NTIMES to NTIMES/3. And so on.
|
|---|
| 615 | !
|
|---|
| 616 | !------------------------------------------------------------------------------
|
|---|
| 617 | ! Eigenproblem parameters.
|
|---|
| 618 | !------------------------------------------------------------------------------
|
|---|
| 619 | !
|
|---|
| 620 | ! NEV Number of eigenvalues to compute for the Lanczos/Arnoldi
|
|---|
| 621 | ! problem. Notice that the model memory requirement increases
|
|---|
| 622 | ! substantially as NEV increases. The GST requires NEV+1
|
|---|
| 623 | ! copies of the model state vector. The memory requirements
|
|---|
| 624 | ! are decreased in distributed-memory applications.
|
|---|
| 625 | !
|
|---|
| 626 | ! NCV Number of eigenvectors to compute for the Lanczos/Arnoldi
|
|---|
| 627 | ! problem. NCV must be greater than NEV.
|
|---|
| 628 | !
|
|---|
| 629 | ! At present, there is no a-priori analysis to guide the selection of NCV
|
|---|
| 630 | ! relative to NEV. The only formal requirement is that NCV > NEV. However
|
|---|
| 631 | ! in optimal perturbations, it is recommended to have NCV greater than or
|
|---|
| 632 | ! equal to 2*NEV. In Finite Time Eigenmodes (FTE) and Adjoint Finite Time
|
|---|
| 633 | ! Eigenmodes (AFTE) the requirement is to have NCV greater than or equal to
|
|---|
| 634 | ! 2*NEV+1.
|
|---|
| 635 | !
|
|---|
| 636 | ! The efficiency of calculations depends critically on the combination of
|
|---|
| 637 | ! NEV and NCV. If NEV is large (greater than 10 say), you can use NCV=2*NEV+1
|
|---|
| 638 | ! but for NEV small (less than 6) it will be inefficient to use NCV=2*NEV+1.
|
|---|
| 639 | ! In complicated applications, you can start with NEV=2 and NCV=10. Otherwise,
|
|---|
| 640 | ! it will iterate for a very long time.
|
|---|
| 641 | !
|
|---|
| 642 | !------------------------------------------------------------------------------
|
|---|
| 643 | ! Input/Output parameters.
|
|---|
| 644 | !------------------------------------------------------------------------------
|
|---|
| 645 | !
|
|---|
| 646 | ! NRREC Switch to indicate re-start from a previous solution. Use
|
|---|
| 647 | ! NRREC=0 for new solutions. In a re-start solution, NRREC
|
|---|
| 648 | ! is the time index of the re-start NetCDF file assigned for
|
|---|
| 649 | ! initialization. If NRREC is negative (say NRREC=-1), the
|
|---|
| 650 | ! model will re-start from the most recent time record. That
|
|---|
| 651 | ! is, the initialization record is assigned internally.
|
|---|
| 652 | ! Notice that it is also possible to re-start from a history
|
|---|
| 653 | ! or time-averaged NetCDF file. If a history file is used
|
|---|
| 654 | ! for re-start, it must contains all the necessary primitive
|
|---|
| 655 | ! variables at all levels.
|
|---|
| 656 | !
|
|---|
| 657 | ! LcycleRST Logical switch (T/F) used to recycle time records in output
|
|---|
| 658 | ! re-start file. If TRUE, only the latest two re-start time
|
|---|
| 659 | ! records are maintained. If FALSE, all re-start fields are
|
|---|
| 660 | ! saved every NRST time-steps without recycling. The re-start
|
|---|
| 661 | ! fields are written at all levels in double precision.
|
|---|
| 662 | !
|
|---|
| 663 | ! NRST Number of time-steps between writing of re-start fields.
|
|---|
| 664 | !
|
|---|
| 665 | ! NSTA Number of time-steps between writing data into stations file.
|
|---|
| 666 | ! Station data is written at all levels.
|
|---|
| 667 | !
|
|---|
| 668 | ! NFLT Number of time-steps between writing data into floats file.
|
|---|
| 669 | !
|
|---|
| 670 | ! NINFO Number of time-steps between print of single line information
|
|---|
| 671 | ! to standard output. It also determines the interval between
|
|---|
| 672 | ! computation of global energy diagnostics.
|
|---|
| 673 | !
|
|---|
| 674 | !------------------------------------------------------------------------------
|
|---|
| 675 | ! Output history and average files parameters.
|
|---|
| 676 | !------------------------------------------------------------------------------
|
|---|
| 677 | !
|
|---|
| 678 | ! LDEFOUT Logical switch (T/F) used to create new output files when
|
|---|
| 679 | ! initializing from a re-start file, abs(NRREC) > 0. If TRUE
|
|---|
| 680 | ! and applicable, a new history, average, diagnostic and
|
|---|
| 681 | ! station files are created during the initialization stage.
|
|---|
| 682 | ! If FALSE and applicable, data is appended to existing
|
|---|
| 683 | ! history, average, diagnostic and station files. See also
|
|---|
| 684 | ! parameters NDEFHIS, NDEFAVG and NDEFDIA below.
|
|---|
| 685 | !
|
|---|
| 686 | ! NHIS Number of time-steps between writing fields into history file.
|
|---|
| 687 | !
|
|---|
| 688 | ! NDEFHIS Number of time-steps between the creation of new history file.
|
|---|
| 689 | ! If NDEFHIS=0, the model will only process one history file.
|
|---|
| 690 | ! This feature is useful for long simulations when history files
|
|---|
| 691 | ! get too large; it creates a new file every NDEFHIS time-steps.
|
|---|
| 692 | !
|
|---|
| 693 | ! NTSAVG Starting time-step for the accumulation of output time-averaged
|
|---|
| 694 | ! data.
|
|---|
| 695 | !
|
|---|
| 696 | ! NAVG Number of time-steps between writing time-averaged data
|
|---|
| 697 | ! into averages file. Averaged date is written for all fields.
|
|---|
| 698 | !
|
|---|
| 699 | ! NDEFAVG Number of time-steps between the creation of new average
|
|---|
| 700 | ! file. If NDEFAVG=0, the model will only process one average
|
|---|
| 701 | ! file. This feature is useful for long simulations when
|
|---|
| 702 | ! average files get too large; it creates a new file every
|
|---|
| 703 | ! NDEFAVG time-steps.
|
|---|
| 704 | !
|
|---|
| 705 | ! NTSDIA Starting time-step for the accumulation of output time-averaged
|
|---|
| 706 | ! diagnostics data.
|
|---|
| 707 | !
|
|---|
| 708 | ! NDIA Number of time-steps between writing time-averaged diagnostics
|
|---|
| 709 | ! data into diagnostics file. Averaged date is written for all
|
|---|
| 710 | ! fields.
|
|---|
| 711 | !
|
|---|
| 712 | ! NDEFDIA Number of time-steps between the creation of new time-averaged
|
|---|
| 713 | ! diagnostics file. If NDEFDIA=0, the model will only process one
|
|---|
| 714 | ! diagnostics file. This feature is useful for long simulations
|
|---|
| 715 | ! when diagnostics files get too large; it creates a new file
|
|---|
| 716 | ! every NDEFDIA time-steps.
|
|---|
| 717 | !
|
|---|
| 718 | !------------------------------------------------------------------------------
|
|---|
| 719 | ! Output tangent linear and adjoint model parameters.
|
|---|
| 720 | !------------------------------------------------------------------------------
|
|---|
| 721 | !
|
|---|
| 722 | ! LcycleTLM Logical switch (T/F) used to recycle time records in output
|
|---|
| 723 | ! tangent linear file. If TRUE, only the latest two time
|
|---|
| 724 | ! records are maintained. If FALSE, all tangent linear fields
|
|---|
| 725 | ! are saved every NTLM time-steps without recycling.
|
|---|
| 726 | !
|
|---|
| 727 | ! NTLM Number of time-steps between writing fields into tangent linear
|
|---|
| 728 | ! model file.
|
|---|
| 729 | !
|
|---|
| 730 | ! NDEFTLM Number of time-steps between the creation of new tangent linear
|
|---|
| 731 | ! file. If NDEFTLM=0, the model will only process one tangent
|
|---|
| 732 | ! linear file. This feature is useful for long simulations when
|
|---|
| 733 | ! output NetCDF files get too large; it creates a new file every
|
|---|
| 734 | ! NDEFTLM time-steps.
|
|---|
| 735 | !
|
|---|
| 736 | ! LcycleADJ Logical switch (T/F) used to recycle time records in output
|
|---|
| 737 | ! adjoint file. If TRUE, only the latest two time records are
|
|---|
| 738 | ! maintained. If FALSE, all tangent linear fields re saved
|
|---|
| 739 | ! every NADJ time-steps without recycling.
|
|---|
| 740 | !
|
|---|
| 741 | ! NADJ Number of time-steps between writing fields into adjoint model
|
|---|
| 742 | ! file.
|
|---|
| 743 | !
|
|---|
| 744 | ! NDEFADJ Number of time-steps between the creation of new adjoint file.
|
|---|
| 745 | ! If NDEFADJ=0, the model will only process one adjoint file.
|
|---|
| 746 | ! This feature is useful for long simulations when output NetCDF
|
|---|
| 747 | ! files get too large; it creates a new file every NDEFADJ
|
|---|
| 748 | ! time-steps.
|
|---|
| 749 | !
|
|---|
| 750 | ! NSFF Number of time-steps between 4DVAR adjustment of surface forcing
|
|---|
| 751 | ! fluxes. In strong constraint 4DVAR, it is possible to adjust
|
|---|
| 752 | ! surface forcing at other time intervals in addition to initial
|
|---|
| 753 | ! time. This parameter is used to store the appropriate number
|
|---|
| 754 | ! of surface forcing records in the output history NetCDF files:
|
|---|
| 755 | ! 1+NTIMES/NSFF records. NSFF must be a factor of NTIMES or
|
|---|
| 756 | ! greater than NTIMES. If NSFF > NTIMES, only one record is
|
|---|
| 757 | ! stored in the NetCDF files and the adjustment is for constant
|
|---|
| 758 | ! forcing with constant correction. This parameter is only
|
|---|
| 759 | ! relevant in 4DVAR when activating either ADJUST_STFLUX or
|
|---|
| 760 | ! ADJUST_WSTRESS.
|
|---|
| 761 | !
|
|---|
| 762 | !------------------------------------------------------------------------------
|
|---|
| 763 | ! Generalized Stability Theory (GST) analysis parameters.
|
|---|
| 764 | !------------------------------------------------------------------------------
|
|---|
| 765 | !
|
|---|
| 766 | ! LrstGST Logical switch (TRUE/FALSE) to restart GST analysis. If TRUE,
|
|---|
| 767 | ! the check pointing data is read in from the GST restart NetCDF
|
|---|
| 768 | ! file. If FALSE and applicable, the check pointing GST data is
|
|---|
| 769 | ! saved and overwritten every NGST iterations of the algorithm.
|
|---|
| 770 | !
|
|---|
| 771 | ! MaxIterGST Maximum number of GST algorithm iterations.
|
|---|
| 772 | !
|
|---|
| 773 | ! NGST Number of GST iterations between storing of check pointing
|
|---|
| 774 | ! data into NetCDF file. The restart data is always saved if
|
|---|
| 775 | ! MaxIterGST is reached without convergence. It is also saved
|
|---|
| 776 | ! when convergence is achieved. It is always a good idea to
|
|---|
| 777 | ! save the check pointing data at regular intervals so there
|
|---|
| 778 | ! is a mechanism to recover from an unexpected interruption
|
|---|
| 779 | ! in this very expensive computation. The check pointing data
|
|---|
| 780 | ! can be used also to recompute the Ritz vectors by changing
|
|---|
| 781 | ! some of the parameters, like convergence criteria (Ritz_tol)
|
|---|
| 782 | ! and number of Arnoldi iterations (iparam(3)).
|
|---|
| 783 | !
|
|---|
| 784 | ! Ritz_tol Relative accuracy of the Ritz values computed in the GST
|
|---|
| 785 | ! analysis.
|
|---|
| 786 | !
|
|---|
| 787 | !------------------------------------------------------------------------------
|
|---|
| 788 | ! Harmonic/Biharmonic horizontal diffusion for active tracers.
|
|---|
| 789 | !------------------------------------------------------------------------------
|
|---|
| 790 | !
|
|---|
| 791 | ! TNU2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
|---|
| 792 | ! active (NAT) and inert (NPT) tracer variables. If variable
|
|---|
| 793 | ! horizontal diffusion is activated, TNU2 is the mixing
|
|---|
| 794 | ! coefficient for the largest grid-cell in the domain.
|
|---|
| 795 | !
|
|---|
| 796 | ! TNU4 Lateral, biharmonic, constant, mixing coefficient (m4/s) for
|
|---|
| 797 | ! active (NAT) and inert (NPT) tracer variables. If variable
|
|---|
| 798 | ! horizontal diffusion is activated, TNU4 is the mixing
|
|---|
| 799 | ! coefficient for the largest grid-cell in the domain.
|
|---|
| 800 | !
|
|---|
| 801 | !------------------------------------------------------------------------------
|
|---|
| 802 | ! Harmonic/biharmonic horizontal viscosity coefficients.
|
|---|
| 803 | !------------------------------------------------------------------------------
|
|---|
| 804 | !
|
|---|
| 805 | ! VISC2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
|---|
| 806 | ! momentum. If variable horizontal viscosity is activated, UVNU2
|
|---|
| 807 | ! is the mixing coefficient for the largest grid-cell in the
|
|---|
| 808 | ! domain.
|
|---|
| 809 | !
|
|---|
| 810 | ! VISC4 Lateral, biharmonic, constant mixing coefficient (m4/s) for
|
|---|
| 811 | ! momentum. If variable horizontal viscosity is activated, UVNU4
|
|---|
| 812 | ! is the mixing coefficient for the largest grid-cell in the
|
|---|
| 813 | ! domain.
|
|---|
| 814 | !
|
|---|
| 815 | !------------------------------------------------------------------------------
|
|---|
| 816 | ! Vertical mixing coefficients for active tracers.
|
|---|
| 817 | !------------------------------------------------------------------------------
|
|---|
| 818 | !
|
|---|
| 819 | ! AKT_BAK Background vertical mixing coefficient (m2/s) for active
|
|---|
| 820 | ! (NAT) and inert (NPT) tracer variables.
|
|---|
| 821 | !
|
|---|
| 822 | !------------------------------------------------------------------------------
|
|---|
| 823 | ! Vertical mixing coefficient for momentum.
|
|---|
| 824 | !------------------------------------------------------------------------------
|
|---|
| 825 | !
|
|---|
| 826 | ! AKV_BAK Background vertical mixing coefficient (m2/s) for momentum.
|
|---|
| 827 | !
|
|---|
| 828 | !------------------------------------------------------------------------------
|
|---|
| 829 | ! Turbulent closure parameters.
|
|---|
| 830 | !------------------------------------------------------------------------------
|
|---|
| 831 | !
|
|---|
| 832 | ! AKK_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
|---|
| 833 | ! kinetic energy.
|
|---|
| 834 | !
|
|---|
| 835 | ! AKP_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
|---|
| 836 | ! generic statistical field, "psi".
|
|---|
| 837 | !
|
|---|
| 838 | ! TKENU2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
|---|
| 839 | ! turbulent closure variables.
|
|---|
| 840 | !
|
|---|
| 841 | ! TKENU4 Lateral, biharmonic, constant mixing coefficient (m4/s) for
|
|---|
| 842 | ! turbulent closure variables.
|
|---|
| 843 | !
|
|---|
| 844 | !------------------------------------------------------------------------------
|
|---|
| 845 | ! Generic length-scale turbulence closure parameters.
|
|---|
| 846 | !------------------------------------------------------------------------------
|
|---|
| 847 | !
|
|---|
| 848 | ! GLS_P Stability exponent (non-dimensional).
|
|---|
| 849 | !
|
|---|
| 850 | ! GLS_M Turbulent kinetic energy exponent (non-dimensional).
|
|---|
| 851 | !
|
|---|
| 852 | ! GLS_N Turbulent length scale exponent (non-dimensional).
|
|---|
| 853 | !
|
|---|
| 854 | ! GLS_Kmin Minimum value of specific turbulent kinetic energy
|
|---|
| 855 | !
|
|---|
| 856 | ! GLS_Pmin Minimum Value of dissipation.
|
|---|
| 857 | !
|
|---|
| 858 | ! Closure independent constraint parameters (non-dimensional):
|
|---|
| 859 | !
|
|---|
| 860 | ! GLS_CMU0 Stability coefficient.
|
|---|
| 861 | !
|
|---|
| 862 | ! GLS_C1 Shear production coefficient.
|
|---|
| 863 | !
|
|---|
| 864 | ! GLS_C2 Dissipation coefficient.
|
|---|
| 865 | !
|
|---|
| 866 | ! GLS_C3M Buoyancy production coefficient (minus).
|
|---|
| 867 | !
|
|---|
| 868 | ! GLS_C3P Buoyancy production coefficient (plus).
|
|---|
| 869 | !
|
|---|
| 870 | ! GLS_SIGK Constant Schmidt number (non-dimensional) for turbulent
|
|---|
| 871 | ! kinetic energy diffusivity.
|
|---|
| 872 | !
|
|---|
| 873 | ! GLS_SIGP Constant Schmidt number (non-dimensional) for turbulent
|
|---|
| 874 | ! generic statistical field, "psi".
|
|---|
| 875 | !
|
|---|
| 876 | ! Suggested values for various parameterizations:
|
|---|
| 877 | !
|
|---|
| 878 | ! k-kl k-epsilon k-omega gen
|
|---|
| 879 | !
|
|---|
| 880 | ! GLS_P = 0.d0 3.0d0 -1.0d0 2.0d0
|
|---|
| 881 | ! GLS_M = 1.d0 1.5d0 0.5d0 1.0d0
|
|---|
| 882 | ! GLS_N = 1.d0 -1.0d0 -1.0d0 -0.67d0
|
|---|
| 883 | ! GLS_Kmin = 5.0d-6 7.6d-6 7.6d-6 1.0d-8
|
|---|
| 884 | ! GLS_Pmin = 5.0d-6 1.0d-12 1.0d-12 1.0d-8
|
|---|
| 885 | !
|
|---|
| 886 | ! GLS_CMU0 = 0.5544d0 0.5477d0 0.5477d0 0.5544d0
|
|---|
| 887 | ! GLS_C1 = 0.9d0 1.44d0 0.555d0 1.00d0
|
|---|
| 888 | ! GLS_C2 = 0.52d0 1.92d0 0.833d0 1.22d0
|
|---|
| 889 | ! GLS_C3M = 2.5d0 -0.4d0 -0.6d0 0.1d0
|
|---|
| 890 | ! GLS_C3P = 1.0d0 1.0d0 1.0d0 1.0d0
|
|---|
| 891 | ! GLS_SIGK = 1.96d0 1.0d0 2.0d0 0.8d0
|
|---|
| 892 | ! GLS_SIGP = 1.96d0 1.30d0 2.0d0 1.07d0
|
|---|
| 893 | !
|
|---|
| 894 | !------------------------------------------------------------------------------
|
|---|
| 895 | ! Constants used in the various formulations of surface turbulent kinetic
|
|---|
| 896 | ! energy flux in the GLS.
|
|---|
| 897 | !------------------------------------------------------------------------------
|
|---|
| 898 | !
|
|---|
| 899 | ! CHARNOK_ALPHA Charnok surface roughness,
|
|---|
| 900 | ! Zos: (charnok_alpha * u_star**2) / g
|
|---|
| 901 | !
|
|---|
| 902 | ! ZOS_HSIG_ALPHA Roughness from wave amplitude,
|
|---|
| 903 | ! Zos: zos_hsig_alpha * Hsig
|
|---|
| 904 | !
|
|---|
| 905 | ! SZ_ALPHA Surface flux from wave dissipation,
|
|---|
| 906 | ! flux: dt * sz_alpha * Wave_dissip
|
|---|
| 907 | !
|
|---|
| 908 | ! CRGBAN_CW Surface flux due to Craig and Banner wave breaking,
|
|---|
| 909 | ! flux: dt * crgban_cw * u_star**3
|
|---|
| 910 | !
|
|---|
| 911 | !------------------------------------------------------------------------------
|
|---|
| 912 | ! Constants used in the computation of momentum stress.
|
|---|
| 913 | !------------------------------------------------------------------------------
|
|---|
| 914 | !
|
|---|
| 915 | ! RDRG Linear bottom drag coefficient (m/s).
|
|---|
| 916 | !
|
|---|
| 917 | ! RDRG2 Quadratic bottom drag coefficient.
|
|---|
| 918 | !
|
|---|
| 919 | ! Zob Bottom roughness (m).
|
|---|
| 920 | !
|
|---|
| 921 | ! Zos Surface roughness (m).
|
|---|
| 922 | !
|
|---|
| 923 | !------------------------------------------------------------------------------
|
|---|
| 924 | ! Height of atmospheric measurements for bulk fluxes parameterization.
|
|---|
| 925 | !------------------------------------------------------------------------------
|
|---|
| 926 | !
|
|---|
| 927 | ! BLK_ZQ Height (m) of surface air humidity measurement. Usually,
|
|---|
| 928 | ! recorded at 10 m.
|
|---|
| 929 | !
|
|---|
| 930 | ! BLK_ZT Height (m) of surface air temperature measurement. Usually,
|
|---|
| 931 | ! recorded at 2 or 10 m.
|
|---|
| 932 | !
|
|---|
| 933 | ! BLK_ZW Height (m) of surface winds measurement. Usually, recorded
|
|---|
| 934 | ! at 10 m.
|
|---|
| 935 | !
|
|---|
| 936 | !------------------------------------------------------------------------------
|
|---|
| 937 | ! Wetting and drying parameters.
|
|---|
| 938 | !------------------------------------------------------------------------------
|
|---|
| 939 | !
|
|---|
| 940 | ! DCRIT Minimum depth (m) for wetting and drying.
|
|---|
| 941 | !
|
|---|
| 942 | !------------------------------------------------------------------------------
|
|---|
| 943 | ! Jerlow Water type.
|
|---|
| 944 | !------------------------------------------------------------------------------
|
|---|
| 945 | !
|
|---|
| 946 | ! WTYPE Jerlov water type: an integer value from 1 to 5.
|
|---|
| 947 | !
|
|---|
| 948 | !------------------------------------------------------------------------------
|
|---|
| 949 | ! Body-force parameters. Used when CPP option BODYFORCE is activated.
|
|---|
| 950 | !------------------------------------------------------------------------------
|
|---|
| 951 | !
|
|---|
| 952 | ! LEVSFRC Deepest level to apply surface momentum stress as a body-force.
|
|---|
| 953 | !
|
|---|
| 954 | ! LEVBFRC Shallowest level to apply bottom momentum stress as a body-force.
|
|---|
| 955 | !
|
|---|
| 956 | !------------------------------------------------------------------------------
|
|---|
| 957 | ! Vertical S-coordinates parameters.
|
|---|
| 958 | !------------------------------------------------------------------------------
|
|---|
| 959 | !
|
|---|
| 960 | ! THETA_S S-coordinate surface control parameter, [0 < theta_s < 20].
|
|---|
| 961 | !
|
|---|
| 962 | ! THETA_B S-coordinate bottom control parameter, [0 < theta_b < 1].
|
|---|
| 963 | !
|
|---|
| 964 | ! TCLINE Width (m) of surface or bottom boundary layer in which
|
|---|
| 965 | ! higher vertical resolution is required during stretching.
|
|---|
| 966 | !
|
|---|
| 967 | ! WARNING: Users need to experiment with these parameters. We
|
|---|
| 968 | ! have found out that the model goes unstable with
|
|---|
| 969 | ! high values of THETA_S. In steep and very tall
|
|---|
| 970 | ! topography, it is recommended to use THETA_S < 3.0.
|
|---|
| 971 | !
|
|---|
| 972 | !------------------------------------------------------------------------------
|
|---|
| 973 | ! Mean Density and background Brunt-Vaisala frequency.
|
|---|
| 974 | !------------------------------------------------------------------------------
|
|---|
| 975 | !
|
|---|
| 976 | ! RHO0 Mean density (Kg/m3) used when the Boussinesq approximation
|
|---|
| 977 | ! is inferred.
|
|---|
| 978 | !
|
|---|
| 979 | ! BVF_BAK Background Brunt-Vaisala frequency squared (1/s2). Typical
|
|---|
| 980 | ! values for the ocean range (as a function of depth) from
|
|---|
| 981 | ! 1.0E-4 to 1.0E-6.
|
|---|
| 982 | !
|
|---|
| 983 | !------------------------------------------------------------------------------
|
|---|
| 984 | ! Time Stamps.
|
|---|
| 985 | !------------------------------------------------------------------------------
|
|---|
| 986 | !
|
|---|
| 987 | ! DSTART Time stamp assigned to model initialization (days). Usually
|
|---|
| 988 | ! a Calendar linear coordinate, like modified Julian Day. For
|
|---|
| 989 | ! Example:
|
|---|
| 990 | !
|
|---|
| 991 | ! Julian Day = 1 for Nov 25, 0:0:0 4713 BCE
|
|---|
| 992 | ! modified Julian Day = 1 for May 24, 0:0:0 1968 CE GMT
|
|---|
| 993 | !
|
|---|
| 994 | ! It is called truncated or modified Julian day because an offset
|
|---|
| 995 | ! of 2440000 needs to be added.
|
|---|
| 996 | !
|
|---|
| 997 | ! TIDE_START Reference time origin for tidal forcing (days). This is the
|
|---|
| 998 | ! time used when processing input tidal model data. It is needed
|
|---|
| 999 | ! in routine "set_tides" to compute the correct phase lag with
|
|---|
| 1000 | ! respect ROMS/TOMS initialization time.
|
|---|
| 1001 | !
|
|---|
| 1002 | ! TIME_REF Reference time (yyyymmdd.f) used to compute relative time:
|
|---|
| 1003 | ! elapsed time interval since reference-time. The "units"
|
|---|
| 1004 | ! attribute takes the form "time-unit since reference-time".
|
|---|
| 1005 | ! This parameter also provides information about the calendar
|
|---|
| 1006 | ! used:
|
|---|
| 1007 | !
|
|---|
| 1008 | ! If TIME_REF = -2, model time and DSTART are in modified Julian
|
|---|
| 1009 | ! days units. The "units" attribute is:
|
|---|
| 1010 | !
|
|---|
| 1011 | ! 'time-units since 1968-05-23 00:00:00 GMT'
|
|---|
| 1012 | !
|
|---|
| 1013 | ! If TIME_REF = -1, model time and DSTART are in a calendar
|
|---|
| 1014 | ! with 360 days in every year (30 days each month). The "units"
|
|---|
| 1015 | ! attribute is:
|
|---|
| 1016 | !
|
|---|
| 1017 | ! 'time-units since 0001-01-01 00:00:00'
|
|---|
| 1018 | !
|
|---|
| 1019 | ! If TIME_REF = 0, model time and DSTART are in a common year
|
|---|
| 1020 | ! calendar with 365.25 days. The "units" attribute is:
|
|---|
| 1021 | !
|
|---|
| 1022 | ! 'time-units since 0001-01-01 00:00:00'
|
|---|
| 1023 | !
|
|---|
| 1024 | ! If TIME_REF > 0, model time and DSTART are the elapsed time
|
|---|
| 1025 | ! units since specified reference time. For example,
|
|---|
| 1026 | ! TIME_REF=20020115.5 will yield the following attribute:
|
|---|
| 1027 | !
|
|---|
| 1028 | ! 'time-units since 2002-01-15 12:00:00'
|
|---|
| 1029 | !
|
|---|
| 1030 | !------------------------------------------------------------------------------
|
|---|
| 1031 | ! Nudging/relaxation time scales, inverse scales will be computed internally.
|
|---|
| 1032 | !------------------------------------------------------------------------------
|
|---|
| 1033 | !
|
|---|
| 1034 | ! When passive/active open boundary conditions are activated, these nudging
|
|---|
| 1035 | ! values correspond to the passive (outflow) nudging time scales.
|
|---|
| 1036 | !
|
|---|
| 1037 | ! TNUDG Nudging time scale (days) for active tracer variables.
|
|---|
| 1038 | ! (1:NAT+NPT,1:Ngrids) values are expected.
|
|---|
| 1039 | !
|
|---|
| 1040 | ! ZNUDG Nudging time scale (days) for free-surface.
|
|---|
| 1041 | !
|
|---|
| 1042 | ! M2NUDG Nudging time scale (days) for 2D momentum.
|
|---|
| 1043 | !
|
|---|
| 1044 | ! M3NUDG Nudging time scale (days) for 3D momentum.
|
|---|
| 1045 | !
|
|---|
| 1046 | ! OBCFAC Factor between passive (outflow) and active (inflow) open
|
|---|
| 1047 | ! boundary conditions. The nudging time scales for the
|
|---|
| 1048 | ! active (inflow) conditions are obtained by multiplying
|
|---|
| 1049 | ! the passive values by OBCFAC. If OBCFAC > 1, nudging on
|
|---|
| 1050 | ! inflow is stronger than on outflow (recommended).
|
|---|
| 1051 | !
|
|---|
| 1052 | !------------------------------------------------------------------------------
|
|---|
| 1053 | ! Linear equation of State parameters.
|
|---|
| 1054 | !------------------------------------------------------------------------------
|
|---|
| 1055 | !
|
|---|
| 1056 | ! Ignoring pressure, the linear equation of state is:
|
|---|
| 1057 | !
|
|---|
| 1058 | ! rho(:,:,:) = R0 - R0 * TCOEF * (t(:,:,:,:,itemp) - T0)
|
|---|
| 1059 | ! + R0 * SCOEF * (t(:,:,:,:,isalt) - S0)
|
|---|
| 1060 | !
|
|---|
| 1061 | ! Typical values: R0 = 1027.0 kg/m3
|
|---|
| 1062 | ! T0 = 10.0 Celsius
|
|---|
| 1063 | ! S0 = 35.0 PSU
|
|---|
| 1064 | ! TCOEF = 1.7d-4 1/Celsius
|
|---|
| 1065 | ! SCOEF = 7.6d-4 1/PSU
|
|---|
| 1066 | !
|
|---|
| 1067 | ! R0 Background density value (Kg/m3) used in Linear Equation of
|
|---|
| 1068 | ! State.
|
|---|
| 1069 | !
|
|---|
| 1070 | ! T0 Background potential temperature (Celsius) constant.
|
|---|
| 1071 | !
|
|---|
| 1072 | ! S0 Background salinity (PSU) constant.
|
|---|
| 1073 | !
|
|---|
| 1074 | ! TCOEF Thermal expansion coefficient in Linear Equation of State.
|
|---|
| 1075 | !
|
|---|
| 1076 | ! SCOEF Saline contraction coefficient in Linear Equation of State.
|
|---|
| 1077 | !
|
|---|
| 1078 | !------------------------------------------------------------------------------
|
|---|
| 1079 | ! Slipperiness parameter.
|
|---|
| 1080 | !------------------------------------------------------------------------------
|
|---|
| 1081 | !
|
|---|
| 1082 | ! GAMMA2 Slipperiness variable, either 1.0 (free slip) or -1.0 (no slip).
|
|---|
| 1083 | !
|
|---|
| 1084 | !------------------------------------------------------------------------------
|
|---|
| 1085 | ! Adjoint sensitivity parameters.
|
|---|
| 1086 | !------------------------------------------------------------------------------
|
|---|
| 1087 | !
|
|---|
| 1088 | ! DstrS Starting day for adjoint sensitivity forcing.
|
|---|
| 1089 | !
|
|---|
| 1090 | ! DendS Ending day for adjoint sensitivity forcing.
|
|---|
| 1091 | !
|
|---|
| 1092 | ! The adjoint forcing is applied at every time step according to
|
|---|
| 1093 | ! desired state functional stored in the adjoint sensitivity
|
|---|
| 1094 | ! NetCDF file. DstrS must be less than or equal to DendS. If both
|
|---|
| 1095 | ! values are zero, their values are reset internally to the full
|
|---|
| 1096 | ! range of the adjoint integration.
|
|---|
| 1097 | !
|
|---|
| 1098 | ! KstrS Starting vertical level of the 3D adjoint state variables whose
|
|---|
| 1099 | ! sensitivity is required.
|
|---|
| 1100 | ! KendS Ending vertical level of the 3D adjoint state variables whose
|
|---|
| 1101 | ! sensitivity is required.
|
|---|
| 1102 | !
|
|---|
| 1103 | ! Lstate Logical switches (TRUE/FALSE) to specify the adjoint state
|
|---|
| 1104 | ! variables whose sensitivity is required.
|
|---|
| 1105 | !
|
|---|
| 1106 | ! Lstate(isFsur): Free-surface
|
|---|
| 1107 | ! Lstate(isUbar): 2D U-momentum
|
|---|
| 1108 | ! Lstate(isVbar): 2D V-momentum
|
|---|
| 1109 | ! Lstate(isUvel): 3D U-momentum
|
|---|
| 1110 | ! Lstate(isVvel): 3D V-momentum
|
|---|
| 1111 | ! Lstate(isTvar): Traces (NT values expected)
|
|---|
| 1112 | !
|
|---|
| 1113 | !------------------------------------------------------------------------------
|
|---|
| 1114 | ! Stochastic optimals parameters.
|
|---|
| 1115 | !------------------------------------------------------------------------------
|
|---|
| 1116 | !
|
|---|
| 1117 | ! SO_decay Stochastic optimals time decorrelation scale (days) assumed
|
|---|
| 1118 | ! for red noise processes.
|
|---|
| 1119 | !
|
|---|
| 1120 | ! SOstate Logical switches (TRUE/FALSE) to specify the state surface
|
|---|
| 1121 | ! forcing variable whose stochastic optimals is required.
|
|---|
| 1122 | !
|
|---|
| 1123 | ! SOstate(isUstr): surface u-stress
|
|---|
| 1124 | ! SOstate(isVstr): surface v-stress
|
|---|
| 1125 | ! SOstate(isTsur): surface tracer flux (NT values expected)
|
|---|
| 1126 | !
|
|---|
| 1127 | ! SO_sdev Stochastic optimals surface forcing standard deviation for
|
|---|
| 1128 | ! dimensionalization.
|
|---|
| 1129 | !
|
|---|
| 1130 | ! SO_sdev(isUstr): surface u-stress
|
|---|
| 1131 | ! SO_sdev(isVstr): surface v-stress
|
|---|
| 1132 | ! SO_sdev(isTsur): surface tracer flux (NT values expected)
|
|---|
| 1133 | !
|
|---|
| 1134 | !------------------------------------------------------------------------------
|
|---|
| 1135 | ! Logical switches (T/F) to activate writing of fields into HISTORY file.
|
|---|
| 1136 | !------------------------------------------------------------------------------
|
|---|
| 1137 | !
|
|---|
| 1138 | ! Hout(idUvel) Write out 3D U-velocity component.
|
|---|
| 1139 | ! Hout(idVvel) Write out 3D V-velocity component.
|
|---|
| 1140 | ! Hout(idWvel) Write out 3D W-velocity component.
|
|---|
| 1141 | ! Hout(idOvel) Write out 3D omega vertical velocity.
|
|---|
| 1142 | ! Hout(idUbar) Write out 2D U-velocity component.
|
|---|
| 1143 | ! Hout(idVbar) Write out 2D V-velocity component.
|
|---|
| 1144 | ! Hout(idFsur) Write out free-surface.
|
|---|
| 1145 | ! Hout(idBath) Write out time-dependent bathymetry.
|
|---|
| 1146 | !
|
|---|
| 1147 | ! Hout(idTvar) Write out active (NAT) tracers: temperature and salinity.
|
|---|
| 1148 | !
|
|---|
| 1149 | ! Hout(idUsms) Write out surface U-momentum stress.
|
|---|
| 1150 | ! Hout(idVsms) Write out surface V-momentum stress.
|
|---|
| 1151 | ! Hout(idUbms) Write out bottom U-momentum stress.
|
|---|
| 1152 | ! Hout(idVbms) Write out bottom V-momentum stress.
|
|---|
| 1153 | !
|
|---|
| 1154 | ! Hout(idUbrs) Write out current-induced, U-momentum stress.
|
|---|
| 1155 | ! Hout(idVbrs) Write out current-induced, V-momentum stress.
|
|---|
| 1156 | ! Hout(idUbws) Write out wind-induced, bottom U-wave stress.
|
|---|
| 1157 | ! Hout(idVbws) Write out wind-induced, bottom V-wave stress.
|
|---|
| 1158 | ! Hout(idUbcs) Write out bottom maximum wave and current U-stress.
|
|---|
| 1159 | ! Hout(idVbcs) Write out bottom maximum wave and current V-stress.
|
|---|
| 1160 | !
|
|---|
| 1161 | ! Hout(idUbot) Write out wind-induced, bed wave orbital U-velocity.
|
|---|
| 1162 | ! Hout(idVbot) Write out wind-induced, bed wave orbital V-velocity.
|
|---|
| 1163 | ! Hout(idUbur) Write out bottom U-velocity above bed.
|
|---|
| 1164 | ! Hout(idVbvr) Write out bottom V-velocity above bed.
|
|---|
| 1165 | !
|
|---|
| 1166 | ! Hout(idW2xx) Write out 2D radiation stress, Sxx component.
|
|---|
| 1167 | ! Hout(idW2xy) Write out 2D radiation stress, Sxy component.
|
|---|
| 1168 | ! Hout(idW2yy) Write out 2D radiation stress, Syy component.
|
|---|
| 1169 | ! Hout(idU2rs) Write out 2D U-radiation stress.
|
|---|
| 1170 | ! Hout(idV2rs) Write out 2D V-radiation stress.
|
|---|
| 1171 | ! Hout(idU2Sd) Write out 2D U-Stokes velocity.
|
|---|
| 1172 | ! Hout(idV2Sd) Write out 2D V-Stokes velocity.
|
|---|
| 1173 | !
|
|---|
| 1174 | ! Hout(idW3xx) Write out 3D radiation stress, Sxx component.
|
|---|
| 1175 | ! Hout(idW3xy) Write out 3D radiation stress, Sxy component.
|
|---|
| 1176 | ! Hout(idW3yy) Write out 3D radiation stress, Syy component.
|
|---|
| 1177 | ! Hout(idW3zx) Write out 3D radiation stress, Szx component.
|
|---|
| 1178 | ! Hout(idW3zy) Write out 3D radiation stress, Szy component.
|
|---|
| 1179 | ! Hout(idU3rs) Write out 3D U-radiation stress.
|
|---|
| 1180 | ! Hout(idV3rs) Write out 3D V-radiation stress.
|
|---|
| 1181 | ! Hout(idU3Sd) Write out 3D U-Stokes velocity.
|
|---|
| 1182 | ! Hout(idV3Sd) Write out 3D V-Stokes velocity.
|
|---|
| 1183 | !
|
|---|
| 1184 | ! Hout(idWamp) Write out wave height.
|
|---|
| 1185 | ! Hout(idWlen) Write out wave length.
|
|---|
| 1186 | ! Hout(idWdir) Write out wave direction.
|
|---|
| 1187 | !
|
|---|
| 1188 | ! Hout(idTsur) Write out surface net heat and salt flux
|
|---|
| 1189 | ! Hout(idLhea) Write out latent heat flux.
|
|---|
| 1190 | ! Hout(idShea) Write out sensible heat flux.
|
|---|
| 1191 | ! Hout(idLrad) Write out long-wave radiation flux.
|
|---|
| 1192 | ! Hout(idSrad) Write out short-wave radiation flux.
|
|---|
| 1193 | ! Hout(idevap) Write out evaporation rate.
|
|---|
| 1194 | ! Hout(idrain) Write out precipitation rate.
|
|---|
| 1195 | !
|
|---|
| 1196 | ! Hout(idDano) Write out density anomaly.
|
|---|
| 1197 | ! Hout(idVvis) Write out vertical viscosity coefficient.
|
|---|
| 1198 | ! Hout(idTdif) Write out vertical diffusion coefficient of temperature.
|
|---|
| 1199 | ! Hout(idSdif) Write out vertical diffusion coefficient of salinity.
|
|---|
| 1200 | ! Hout(idHsbl) Write out depth of oceanic surface boundary layer.
|
|---|
| 1201 | ! Hout(idHbbl) Write out depth of oceanic bottom boundary layer.
|
|---|
| 1202 | ! Hout(idMtke) Write out turbulent kinetic energy.
|
|---|
| 1203 | ! Hout(idMtls) Write out turbulent kinetic energy times length scale.
|
|---|
| 1204 | !
|
|---|
| 1205 | ! Hout(inert) Write out extra inert passive tracers.
|
|---|
| 1206 | !
|
|---|
| 1207 | ! Hout(idBott) Write out exposed sediment layer properties, 1:MBOTP.
|
|---|
| 1208 | !
|
|---|
| 1209 | !------------------------------------------------------------------------------
|
|---|
| 1210 | ! Generic User parameters.
|
|---|
| 1211 | !------------------------------------------------------------------------------
|
|---|
| 1212 | !
|
|---|
| 1213 | ! NUSER Number of User parameters to consider (integer).
|
|---|
| 1214 | ! USER Vector containing user parameters (real array). This array
|
|---|
| 1215 | ! is used with the SANITY_CHECK to test the correctness of
|
|---|
| 1216 | ! the tangent linear adjoint models. It contains information
|
|---|
| 1217 | ! of the model variable and grid point to perturb:
|
|---|
| 1218 | !
|
|---|
| 1219 | ! INT(user(1)): tangent state variable to perturb
|
|---|
| 1220 | ! INT(user(2)): adjoint state variable to perturb
|
|---|
| 1221 | ! [isFsur=1] free-surface
|
|---|
| 1222 | ! [isUbar=2] 2D U-momentum
|
|---|
| 1223 | ! [isVbar=3] 2D V-momentum
|
|---|
| 1224 | ! [isUvel=4] 3D U-momentum
|
|---|
| 1225 | ! [isVvel=5] 3D V-momentum
|
|---|
| 1226 | ! [isTvar=6] First tracer (temperature)
|
|---|
| 1227 | ! [ ... ]
|
|---|
| 1228 | ! [isTvar=?] Last tracer
|
|---|
| 1229 | !
|
|---|
| 1230 | ! INT(user(3)): I-index of tangent variable to perturb
|
|---|
| 1231 | ! INT(user(4)): I-index of adjoint variable to perturb
|
|---|
| 1232 | ! INT(user(5)): J-index of tangent variable to perturb
|
|---|
| 1233 | ! INT(user(6)): J-index of adjoint variable to perturb
|
|---|
| 1234 | ! INT(user(7)): K-index of tangent variable to perturb, if 3D
|
|---|
| 1235 | ! INT(user(8)): K-index of adjoint variable to perturb, if 3D
|
|---|
| 1236 | !
|
|---|
| 1237 | ! Set tangent and adjoint parameters to the same values
|
|---|
| 1238 | ! if perturbing and reporting the same variable.
|
|---|
| 1239 | !
|
|---|
| 1240 | !------------------------------------------------------------------------------
|
|---|
| 1241 | ! Input/output NetCDF file names (string with a maximum of eighty characters).
|
|---|
| 1242 | !------------------------------------------------------------------------------
|
|---|
| 1243 | !
|
|---|
| 1244 | ! GRDNAME Input grid file name.
|
|---|
| 1245 | ! ININAME Input nonlinear initial conditions file name. It can be a
|
|---|
| 1246 | ! re-start file.
|
|---|
| 1247 | ! IRPNAME Input representer model initial conditions file name.
|
|---|
| 1248 | ! ITLNAME Input tangent linear model initial conditions file name.
|
|---|
| 1249 | ! IADNAME Input adjoint model initial conditions file name.
|
|---|
| 1250 | ! FRCNAME Input forcing fields file name.
|
|---|
| 1251 | ! CLMNAME Input climatology fields file name.
|
|---|
| 1252 | ! BRYNAME Input open boundary data file name.
|
|---|
| 1253 | ! FWDNAME Input forward solution fields file name.
|
|---|
| 1254 | ! ADSNAME Input adjoint sensitivity functional file name.
|
|---|
| 1255 | !
|
|---|
| 1256 | ! GSTNAME Output GST analysis re-start file name.
|
|---|
| 1257 | ! RSTNAME Output re-start file name.
|
|---|
| 1258 | ! HISNAME Output history file name.
|
|---|
| 1259 | ! TLFNAME Output impulse forcing for tangent linear (TLM and RPM) models.
|
|---|
| 1260 | ! TLMNAME Output tangent linear file name.
|
|---|
| 1261 | ! ADJNAME Output adjoint file name.
|
|---|
| 1262 | ! AVGNAME Output averages file name.
|
|---|
| 1263 | ! DIANAME Output diagnostics file name.
|
|---|
| 1264 | ! STANAME Output stations file name.
|
|---|
| 1265 | ! FLTNAME Output floats file name.
|
|---|
| 1266 | !
|
|---|
| 1267 | !------------------------------------------------------------------------------
|
|---|
| 1268 | ! Input ASCII parameters file names.
|
|---|
| 1269 | !------------------------------------------------------------------------------
|
|---|
| 1270 | !
|
|---|
| 1271 | ! APARNAM Input assimilation parameters file name.
|
|---|
| 1272 | ! SPOSNAM Input stations positions file name.
|
|---|
| 1273 | ! FPOSNAM Input initial drifters positions file name.
|
|---|
| 1274 | ! BPARNAM Input biological parameters file name.
|
|---|
| 1275 | ! SPARNAM Input sediment transport parameters file name.
|
|---|
| 1276 | ! USRNAME USER's input generic file name.
|
|---|
| 1277 | !
|
|---|