1 | !
|
---|
2 | ! ROMS/TOMS Standard Input parameters.
|
---|
3 | !
|
---|
4 | !svn $Id: ocean_lmd_test.in 165 2008-03-13 21:18:13Z arango $
|
---|
5 | !========================================================= Hernan G. Arango ===
|
---|
6 | ! Copyright (c) 2002-2008 The ROMS/TOMS Group !
|
---|
7 | ! Licensed under a MIT/X style license !
|
---|
8 | ! See License_ROMS.txt !
|
---|
9 | !==============================================================================
|
---|
10 | ! !
|
---|
11 | ! Input parameters can be entered in ANY order, provided that the parameter !
|
---|
12 | ! KEYWORD (usually, upper case) is typed correctly followed by "=" or "==" !
|
---|
13 | ! symbols. Any comment lines are allowed and must begin with an exclamation !
|
---|
14 | ! mark (!) in column one. Comments may appear to the right of a parameter !
|
---|
15 | ! specification to improve documentation. Comments will be ignored during !
|
---|
16 | ! reading. Blank lines are also allowed and ignored. Continuation lines in !
|
---|
17 | ! a parameter specification are allowed and must be preceded by a backslash !
|
---|
18 | ! (\). In some instances, more than one value is required for a parameter. !
|
---|
19 | ! If fewer values are provided, the last value is assigned for the entire !
|
---|
20 | ! parameter array. The multiplication symbol (*), without blank spaces in !
|
---|
21 | ! between, is allowed for a parameter specification. For example, in a two !
|
---|
22 | ! grids nested application: !
|
---|
23 | ! !
|
---|
24 | ! AKT_BAK == 2*1.0d-6 2*5.0d-6 ! m2/s !
|
---|
25 | ! !
|
---|
26 | ! indicates that the first two entries of array AKT_BAK, in fortran column- !
|
---|
27 | ! major order, will have the same value of "1.0d-6" for grid 1, whereas the !
|
---|
28 | ! next two entries will have the same value of "5.0d-6" for grid 2. !
|
---|
29 | ! !
|
---|
30 | ! In multiple levels of nesting and/or multiple connected domains step-ups, !
|
---|
31 | ! "Ngrids" entries are expected for some of these parameters. In such case, !
|
---|
32 | ! the order of the entries for a parameter is extremely important. It must !
|
---|
33 | ! follow the same order (1:Ngrids) as in the state variable declaration. The !
|
---|
34 | ! USER may follow the above guidelines for specifying his/her values. These !
|
---|
35 | ! parameters are marked by "==" plural symbol after the KEYWORD. !
|
---|
36 | ! !
|
---|
37 | !==============================================================================
|
---|
38 | !
|
---|
39 | ! Application title.
|
---|
40 |
|
---|
41 | TITLE = Large et al. (1994) KPP Test
|
---|
42 |
|
---|
43 | ! C-preprocessing Flag.
|
---|
44 |
|
---|
45 | MyAppCPP = LMD_TEST
|
---|
46 |
|
---|
47 | ! Input variable information file name. This file needs to be processed
|
---|
48 | ! first so all information arrays can be initialized properly.
|
---|
49 |
|
---|
50 | VARNAME = ROMS/External/varinfo.dat
|
---|
51 |
|
---|
52 | ! Grid dimension parameters. See notes below in the Glossary for how to set
|
---|
53 | ! these parameters correctly.
|
---|
54 |
|
---|
55 | Lm == 10 ! Number of I-direction INTERIOR RHO-points
|
---|
56 | Mm == 10 ! Number of J-direction INTERIOR RHO-points
|
---|
57 | N == 50 ! Number of vertical levels
|
---|
58 |
|
---|
59 | Nbed = 0 ! Number of sediment bed layers
|
---|
60 |
|
---|
61 | NAT = 2 ! Number of active tracers (usually, 2)
|
---|
62 | NPT = 0 ! Number of inactive passive tracers
|
---|
63 | NCS = 0 ! Number of cohesive (mud) sediment tracers
|
---|
64 | NNS = 0 ! Number of non-cohesive (sand) sediment tracers
|
---|
65 |
|
---|
66 | ! Domain decomposition parameters for serial, distributed-memory or
|
---|
67 | ! shared-memory configurations used to determine tile horizontal range
|
---|
68 | ! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].
|
---|
69 |
|
---|
70 | NtileI == 1 ! I-direction partition
|
---|
71 | NtileJ == 1 ! J-direction partition
|
---|
72 |
|
---|
73 | ! Time-Stepping parameters.
|
---|
74 |
|
---|
75 | NTIMES == 720
|
---|
76 | DT == 120.0d0
|
---|
77 | NDTFAST == 10
|
---|
78 |
|
---|
79 | ! Model iteration loops parameters.
|
---|
80 |
|
---|
81 | ERstr = 1
|
---|
82 | ERend = 1
|
---|
83 | Nouter = 1
|
---|
84 | Ninner = 1
|
---|
85 | Nintervals = 1
|
---|
86 |
|
---|
87 | ! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
|
---|
88 | ! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
|
---|
89 | ! analysis. NCV must be greater than NEV (see documentation below).
|
---|
90 |
|
---|
91 | NEV = 2 ! Number of eigenvalues
|
---|
92 | NCV = 10 ! Number of eigenvectors
|
---|
93 |
|
---|
94 | ! Input/Output parameters.
|
---|
95 |
|
---|
96 | NRREC == 0
|
---|
97 | LcycleRST == T
|
---|
98 | NRST == 720
|
---|
99 | NSTA == 1
|
---|
100 | NFLT == 1
|
---|
101 | NINFO == 1
|
---|
102 |
|
---|
103 | ! Output history, average, diagnostic files parameters.
|
---|
104 |
|
---|
105 | LDEFOUT == T
|
---|
106 | NHIS == 60
|
---|
107 | NDEFHIS == 0
|
---|
108 | NTSAVG == 1
|
---|
109 | NAVG == 60
|
---|
110 | NDEFAVG == 0
|
---|
111 | NTSDIA == 1
|
---|
112 | NDIA == 60
|
---|
113 | NDEFDIA == 0
|
---|
114 |
|
---|
115 | ! Output tangent linear and adjoint models parameters.
|
---|
116 |
|
---|
117 | LcycleTLM == F
|
---|
118 | NTLM == 60
|
---|
119 | NDEFTLM == 0
|
---|
120 | LcycleADJ == F
|
---|
121 | NADJ == 60
|
---|
122 | NDEFADJ == 0
|
---|
123 | NSFF == 60
|
---|
124 |
|
---|
125 | ! Output check pointing GST restart parameters.
|
---|
126 |
|
---|
127 | LrstGST = F ! GST restart switch
|
---|
128 | MaxIterGST = 500 ! maximun number of iterations
|
---|
129 | NGST = 10 ! check pointing interval
|
---|
130 |
|
---|
131 | ! Relative accuracy of the Ritz values computed in the GST analysis.
|
---|
132 |
|
---|
133 | Ritz_tol = 1.0d-15
|
---|
134 |
|
---|
135 | ! Harmonic/biharmonic horizontal diffusion of tracer: [1:NAT+NPT,Ngrids].
|
---|
136 |
|
---|
137 | TNU2 == 0.0d0 0.0d0 ! m2/s
|
---|
138 | TNU4 == 0.0d0 0.0d0 ! m4/s
|
---|
139 |
|
---|
140 | ! Harmononic/biharmonic, horizontal viscosity coefficient: [Ngrids].
|
---|
141 |
|
---|
142 | VISC2 == 0.0d0 ! m2/s
|
---|
143 | VISC4 == 0.0d0 ! m4/s
|
---|
144 |
|
---|
145 | ! Vertical mixing coefficients for active tracers: [1:NAT+NPT,Ngrids]
|
---|
146 |
|
---|
147 | AKT_BAK == 1.0d-6 1.0d-6 ! m2/s
|
---|
148 |
|
---|
149 | ! Vertical mixing coefficient for momentum: [Ngrids].
|
---|
150 |
|
---|
151 | AKV_BAK == 1.0d-5 ! m2/s
|
---|
152 |
|
---|
153 | ! Turbulent closure parameters.
|
---|
154 |
|
---|
155 | AKK_BAK == 5.0d-6 ! m2/s
|
---|
156 | AKP_BAK == 5.0d-6 ! m2/s
|
---|
157 | TKENU2 == 0.0d0 ! m2/s
|
---|
158 | TKENU4 == 0.0d0 ! m4/s
|
---|
159 |
|
---|
160 | ! Generic length-scale turbulence closure parameters.
|
---|
161 |
|
---|
162 | GLS_P == 3.0d0 ! K-epsilon
|
---|
163 | GLS_M == 1.5d0
|
---|
164 | GLS_N == -1.0d0
|
---|
165 | GLS_Kmin == 7.6d-6
|
---|
166 | GLS_Pmin == 1.0d-12
|
---|
167 |
|
---|
168 | GLS_CMU0 == 0.5477d0
|
---|
169 | GLS_C1 == 1.44d0
|
---|
170 | GLS_C2 == 1.92d0
|
---|
171 | GLS_C3M == -0.4d0
|
---|
172 | GLS_C3P == 1.0d0
|
---|
173 | GLS_SIGK == 1.0d0
|
---|
174 | GLS_SIGP == 1.30d0
|
---|
175 |
|
---|
176 | ! Constants used in surface turbulent kinetic energy flux computation.
|
---|
177 |
|
---|
178 | CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
|
---|
179 | ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
|
---|
180 | SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
|
---|
181 | CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking
|
---|
182 |
|
---|
183 | ! Constants used in momentum stress computation.
|
---|
184 |
|
---|
185 | RDRG == 3.0d-04 ! m/s
|
---|
186 | RDRG2 == 3.0d-03 ! nondimensional
|
---|
187 | Zob == 0.02d0 ! m
|
---|
188 | Zos == 0.02d0 ! m
|
---|
189 |
|
---|
190 | ! Height (m) of atmospheric measurements for Bulk fluxes parameterization.
|
---|
191 |
|
---|
192 | BLK_ZQ == 10.0d0 ! air humidity
|
---|
193 | BLK_ZT == 10.0d0 ! air temperature
|
---|
194 | BLK_ZW == 10.0d0 ! winds
|
---|
195 |
|
---|
196 | ! Minimum depth for wetting and drying.
|
---|
197 |
|
---|
198 | DCRIT == 0.10d0 ! m
|
---|
199 |
|
---|
200 | ! Various parameters.
|
---|
201 |
|
---|
202 | WTYPE == 1
|
---|
203 | LEVSFRC == 15
|
---|
204 | LEVBFRC == 1
|
---|
205 |
|
---|
206 | ! Vertical S-coordinates parameters, [1:Ngrids].
|
---|
207 |
|
---|
208 | THETA_S == 1.0d-4 ! 0 < THETA_S < 20
|
---|
209 | THETA_B == 0.0d0 ! 0 < THETA_B < 1
|
---|
210 | TCLINE == 50.0d0 ! m
|
---|
211 |
|
---|
212 | ! Mean Density and Brunt-Vaisala frequency.
|
---|
213 |
|
---|
214 | RHO0 = 1025.0d0 ! kg/m3
|
---|
215 | BVF_BAK = 1.0d-5 ! 1/s2
|
---|
216 |
|
---|
217 | ! Time-stamp assigned for model initialization, reference time
|
---|
218 | ! origin for tidal forcing, and model reference time for output
|
---|
219 | ! NetCDF units attribute.
|
---|
220 |
|
---|
221 | DSTART = 0.0d0 ! days
|
---|
222 | TIDE_START = 0.0d0 ! days
|
---|
223 | TIME_REF = 0.0d0 ! yyyymmdd.dd
|
---|
224 |
|
---|
225 | ! Nudging/relaxation time scales, inverse scales will be computed
|
---|
226 | ! internally, [1:Ngrids].
|
---|
227 |
|
---|
228 | TNUDG == 2*0.0d0 ! days
|
---|
229 | ZNUDG == 0.0d0 ! days
|
---|
230 | M2NUDG == 0.0d0 ! days
|
---|
231 | M3NUDG == 0.0d0 ! days
|
---|
232 |
|
---|
233 | ! Factor between passive (outflow) and active (inflow) open boundary
|
---|
234 | ! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
|
---|
235 | ! than on outflow (recommended).
|
---|
236 |
|
---|
237 | OBCFAC == 0.0d0 ! nondimensional
|
---|
238 |
|
---|
239 | ! Linear equation of State parameters:
|
---|
240 |
|
---|
241 | R0 == 1027.0d0 ! kg/m3
|
---|
242 | T0 == 10.0d0 ! Celsius
|
---|
243 | S0 == 35.0d0 ! PSU
|
---|
244 | TCOEF == 1.7d-4 ! 1/Celsius
|
---|
245 | SCOEF == 7.6d-4 ! 1/PSU
|
---|
246 |
|
---|
247 | ! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)
|
---|
248 |
|
---|
249 | GAMMA2 == -1.0d0
|
---|
250 |
|
---|
251 | ! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
|
---|
252 | ! DstrS must be less or equal to DendS. If both values are zero, their
|
---|
253 | ! values are reset internally to the full range of the adjoint integration.
|
---|
254 |
|
---|
255 | DstrS == 0.0d0 ! starting day
|
---|
256 | DendS == 0.0d0 ! ending day
|
---|
257 |
|
---|
258 | ! Starting and ending vertical levels of the 3D adjoint state variables
|
---|
259 | ! whose sensitivity is required.
|
---|
260 |
|
---|
261 | KstrS == 1 ! starting level
|
---|
262 | KendS == 1 ! ending level
|
---|
263 |
|
---|
264 | ! Logical switches (TRUE/FALSE) to specify the adjoint state variables
|
---|
265 | ! whose sensitivity is required.
|
---|
266 |
|
---|
267 | Lstate(isFsur) == F ! free-surface
|
---|
268 | Lstate(isUbar) == F ! 2D U-momentum
|
---|
269 | Lstate(isVbar) == F ! 2D V-momentum
|
---|
270 | Lstate(isUvel) == F ! 3D U-momentum
|
---|
271 | Lstate(isVvel) == F ! 3D V-momentum
|
---|
272 |
|
---|
273 | ! Logical switches (TRUE/FALSE) to specify the adjoint state tracer
|
---|
274 | ! variables whose sensitivity is required (NT values are expected).
|
---|
275 |
|
---|
276 | Lstate(isTvar) == F F ! tracers
|
---|
277 |
|
---|
278 | ! Stochastic optimals time decorrelation scale (days) assumed for
|
---|
279 | ! red noise processes.
|
---|
280 |
|
---|
281 | SO_decay == 2.0d0 ! days
|
---|
282 |
|
---|
283 | ! Logical switches (TRUE/FALSE) to specify the state surface forcing
|
---|
284 | ! variable whose stochastic optimals is required.
|
---|
285 |
|
---|
286 | SOstate(isUstr) == T ! surface u-stress
|
---|
287 | SOstate(isVstr) == T ! surface v-stress
|
---|
288 |
|
---|
289 | ! Logical switches (TRUE/FALSE) to specify the surface tracer forcing
|
---|
290 | ! variable whose stochastic optimals is required (NT values are expected).
|
---|
291 |
|
---|
292 | SOstate(isTsur) == F F ! surface tracer flux
|
---|
293 |
|
---|
294 | ! Stochastic optimals surface forcing standard deviation for
|
---|
295 | ! dimensionalization.
|
---|
296 |
|
---|
297 | SO_sdev(isUstr) == 1.0d0 ! surface u-stress
|
---|
298 | SO_sdev(isVstr) == 1.0d0 ! surface v-stress
|
---|
299 | SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux
|
---|
300 |
|
---|
301 | ! Logical switches (TRUE/FALSE) to activate writing of fields into
|
---|
302 | ! HISTORY output file.
|
---|
303 |
|
---|
304 | Hout(idUvel) == T ! 3D U-velocity
|
---|
305 | Hout(idVvel) == T ! 3D V-velocity
|
---|
306 | Hout(idWvel) == T ! 3D W-velocity
|
---|
307 | Hout(idOvel) == T ! omega vertical velocity
|
---|
308 | Hout(idUbar) == T ! 2D U-velocity
|
---|
309 | Hout(idVbar) == T ! 2D V-velocity
|
---|
310 | Hout(idFsur) == T ! free-surface
|
---|
311 | Hout(idBath) == T ! time-dependent bathymetry
|
---|
312 |
|
---|
313 | Hout(idTvar) == T T ! temperature and salinity
|
---|
314 |
|
---|
315 | Hout(idUsms) == T ! surface U-stress
|
---|
316 | Hout(idVsms) == T ! surface V-stress
|
---|
317 | Hout(idUbms) == T ! bottom U-stress
|
---|
318 | Hout(idVbms) == T ! bottom V-stress
|
---|
319 |
|
---|
320 | Hout(idUbrs) == F ! bottom U-current stress
|
---|
321 | Hout(idVbrs) == F ! bottom V-current stress
|
---|
322 | Hout(idUbws) == F ! bottom U-wave stress
|
---|
323 | Hout(idVbws) == F ! bottom V-wave stress
|
---|
324 | Hout(idUbcs) == F ! bottom max wave-current U-stress
|
---|
325 | Hout(idVbcs) == F ! bottom max wave-current V-stress
|
---|
326 |
|
---|
327 | Hout(idUbot) == F ! bed wave orbital U-velocity
|
---|
328 | Hout(idVbot) == F ! bed wave orbital V-velocity
|
---|
329 | Hout(idUbur) == F ! bottom U-velocity above bed
|
---|
330 | Hout(idVbvr) == F ! bottom V-velocity above bed
|
---|
331 |
|
---|
332 | Hout(idW2xx) == F ! 2D radiation stress, Sxx component
|
---|
333 | Hout(idW2xy) == F ! 2D radiation stress, Sxy component
|
---|
334 | Hout(idW2yy) == F ! 2D radiation stress, Syy component
|
---|
335 | Hout(idU2rs) == F ! 2D radiation U-stress
|
---|
336 | Hout(idV2rs) == F ! 2D radiation V-stress
|
---|
337 | Hout(idU2Sd) == F ! 2D U-Stokes velocity
|
---|
338 | Hout(idV2Sd) == F ! 2D V-Stokes velocity
|
---|
339 |
|
---|
340 | Hout(idW3xx) == F ! 3D radiation stress, Sxx component
|
---|
341 | Hout(idW3xy) == F ! 3D radiation stress, Sxy component
|
---|
342 | Hout(idW3yy) == F ! 3D radiation stress, Syy component
|
---|
343 | Hout(idW3zx) == F ! 3D radiation stress, Szx component
|
---|
344 | Hout(idW3zy) == F ! 3D radiation stress, Szy component
|
---|
345 | Hout(idU3rs) == F ! 3D U-radiation stress
|
---|
346 | Hout(idV3rs) == F ! 3D V-radiation stress
|
---|
347 | Hout(idU3Sd) == F ! 3D U-Stokes velocity
|
---|
348 | Hout(idV3Sd) == F ! 3D V-Stokes velocity
|
---|
349 |
|
---|
350 | Hout(idWamp) == F ! wave height
|
---|
351 | Hout(idWlen) == F ! wave length
|
---|
352 | Hout(idWdir) == F ! wave direction
|
---|
353 |
|
---|
354 | Hout(idTsur) == F F ! surface net heat and salt flux
|
---|
355 | Hout(idLhea) == F ! latent heat flux
|
---|
356 | Hout(idShea) == F ! sensible heat flux
|
---|
357 | Hout(idLrad) == F ! longwave radiation flux
|
---|
358 | Hout(idSrad) == F ! shortwave radiation flux
|
---|
359 | Hout(idevap) == F ! evaporation rate
|
---|
360 | Hout(idrain) == F ! precipitation rate
|
---|
361 |
|
---|
362 | Hout(idDano) == T ! density anomaly
|
---|
363 | Hout(idVvis) == T ! vertical viscosity
|
---|
364 | Hout(idTdif) == T ! vertical T-diffusion
|
---|
365 | Hout(idSdif) == T ! vertical Salinity diffusion
|
---|
366 | Hout(idHsbl) == T ! depth of surface boundary layer
|
---|
367 | Hout(idHbbl) == T ! depth of bottom boundary layer
|
---|
368 | Hout(idMtke) == F ! turbulent kinetic energy
|
---|
369 | Hout(idMtls) == F ! turbulent length scale
|
---|
370 |
|
---|
371 | ! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
|
---|
372 | ! tracers other than biological and sediment tracers. An inert passive tracer
|
---|
373 | ! is one that it is only advected and diffused. Other processes are ignored.
|
---|
374 | ! These tracers include, for example, dyes, pollutants, oil spills, etc.
|
---|
375 | ! NPT values are expected. However, these switches can be activated using
|
---|
376 | ! compact parameter specification.
|
---|
377 |
|
---|
378 | Hout(inert) == T ! inert passive tracers
|
---|
379 |
|
---|
380 | ! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
|
---|
381 | ! layer properties into HISTORY output file. Currently, MBOTP properties
|
---|
382 | ! are expected for the bottom boundary layer and/or sediment models:
|
---|
383 | !
|
---|
384 | ! Hout(idBott(isd50)), isd50 = 1 ! mean grain diameter
|
---|
385 | ! Hout(idBott(idens)), idens = 2 ! mean grain density
|
---|
386 | ! Hout(idBott(iwsed)), iwsed = 3 ! mean settling velocity
|
---|
387 | ! Hout(idBott(itauc)), itauc = 4 ! critical erosion stress
|
---|
388 | ! Hout(idBott(irlen)), irlen = 5 ! ripple length
|
---|
389 | ! Hout(idBott(irhgt)), irhgt = 6 ! ripple height
|
---|
390 | ! Hout(idBott(ibwav)), ibwav = 7 ! wave excursion amplitude
|
---|
391 | ! Hout(idBott(izdef)), izdef = 8 ! default bottom roughness
|
---|
392 | ! Hout(idBott(izapp)), izapp = 9 ! apparent bottom roughness
|
---|
393 | ! Hout(idBott(izNik)), izNik = 10 ! Nikuradse bottom roughness
|
---|
394 | ! Hout(idBott(izbio)), izbio = 11 ! biological bottom roughness
|
---|
395 | ! Hout(idBott(izbfm)), izbfm = 12 ! bed form bottom roughness
|
---|
396 | ! Hout(idBott(izbld)), izbld = 13 ! bed load bottom roughness
|
---|
397 | ! Hout(idBott(izwbl)), izwbl = 14 ! wave bottom roughness
|
---|
398 | ! Hout(idBott(iactv)), iactv = 15 ! active layer thickness
|
---|
399 | ! Hout(idBott(ishgt)), ishgt = 16 ! saltation height
|
---|
400 | !
|
---|
401 | ! 1 1 1 1 1 1 1
|
---|
402 | ! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
|
---|
403 |
|
---|
404 | Hout(idBott) == T T T T T T T T T F F F F F F F
|
---|
405 |
|
---|
406 | ! Generic User parameters, [1:NUSER].
|
---|
407 |
|
---|
408 | NUSER = 0
|
---|
409 | USER = 0.d0
|
---|
410 |
|
---|
411 | ! Input NetCDF file names, [1:Ngrids].
|
---|
412 |
|
---|
413 | GRDNAME == ocean_grd.nc
|
---|
414 | ININAME == ocean_ini.nc
|
---|
415 | ITLNAME == ocean_itl.nc
|
---|
416 | IRPNAME == ocean_irp.nc
|
---|
417 | IADNAME == ocean_iad.nc
|
---|
418 | CLMNAME == ocean_clm.nc
|
---|
419 | BRYNAME == ocean_bry.nc
|
---|
420 | FWDNAME == ocean_fwd.nc
|
---|
421 | ADSNAME == ocean_ads.nc
|
---|
422 |
|
---|
423 | ! Input forcing NetCDF file name(s). The USER has the option to enter
|
---|
424 | ! several file names for each nested grid. For example, the USER may
|
---|
425 | ! have different files for wind products, heat fluxes, rivers, tides,
|
---|
426 | ! etc. The model will scan the file list and will read the needed data
|
---|
427 | ! from the first file in the list containing the forcing field. Therefore,
|
---|
428 | ! the order of the file names is very important. If using multiple forcing
|
---|
429 | ! files per grid, first enter all the file names for grid 1, then grid 2,
|
---|
430 | ! and so on. Use a single line per entry with a continuation (\) symbol
|
---|
431 | ! at the each entry, except the last one.
|
---|
432 |
|
---|
433 | NFFILES == 1 ! number of forcing files
|
---|
434 |
|
---|
435 | FRCNAME == ocean_frc.nc ! forcing file 1, grid 1
|
---|
436 |
|
---|
437 | ! Output NetCDF file names, [1:Ngrids].
|
---|
438 |
|
---|
439 | GSTNAME == ocean_gst.nc
|
---|
440 | RSTNAME == ocean_rst.nc
|
---|
441 | HISNAME == ocean_his.nc
|
---|
442 | TLMNAME == ocean_tlm.nc
|
---|
443 | TLFNAME == ocean_tlf.nc
|
---|
444 | ADJNAME == ocean_adj.nc
|
---|
445 | AVGNAME == ocean_avg.nc
|
---|
446 | DIANAME == ocean_dia.nc
|
---|
447 | STANAME == ocean_sta.nc
|
---|
448 | FLTNAME == ocean_flt.nc
|
---|
449 |
|
---|
450 | ! Input ASCII parameter filenames.
|
---|
451 |
|
---|
452 | APARNAM = ROMS/External/s4dvar.in
|
---|
453 | SPOSNAM = ROMS/External/stations_lmd_test.in
|
---|
454 | FPOSNAM = ROMS/External/floats.in
|
---|
455 | BPARNAM = ROMS/External/bioFasham.in
|
---|
456 | SPARNAM = ROMS/External/sediment.in
|
---|
457 | USRNAME = ROMS/External/MyFile.dat
|
---|
458 |
|
---|
459 | !
|
---|
460 | ! GLOSSARY:
|
---|
461 | ! =========
|
---|
462 | !
|
---|
463 | !------------------------------------------------------------------------------
|
---|
464 | ! Application tile (string with a maximum of eighty characters) and
|
---|
465 | ! C-preprocessing flag.
|
---|
466 | !------------------------------------------------------------------------------
|
---|
467 | !
|
---|
468 | ! TITLE Application title.
|
---|
469 | !
|
---|
470 | ! MyAppCPP Application C-preprocessing option.
|
---|
471 | !
|
---|
472 | !------------------------------------------------------------------------------
|
---|
473 | ! Variable information file name (string with a maximum of eighty characters).
|
---|
474 | !------------------------------------------------------------------------------
|
---|
475 | !
|
---|
476 | ! VARNAME Input/Output variable information file name. This file needs to
|
---|
477 | ! be processed first so all information arrays and indices can be
|
---|
478 | ! initialized properly in "mod_ncparam.F".
|
---|
479 | !
|
---|
480 | !------------------------------------------------------------------------------
|
---|
481 | ! Grid dimension parameters.
|
---|
482 | !------------------------------------------------------------------------------
|
---|
483 | !
|
---|
484 | ! These parameters are very important since they determine the grid of the
|
---|
485 | ! application to solve. They need to be read first in order to dynamically
|
---|
486 | ! allocate all model variables.
|
---|
487 | !
|
---|
488 | ! WARNING: It is trivial and possible to change these dimension parameters in
|
---|
489 | ! ------- idealized applications via analytical expressions. However, in
|
---|
490 | ! realistic applications any change to these parameters requires redoing all
|
---|
491 | ! input NetCDF files.
|
---|
492 | !
|
---|
493 | ! Lm Number of INTERIOR grid RHO-points in the XI-direction for
|
---|
494 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
---|
495 | ! input, Lm=xi_rho-2 where "xi_rho" is the NetCDF file
|
---|
496 | ! dimension of RHO-points. Recall that all RHO-point
|
---|
497 | ! variables have a computational I-range of [0:Lm+1].
|
---|
498 | !
|
---|
499 | ! Mm Number of INTERIOR grid RHO-points in the ETA-direction for
|
---|
500 | ! each nested grid, [1:Ngrids]. If using NetCDF files as
|
---|
501 | ! input, Mm=eta_rho-2 where "eta_rho" is the NetCDF file
|
---|
502 | ! dimension of RHO-points. Recall that all RHO-point
|
---|
503 | ! variables have a computational J-range of [0:Mm+1].
|
---|
504 | !
|
---|
505 | ! N Number of vertical terrain-following levels at RHO-points,
|
---|
506 | ! [1:Ngrids].
|
---|
507 | !
|
---|
508 | ! Nbed Number of sediment bed layers, [1:Ngrids]. This parameter
|
---|
509 | ! is only relevant if CPP option SEDIMENT is activated.
|
---|
510 | !
|
---|
511 | ! Mm+1 ___________________ _______ Kw = N
|
---|
512 | ! | | | |
|
---|
513 | ! Mm | _____________ | | | Kr = N
|
---|
514 | ! | | | | |_______|
|
---|
515 | ! | | | | | |
|
---|
516 | ! Jr | | | | | |
|
---|
517 | ! | | | | |_______|
|
---|
518 | ! | | | | | |
|
---|
519 | ! 1 | |_____________| | | |
|
---|
520 | ! | | |_______|
|
---|
521 | ! 0 |___________________| | |
|
---|
522 | ! Ir | | 1
|
---|
523 | ! 0 1 Lm Lm+1 h(i,j) |_______|
|
---|
524 | ! ::::::::: 0
|
---|
525 | ! :::::::::
|
---|
526 | ! ::::::::: Nbed-1
|
---|
527 | ! ::::::::: Nbed
|
---|
528 | !
|
---|
529 | ! NAT Number of active tracer type variables. Usually, NAT=2 for
|
---|
530 | ! potential temperature and salinity.
|
---|
531 | !
|
---|
532 | ! NPT Number of inert (dyes, age, etc) passive tracer type variables
|
---|
533 | ! to advect and diffuse only. This parameter is only relevant
|
---|
534 | ! if CPP option T_PASSIVE is activated.
|
---|
535 | !
|
---|
536 | ! NCS Number of cohesive (mud) sediment tracer type variables. This
|
---|
537 | ! parameter is only relevant if CPP option SEDIMENT is
|
---|
538 | ! activated.
|
---|
539 | !
|
---|
540 | ! NNS Number of non-cohesive (sand) sediment tracer type variables.
|
---|
541 | ! This parameter is only relevant if CPP option SEDIMENT is
|
---|
542 | ! activated.
|
---|
543 | !
|
---|
544 | ! The total number of sediment tracers is NST=NCS+NNS. Notice
|
---|
545 | ! that NST must be greater than zero (NST>0).
|
---|
546 | !
|
---|
547 | !------------------------------------------------------------------------------
|
---|
548 | ! Domain tile partition parameters.
|
---|
549 | !------------------------------------------------------------------------------
|
---|
550 | !
|
---|
551 | ! Model tile decomposition parameters for serial and parallel configurations
|
---|
552 | ! which are used to determine tile horizontal range indices (Istr,Iend) and
|
---|
553 | ! (Jstr,Jend). In some computers, it is advantageous to have tile partitions
|
---|
554 | ! in serial applications.
|
---|
555 | !
|
---|
556 | ! NtileI Number of domain partitions in the I-direction (XI-coordinate).
|
---|
557 | ! It must be equal to or greater than one.
|
---|
558 | !
|
---|
559 | ! NtileJ Number of domain partitions in the J-direction (ETA-coordinate).
|
---|
560 | ! It must be equal to or greater than one.
|
---|
561 | !
|
---|
562 | ! WARNING: In shared-memory (OpenMP), the product of NtileI and NtileJ must
|
---|
563 | ! be a MULTIPLE of the number of parallel threads specified with
|
---|
564 | ! the OpenMP environmental variable OMP_NUM_THREADS.
|
---|
565 | !
|
---|
566 | ! In distributed-memory (MPI), the product of NtileI and NtileJ
|
---|
567 | ! must be EQUAL to the number of parallel nodes specified during
|
---|
568 | ! execution with the "mprun" or "mpirun" command.
|
---|
569 | !
|
---|
570 | !------------------------------------------------------------------------------
|
---|
571 | ! Time-Stepping parameters.
|
---|
572 | !------------------------------------------------------------------------------
|
---|
573 | !
|
---|
574 | ! NTIMES Total number time-steps in current run. If 3D configuration,
|
---|
575 | ! NTIMES is the total of baroclinic time-steps. If only 2D
|
---|
576 | ! configuration, NTIMES is the total of barotropic time-steps.
|
---|
577 | !
|
---|
578 | ! DT Time-Step size in seconds. If 3D configuration, DT is the
|
---|
579 | ! size of the baroclinic time-step. If only 2D configuration,
|
---|
580 | ! DT is the size of the barotropic time-step.
|
---|
581 | !
|
---|
582 | ! NDTFAST Number of barotropic time-steps between each baroclinic time
|
---|
583 | ! step. If only 2D configuration, NDTFAST should be unity since
|
---|
584 | ! there is no need to split time-stepping.
|
---|
585 | !
|
---|
586 | !------------------------------------------------------------------------------
|
---|
587 | ! Model iteration loops parameters.
|
---|
588 | !------------------------------------------------------------------------------
|
---|
589 | !
|
---|
590 | ! ERstr Starting ensemble run (perturbation or iteration) number.
|
---|
591 | !
|
---|
592 | ! ERend Ending ensemble run (perturbation or iteration) number.
|
---|
593 | !
|
---|
594 | ! Nouter Maximum number of 4DVAR outer loop iterations.
|
---|
595 | !
|
---|
596 | ! Ninner Maximum number of 4DVAR inner loop iterations.
|
---|
597 | !
|
---|
598 | ! Nintervals Number of time interval divisions for stochastic optimals
|
---|
599 | ! computations. It must be a multiple of NTIMES. The tangent
|
---|
600 | ! linear model (TLM) and the adjoint model (ADM) are integrated
|
---|
601 | ! forward and backward at different intervals. For example,
|
---|
602 | ! if Nintervals=3,
|
---|
603 | !
|
---|
604 | ! 1 NTIMES/3 2*NTIMES/3 NTIMES
|
---|
605 | ! +..................+..................+..................+
|
---|
606 | ! <========================================================> (1)
|
---|
607 | ! <=====================================> (2)
|
---|
608 | ! <==================> (3)
|
---|
609 | !
|
---|
610 | ! In the first iteration (1), the TLM is integrated forward from
|
---|
611 | ! 1 to NTIMES and the ADM is integrated backward from NTIMES to 1.
|
---|
612 | ! In the second iteration (2), the TLM is integrated forward from
|
---|
613 | ! NTIMES/3 to NTIMES and the ADM is integrated backward from
|
---|
614 | ! NTIMES to NTIMES/3. And so on.
|
---|
615 | !
|
---|
616 | !------------------------------------------------------------------------------
|
---|
617 | ! Eigenproblem parameters.
|
---|
618 | !------------------------------------------------------------------------------
|
---|
619 | !
|
---|
620 | ! NEV Number of eigenvalues to compute for the Lanczos/Arnoldi
|
---|
621 | ! problem. Notice that the model memory requirement increases
|
---|
622 | ! substantially as NEV increases. The GST requires NEV+1
|
---|
623 | ! copies of the model state vector. The memory requirements
|
---|
624 | ! are decreased in distributed-memory applications.
|
---|
625 | !
|
---|
626 | ! NCV Number of eigenvectors to compute for the Lanczos/Arnoldi
|
---|
627 | ! problem. NCV must be greater than NEV.
|
---|
628 | !
|
---|
629 | ! At present, there is no a-priori analysis to guide the selection of NCV
|
---|
630 | ! relative to NEV. The only formal requirement is that NCV > NEV. However
|
---|
631 | ! in optimal perturbations, it is recommended to have NCV greater than or
|
---|
632 | ! equal to 2*NEV. In Finite Time Eigenmodes (FTE) and Adjoint Finite Time
|
---|
633 | ! Eigenmodes (AFTE) the requirement is to have NCV greater than or equal to
|
---|
634 | ! 2*NEV+1.
|
---|
635 | !
|
---|
636 | ! The efficiency of calculations depends critically on the combination of
|
---|
637 | ! NEV and NCV. If NEV is large (greater than 10 say), you can use NCV=2*NEV+1
|
---|
638 | ! but for NEV small (less than 6) it will be inefficient to use NCV=2*NEV+1.
|
---|
639 | ! In complicated applications, you can start with NEV=2 and NCV=10. Otherwise,
|
---|
640 | ! it will iterate for a very long time.
|
---|
641 | !
|
---|
642 | !------------------------------------------------------------------------------
|
---|
643 | ! Input/Output parameters.
|
---|
644 | !------------------------------------------------------------------------------
|
---|
645 | !
|
---|
646 | ! NRREC Switch to indicate re-start from a previous solution. Use
|
---|
647 | ! NRREC=0 for new solutions. In a re-start solution, NRREC
|
---|
648 | ! is the time index of the re-start NetCDF file assigned for
|
---|
649 | ! initialization. If NRREC is negative (say NRREC=-1), the
|
---|
650 | ! model will re-start from the most recent time record. That
|
---|
651 | ! is, the initialization record is assigned internally.
|
---|
652 | ! Notice that it is also possible to re-start from a history
|
---|
653 | ! or time-averaged NetCDF file. If a history file is used
|
---|
654 | ! for re-start, it must contains all the necessary primitive
|
---|
655 | ! variables at all levels.
|
---|
656 | !
|
---|
657 | ! LcycleRST Logical switch (T/F) used to recycle time records in output
|
---|
658 | ! re-start file. If TRUE, only the latest two re-start time
|
---|
659 | ! records are maintained. If FALSE, all re-start fields are
|
---|
660 | ! saved every NRST time-steps without recycling. The re-start
|
---|
661 | ! fields are written at all levels in double precision.
|
---|
662 | !
|
---|
663 | ! NRST Number of time-steps between writing of re-start fields.
|
---|
664 | !
|
---|
665 | ! NSTA Number of time-steps between writing data into stations file.
|
---|
666 | ! Station data is written at all levels.
|
---|
667 | !
|
---|
668 | ! NFLT Number of time-steps between writing data into floats file.
|
---|
669 | !
|
---|
670 | ! NINFO Number of time-steps between print of single line information
|
---|
671 | ! to standard output. It also determines the interval between
|
---|
672 | ! computation of global energy diagnostics.
|
---|
673 | !
|
---|
674 | !------------------------------------------------------------------------------
|
---|
675 | ! Output history and average files parameters.
|
---|
676 | !------------------------------------------------------------------------------
|
---|
677 | !
|
---|
678 | ! LDEFOUT Logical switch (T/F) used to create new output files when
|
---|
679 | ! initializing from a re-start file, abs(NRREC) > 0. If TRUE
|
---|
680 | ! and applicable, a new history, average, diagnostic and
|
---|
681 | ! station files are created during the initialization stage.
|
---|
682 | ! If FALSE and applicable, data is appended to existing
|
---|
683 | ! history, average, diagnostic and station files. See also
|
---|
684 | ! parameters NDEFHIS, NDEFAVG and NDEFDIA below.
|
---|
685 | !
|
---|
686 | ! NHIS Number of time-steps between writing fields into history file.
|
---|
687 | !
|
---|
688 | ! NDEFHIS Number of time-steps between the creation of new history file.
|
---|
689 | ! If NDEFHIS=0, the model will only process one history file.
|
---|
690 | ! This feature is useful for long simulations when history files
|
---|
691 | ! get too large; it creates a new file every NDEFHIS time-steps.
|
---|
692 | !
|
---|
693 | ! NTSAVG Starting time-step for the accumulation of output time-averaged
|
---|
694 | ! data.
|
---|
695 | !
|
---|
696 | ! NAVG Number of time-steps between writing time-averaged data
|
---|
697 | ! into averages file. Averaged date is written for all fields.
|
---|
698 | !
|
---|
699 | ! NDEFAVG Number of time-steps between the creation of new average
|
---|
700 | ! file. If NDEFAVG=0, the model will only process one average
|
---|
701 | ! file. This feature is useful for long simulations when
|
---|
702 | ! average files get too large; it creates a new file every
|
---|
703 | ! NDEFAVG time-steps.
|
---|
704 | !
|
---|
705 | ! NTSDIA Starting time-step for the accumulation of output time-averaged
|
---|
706 | ! diagnostics data.
|
---|
707 | !
|
---|
708 | ! NDIA Number of time-steps between writing time-averaged diagnostics
|
---|
709 | ! data into diagnostics file. Averaged date is written for all
|
---|
710 | ! fields.
|
---|
711 | !
|
---|
712 | ! NDEFDIA Number of time-steps between the creation of new time-averaged
|
---|
713 | ! diagnostics file. If NDEFDIA=0, the model will only process one
|
---|
714 | ! diagnostics file. This feature is useful for long simulations
|
---|
715 | ! when diagnostics files get too large; it creates a new file
|
---|
716 | ! every NDEFDIA time-steps.
|
---|
717 | !
|
---|
718 | !------------------------------------------------------------------------------
|
---|
719 | ! Output tangent linear and adjoint model parameters.
|
---|
720 | !------------------------------------------------------------------------------
|
---|
721 | !
|
---|
722 | ! LcycleTLM Logical switch (T/F) used to recycle time records in output
|
---|
723 | ! tangent linear file. If TRUE, only the latest two time
|
---|
724 | ! records are maintained. If FALSE, all tangent linear fields
|
---|
725 | ! are saved every NTLM time-steps without recycling.
|
---|
726 | !
|
---|
727 | ! NTLM Number of time-steps between writing fields into tangent linear
|
---|
728 | ! model file.
|
---|
729 | !
|
---|
730 | ! NDEFTLM Number of time-steps between the creation of new tangent linear
|
---|
731 | ! file. If NDEFTLM=0, the model will only process one tangent
|
---|
732 | ! linear file. This feature is useful for long simulations when
|
---|
733 | ! output NetCDF files get too large; it creates a new file every
|
---|
734 | ! NDEFTLM time-steps.
|
---|
735 | !
|
---|
736 | ! LcycleADJ Logical switch (T/F) used to recycle time records in output
|
---|
737 | ! adjoint file. If TRUE, only the latest two time records are
|
---|
738 | ! maintained. If FALSE, all tangent linear fields re saved
|
---|
739 | ! every NADJ time-steps without recycling.
|
---|
740 | !
|
---|
741 | ! NADJ Number of time-steps between writing fields into adjoint model
|
---|
742 | ! file.
|
---|
743 | !
|
---|
744 | ! NDEFADJ Number of time-steps between the creation of new adjoint file.
|
---|
745 | ! If NDEFADJ=0, the model will only process one adjoint file.
|
---|
746 | ! This feature is useful for long simulations when output NetCDF
|
---|
747 | ! files get too large; it creates a new file every NDEFADJ
|
---|
748 | ! time-steps.
|
---|
749 | !
|
---|
750 | ! NSFF Number of time-steps between 4DVAR adjustment of surface forcing
|
---|
751 | ! fluxes. In strong constraint 4DVAR, it is possible to adjust
|
---|
752 | ! surface forcing at other time intervals in addition to initial
|
---|
753 | ! time. This parameter is used to store the appropriate number
|
---|
754 | ! of surface forcing records in the output history NetCDF files:
|
---|
755 | ! 1+NTIMES/NSFF records. NSFF must be a factor of NTIMES or
|
---|
756 | ! greater than NTIMES. If NSFF > NTIMES, only one record is
|
---|
757 | ! stored in the NetCDF files and the adjustment is for constant
|
---|
758 | ! forcing with constant correction. This parameter is only
|
---|
759 | ! relevant in 4DVAR when activating either ADJUST_STFLUX or
|
---|
760 | ! ADJUST_WSTRESS.
|
---|
761 | !
|
---|
762 | !------------------------------------------------------------------------------
|
---|
763 | ! Generalized Stability Theory (GST) analysis parameters.
|
---|
764 | !------------------------------------------------------------------------------
|
---|
765 | !
|
---|
766 | ! LrstGST Logical switch (TRUE/FALSE) to restart GST analysis. If TRUE,
|
---|
767 | ! the check pointing data is read in from the GST restart NetCDF
|
---|
768 | ! file. If FALSE and applicable, the check pointing GST data is
|
---|
769 | ! saved and overwritten every NGST iterations of the algorithm.
|
---|
770 | !
|
---|
771 | ! MaxIterGST Maximum number of GST algorithm iterations.
|
---|
772 | !
|
---|
773 | ! NGST Number of GST iterations between storing of check pointing
|
---|
774 | ! data into NetCDF file. The restart data is always saved if
|
---|
775 | ! MaxIterGST is reached without convergence. It is also saved
|
---|
776 | ! when convergence is achieved. It is always a good idea to
|
---|
777 | ! save the check pointing data at regular intervals so there
|
---|
778 | ! is a mechanism to recover from an unexpected interruption
|
---|
779 | ! in this very expensive computation. The check pointing data
|
---|
780 | ! can be used also to recompute the Ritz vectors by changing
|
---|
781 | ! some of the parameters, like convergence criteria (Ritz_tol)
|
---|
782 | ! and number of Arnoldi iterations (iparam(3)).
|
---|
783 | !
|
---|
784 | ! Ritz_tol Relative accuracy of the Ritz values computed in the GST
|
---|
785 | ! analysis.
|
---|
786 | !
|
---|
787 | !------------------------------------------------------------------------------
|
---|
788 | ! Harmonic/Biharmonic horizontal diffusion for active tracers.
|
---|
789 | !------------------------------------------------------------------------------
|
---|
790 | !
|
---|
791 | ! TNU2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
---|
792 | ! active (NAT) and inert (NPT) tracer variables. If variable
|
---|
793 | ! horizontal diffusion is activated, TNU2 is the mixing
|
---|
794 | ! coefficient for the largest grid-cell in the domain.
|
---|
795 | !
|
---|
796 | ! TNU4 Lateral, biharmonic, constant, mixing coefficient (m4/s) for
|
---|
797 | ! active (NAT) and inert (NPT) tracer variables. If variable
|
---|
798 | ! horizontal diffusion is activated, TNU4 is the mixing
|
---|
799 | ! coefficient for the largest grid-cell in the domain.
|
---|
800 | !
|
---|
801 | !------------------------------------------------------------------------------
|
---|
802 | ! Harmonic/biharmonic horizontal viscosity coefficients.
|
---|
803 | !------------------------------------------------------------------------------
|
---|
804 | !
|
---|
805 | ! VISC2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
---|
806 | ! momentum. If variable horizontal viscosity is activated, UVNU2
|
---|
807 | ! is the mixing coefficient for the largest grid-cell in the
|
---|
808 | ! domain.
|
---|
809 | !
|
---|
810 | ! VISC4 Lateral, biharmonic, constant mixing coefficient (m4/s) for
|
---|
811 | ! momentum. If variable horizontal viscosity is activated, UVNU4
|
---|
812 | ! is the mixing coefficient for the largest grid-cell in the
|
---|
813 | ! domain.
|
---|
814 | !
|
---|
815 | !------------------------------------------------------------------------------
|
---|
816 | ! Vertical mixing coefficients for active tracers.
|
---|
817 | !------------------------------------------------------------------------------
|
---|
818 | !
|
---|
819 | ! AKT_BAK Background vertical mixing coefficient (m2/s) for active
|
---|
820 | ! (NAT) and inert (NPT) tracer variables.
|
---|
821 | !
|
---|
822 | !------------------------------------------------------------------------------
|
---|
823 | ! Vertical mixing coefficient for momentum.
|
---|
824 | !------------------------------------------------------------------------------
|
---|
825 | !
|
---|
826 | ! AKV_BAK Background vertical mixing coefficient (m2/s) for momentum.
|
---|
827 | !
|
---|
828 | !------------------------------------------------------------------------------
|
---|
829 | ! Turbulent closure parameters.
|
---|
830 | !------------------------------------------------------------------------------
|
---|
831 | !
|
---|
832 | ! AKK_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
---|
833 | ! kinetic energy.
|
---|
834 | !
|
---|
835 | ! AKP_BAK Background vertical mixing coefficient (m2/s) for turbulent
|
---|
836 | ! generic statistical field, "psi".
|
---|
837 | !
|
---|
838 | ! TKENU2 Lateral, harmonic, constant, mixing coefficient (m2/s) for
|
---|
839 | ! turbulent closure variables.
|
---|
840 | !
|
---|
841 | ! TKENU4 Lateral, biharmonic, constant mixing coefficient (m4/s) for
|
---|
842 | ! turbulent closure variables.
|
---|
843 | !
|
---|
844 | !------------------------------------------------------------------------------
|
---|
845 | ! Generic length-scale turbulence closure parameters.
|
---|
846 | !------------------------------------------------------------------------------
|
---|
847 | !
|
---|
848 | ! GLS_P Stability exponent (non-dimensional).
|
---|
849 | !
|
---|
850 | ! GLS_M Turbulent kinetic energy exponent (non-dimensional).
|
---|
851 | !
|
---|
852 | ! GLS_N Turbulent length scale exponent (non-dimensional).
|
---|
853 | !
|
---|
854 | ! GLS_Kmin Minimum value of specific turbulent kinetic energy
|
---|
855 | !
|
---|
856 | ! GLS_Pmin Minimum Value of dissipation.
|
---|
857 | !
|
---|
858 | ! Closure independent constraint parameters (non-dimensional):
|
---|
859 | !
|
---|
860 | ! GLS_CMU0 Stability coefficient.
|
---|
861 | !
|
---|
862 | ! GLS_C1 Shear production coefficient.
|
---|
863 | !
|
---|
864 | ! GLS_C2 Dissipation coefficient.
|
---|
865 | !
|
---|
866 | ! GLS_C3M Buoyancy production coefficient (minus).
|
---|
867 | !
|
---|
868 | ! GLS_C3P Buoyancy production coefficient (plus).
|
---|
869 | !
|
---|
870 | ! GLS_SIGK Constant Schmidt number (non-dimensional) for turbulent
|
---|
871 | ! kinetic energy diffusivity.
|
---|
872 | !
|
---|
873 | ! GLS_SIGP Constant Schmidt number (non-dimensional) for turbulent
|
---|
874 | ! generic statistical field, "psi".
|
---|
875 | !
|
---|
876 | ! Suggested values for various parameterizations:
|
---|
877 | !
|
---|
878 | ! k-kl k-epsilon k-omega gen
|
---|
879 | !
|
---|
880 | ! GLS_P = 0.d0 3.0d0 -1.0d0 2.0d0
|
---|
881 | ! GLS_M = 1.d0 1.5d0 0.5d0 1.0d0
|
---|
882 | ! GLS_N = 1.d0 -1.0d0 -1.0d0 -0.67d0
|
---|
883 | ! GLS_Kmin = 5.0d-6 7.6d-6 7.6d-6 1.0d-8
|
---|
884 | ! GLS_Pmin = 5.0d-6 1.0d-12 1.0d-12 1.0d-8
|
---|
885 | !
|
---|
886 | ! GLS_CMU0 = 0.5544d0 0.5477d0 0.5477d0 0.5544d0
|
---|
887 | ! GLS_C1 = 0.9d0 1.44d0 0.555d0 1.00d0
|
---|
888 | ! GLS_C2 = 0.52d0 1.92d0 0.833d0 1.22d0
|
---|
889 | ! GLS_C3M = 2.5d0 -0.4d0 -0.6d0 0.1d0
|
---|
890 | ! GLS_C3P = 1.0d0 1.0d0 1.0d0 1.0d0
|
---|
891 | ! GLS_SIGK = 1.96d0 1.0d0 2.0d0 0.8d0
|
---|
892 | ! GLS_SIGP = 1.96d0 1.30d0 2.0d0 1.07d0
|
---|
893 | !
|
---|
894 | !------------------------------------------------------------------------------
|
---|
895 | ! Constants used in the various formulations of surface turbulent kinetic
|
---|
896 | ! energy flux in the GLS.
|
---|
897 | !------------------------------------------------------------------------------
|
---|
898 | !
|
---|
899 | ! CHARNOK_ALPHA Charnok surface roughness,
|
---|
900 | ! Zos: (charnok_alpha * u_star**2) / g
|
---|
901 | !
|
---|
902 | ! ZOS_HSIG_ALPHA Roughness from wave amplitude,
|
---|
903 | ! Zos: zos_hsig_alpha * Hsig
|
---|
904 | !
|
---|
905 | ! SZ_ALPHA Surface flux from wave dissipation,
|
---|
906 | ! flux: dt * sz_alpha * Wave_dissip
|
---|
907 | !
|
---|
908 | ! CRGBAN_CW Surface flux due to Craig and Banner wave breaking,
|
---|
909 | ! flux: dt * crgban_cw * u_star**3
|
---|
910 | !
|
---|
911 | !------------------------------------------------------------------------------
|
---|
912 | ! Constants used in the computation of momentum stress.
|
---|
913 | !------------------------------------------------------------------------------
|
---|
914 | !
|
---|
915 | ! RDRG Linear bottom drag coefficient (m/s).
|
---|
916 | !
|
---|
917 | ! RDRG2 Quadratic bottom drag coefficient.
|
---|
918 | !
|
---|
919 | ! Zob Bottom roughness (m).
|
---|
920 | !
|
---|
921 | ! Zos Surface roughness (m).
|
---|
922 | !
|
---|
923 | !------------------------------------------------------------------------------
|
---|
924 | ! Height of atmospheric measurements for bulk fluxes parameterization.
|
---|
925 | !------------------------------------------------------------------------------
|
---|
926 | !
|
---|
927 | ! BLK_ZQ Height (m) of surface air humidity measurement. Usually,
|
---|
928 | ! recorded at 10 m.
|
---|
929 | !
|
---|
930 | ! BLK_ZT Height (m) of surface air temperature measurement. Usually,
|
---|
931 | ! recorded at 2 or 10 m.
|
---|
932 | !
|
---|
933 | ! BLK_ZW Height (m) of surface winds measurement. Usually, recorded
|
---|
934 | ! at 10 m.
|
---|
935 | !
|
---|
936 | !------------------------------------------------------------------------------
|
---|
937 | ! Wetting and drying parameters.
|
---|
938 | !------------------------------------------------------------------------------
|
---|
939 | !
|
---|
940 | ! DCRIT Minimum depth (m) for wetting and drying.
|
---|
941 | !
|
---|
942 | !------------------------------------------------------------------------------
|
---|
943 | ! Jerlow Water type.
|
---|
944 | !------------------------------------------------------------------------------
|
---|
945 | !
|
---|
946 | ! WTYPE Jerlov water type: an integer value from 1 to 5.
|
---|
947 | !
|
---|
948 | !------------------------------------------------------------------------------
|
---|
949 | ! Body-force parameters. Used when CPP option BODYFORCE is activated.
|
---|
950 | !------------------------------------------------------------------------------
|
---|
951 | !
|
---|
952 | ! LEVSFRC Deepest level to apply surface momentum stress as a body-force.
|
---|
953 | !
|
---|
954 | ! LEVBFRC Shallowest level to apply bottom momentum stress as a body-force.
|
---|
955 | !
|
---|
956 | !------------------------------------------------------------------------------
|
---|
957 | ! Vertical S-coordinates parameters.
|
---|
958 | !------------------------------------------------------------------------------
|
---|
959 | !
|
---|
960 | ! THETA_S S-coordinate surface control parameter, [0 < theta_s < 20].
|
---|
961 | !
|
---|
962 | ! THETA_B S-coordinate bottom control parameter, [0 < theta_b < 1].
|
---|
963 | !
|
---|
964 | ! TCLINE Width (m) of surface or bottom boundary layer in which
|
---|
965 | ! higher vertical resolution is required during stretching.
|
---|
966 | !
|
---|
967 | ! WARNING: Users need to experiment with these parameters. We
|
---|
968 | ! have found out that the model goes unstable with
|
---|
969 | ! high values of THETA_S. In steep and very tall
|
---|
970 | ! topography, it is recommended to use THETA_S < 3.0.
|
---|
971 | !
|
---|
972 | !------------------------------------------------------------------------------
|
---|
973 | ! Mean Density and background Brunt-Vaisala frequency.
|
---|
974 | !------------------------------------------------------------------------------
|
---|
975 | !
|
---|
976 | ! RHO0 Mean density (Kg/m3) used when the Boussinesq approximation
|
---|
977 | ! is inferred.
|
---|
978 | !
|
---|
979 | ! BVF_BAK Background Brunt-Vaisala frequency squared (1/s2). Typical
|
---|
980 | ! values for the ocean range (as a function of depth) from
|
---|
981 | ! 1.0E-4 to 1.0E-6.
|
---|
982 | !
|
---|
983 | !------------------------------------------------------------------------------
|
---|
984 | ! Time Stamps.
|
---|
985 | !------------------------------------------------------------------------------
|
---|
986 | !
|
---|
987 | ! DSTART Time stamp assigned to model initialization (days). Usually
|
---|
988 | ! a Calendar linear coordinate, like modified Julian Day. For
|
---|
989 | ! Example:
|
---|
990 | !
|
---|
991 | ! Julian Day = 1 for Nov 25, 0:0:0 4713 BCE
|
---|
992 | ! modified Julian Day = 1 for May 24, 0:0:0 1968 CE GMT
|
---|
993 | !
|
---|
994 | ! It is called truncated or modified Julian day because an offset
|
---|
995 | ! of 2440000 needs to be added.
|
---|
996 | !
|
---|
997 | ! TIDE_START Reference time origin for tidal forcing (days). This is the
|
---|
998 | ! time used when processing input tidal model data. It is needed
|
---|
999 | ! in routine "set_tides" to compute the correct phase lag with
|
---|
1000 | ! respect ROMS/TOMS initialization time.
|
---|
1001 | !
|
---|
1002 | ! TIME_REF Reference time (yyyymmdd.f) used to compute relative time:
|
---|
1003 | ! elapsed time interval since reference-time. The "units"
|
---|
1004 | ! attribute takes the form "time-unit since reference-time".
|
---|
1005 | ! This parameter also provides information about the calendar
|
---|
1006 | ! used:
|
---|
1007 | !
|
---|
1008 | ! If TIME_REF = -2, model time and DSTART are in modified Julian
|
---|
1009 | ! days units. The "units" attribute is:
|
---|
1010 | !
|
---|
1011 | ! 'time-units since 1968-05-23 00:00:00 GMT'
|
---|
1012 | !
|
---|
1013 | ! If TIME_REF = -1, model time and DSTART are in a calendar
|
---|
1014 | ! with 360 days in every year (30 days each month). The "units"
|
---|
1015 | ! attribute is:
|
---|
1016 | !
|
---|
1017 | ! 'time-units since 0001-01-01 00:00:00'
|
---|
1018 | !
|
---|
1019 | ! If TIME_REF = 0, model time and DSTART are in a common year
|
---|
1020 | ! calendar with 365.25 days. The "units" attribute is:
|
---|
1021 | !
|
---|
1022 | ! 'time-units since 0001-01-01 00:00:00'
|
---|
1023 | !
|
---|
1024 | ! If TIME_REF > 0, model time and DSTART are the elapsed time
|
---|
1025 | ! units since specified reference time. For example,
|
---|
1026 | ! TIME_REF=20020115.5 will yield the following attribute:
|
---|
1027 | !
|
---|
1028 | ! 'time-units since 2002-01-15 12:00:00'
|
---|
1029 | !
|
---|
1030 | !------------------------------------------------------------------------------
|
---|
1031 | ! Nudging/relaxation time scales, inverse scales will be computed internally.
|
---|
1032 | !------------------------------------------------------------------------------
|
---|
1033 | !
|
---|
1034 | ! When passive/active open boundary conditions are activated, these nudging
|
---|
1035 | ! values correspond to the passive (outflow) nudging time scales.
|
---|
1036 | !
|
---|
1037 | ! TNUDG Nudging time scale (days) for active tracer variables.
|
---|
1038 | ! (1:NAT+NPT,1:Ngrids) values are expected.
|
---|
1039 | !
|
---|
1040 | ! ZNUDG Nudging time scale (days) for free-surface.
|
---|
1041 | !
|
---|
1042 | ! M2NUDG Nudging time scale (days) for 2D momentum.
|
---|
1043 | !
|
---|
1044 | ! M3NUDG Nudging time scale (days) for 3D momentum.
|
---|
1045 | !
|
---|
1046 | ! OBCFAC Factor between passive (outflow) and active (inflow) open
|
---|
1047 | ! boundary conditions. The nudging time scales for the
|
---|
1048 | ! active (inflow) conditions are obtained by multiplying
|
---|
1049 | ! the passive values by OBCFAC. If OBCFAC > 1, nudging on
|
---|
1050 | ! inflow is stronger than on outflow (recommended).
|
---|
1051 | !
|
---|
1052 | !------------------------------------------------------------------------------
|
---|
1053 | ! Linear equation of State parameters.
|
---|
1054 | !------------------------------------------------------------------------------
|
---|
1055 | !
|
---|
1056 | ! Ignoring pressure, the linear equation of state is:
|
---|
1057 | !
|
---|
1058 | ! rho(:,:,:) = R0 - R0 * TCOEF * (t(:,:,:,:,itemp) - T0)
|
---|
1059 | ! + R0 * SCOEF * (t(:,:,:,:,isalt) - S0)
|
---|
1060 | !
|
---|
1061 | ! Typical values: R0 = 1027.0 kg/m3
|
---|
1062 | ! T0 = 10.0 Celsius
|
---|
1063 | ! S0 = 35.0 PSU
|
---|
1064 | ! TCOEF = 1.7d-4 1/Celsius
|
---|
1065 | ! SCOEF = 7.6d-4 1/PSU
|
---|
1066 | !
|
---|
1067 | ! R0 Background density value (Kg/m3) used in Linear Equation of
|
---|
1068 | ! State.
|
---|
1069 | !
|
---|
1070 | ! T0 Background potential temperature (Celsius) constant.
|
---|
1071 | !
|
---|
1072 | ! S0 Background salinity (PSU) constant.
|
---|
1073 | !
|
---|
1074 | ! TCOEF Thermal expansion coefficient in Linear Equation of State.
|
---|
1075 | !
|
---|
1076 | ! SCOEF Saline contraction coefficient in Linear Equation of State.
|
---|
1077 | !
|
---|
1078 | !------------------------------------------------------------------------------
|
---|
1079 | ! Slipperiness parameter.
|
---|
1080 | !------------------------------------------------------------------------------
|
---|
1081 | !
|
---|
1082 | ! GAMMA2 Slipperiness variable, either 1.0 (free slip) or -1.0 (no slip).
|
---|
1083 | !
|
---|
1084 | !------------------------------------------------------------------------------
|
---|
1085 | ! Adjoint sensitivity parameters.
|
---|
1086 | !------------------------------------------------------------------------------
|
---|
1087 | !
|
---|
1088 | ! DstrS Starting day for adjoint sensitivity forcing.
|
---|
1089 | !
|
---|
1090 | ! DendS Ending day for adjoint sensitivity forcing.
|
---|
1091 | !
|
---|
1092 | ! The adjoint forcing is applied at every time step according to
|
---|
1093 | ! desired state functional stored in the adjoint sensitivity
|
---|
1094 | ! NetCDF file. DstrS must be less than or equal to DendS. If both
|
---|
1095 | ! values are zero, their values are reset internally to the full
|
---|
1096 | ! range of the adjoint integration.
|
---|
1097 | !
|
---|
1098 | ! KstrS Starting vertical level of the 3D adjoint state variables whose
|
---|
1099 | ! sensitivity is required.
|
---|
1100 | ! KendS Ending vertical level of the 3D adjoint state variables whose
|
---|
1101 | ! sensitivity is required.
|
---|
1102 | !
|
---|
1103 | ! Lstate Logical switches (TRUE/FALSE) to specify the adjoint state
|
---|
1104 | ! variables whose sensitivity is required.
|
---|
1105 | !
|
---|
1106 | ! Lstate(isFsur): Free-surface
|
---|
1107 | ! Lstate(isUbar): 2D U-momentum
|
---|
1108 | ! Lstate(isVbar): 2D V-momentum
|
---|
1109 | ! Lstate(isUvel): 3D U-momentum
|
---|
1110 | ! Lstate(isVvel): 3D V-momentum
|
---|
1111 | ! Lstate(isTvar): Traces (NT values expected)
|
---|
1112 | !
|
---|
1113 | !------------------------------------------------------------------------------
|
---|
1114 | ! Stochastic optimals parameters.
|
---|
1115 | !------------------------------------------------------------------------------
|
---|
1116 | !
|
---|
1117 | ! SO_decay Stochastic optimals time decorrelation scale (days) assumed
|
---|
1118 | ! for red noise processes.
|
---|
1119 | !
|
---|
1120 | ! SOstate Logical switches (TRUE/FALSE) to specify the state surface
|
---|
1121 | ! forcing variable whose stochastic optimals is required.
|
---|
1122 | !
|
---|
1123 | ! SOstate(isUstr): surface u-stress
|
---|
1124 | ! SOstate(isVstr): surface v-stress
|
---|
1125 | ! SOstate(isTsur): surface tracer flux (NT values expected)
|
---|
1126 | !
|
---|
1127 | ! SO_sdev Stochastic optimals surface forcing standard deviation for
|
---|
1128 | ! dimensionalization.
|
---|
1129 | !
|
---|
1130 | ! SO_sdev(isUstr): surface u-stress
|
---|
1131 | ! SO_sdev(isVstr): surface v-stress
|
---|
1132 | ! SO_sdev(isTsur): surface tracer flux (NT values expected)
|
---|
1133 | !
|
---|
1134 | !------------------------------------------------------------------------------
|
---|
1135 | ! Logical switches (T/F) to activate writing of fields into HISTORY file.
|
---|
1136 | !------------------------------------------------------------------------------
|
---|
1137 | !
|
---|
1138 | ! Hout(idUvel) Write out 3D U-velocity component.
|
---|
1139 | ! Hout(idVvel) Write out 3D V-velocity component.
|
---|
1140 | ! Hout(idWvel) Write out 3D W-velocity component.
|
---|
1141 | ! Hout(idOvel) Write out 3D omega vertical velocity.
|
---|
1142 | ! Hout(idUbar) Write out 2D U-velocity component.
|
---|
1143 | ! Hout(idVbar) Write out 2D V-velocity component.
|
---|
1144 | ! Hout(idFsur) Write out free-surface.
|
---|
1145 | ! Hout(idBath) Write out time-dependent bathymetry.
|
---|
1146 | !
|
---|
1147 | ! Hout(idTvar) Write out active (NAT) tracers: temperature and salinity.
|
---|
1148 | !
|
---|
1149 | ! Hout(idUsms) Write out surface U-momentum stress.
|
---|
1150 | ! Hout(idVsms) Write out surface V-momentum stress.
|
---|
1151 | ! Hout(idUbms) Write out bottom U-momentum stress.
|
---|
1152 | ! Hout(idVbms) Write out bottom V-momentum stress.
|
---|
1153 | !
|
---|
1154 | ! Hout(idUbrs) Write out current-induced, U-momentum stress.
|
---|
1155 | ! Hout(idVbrs) Write out current-induced, V-momentum stress.
|
---|
1156 | ! Hout(idUbws) Write out wind-induced, bottom U-wave stress.
|
---|
1157 | ! Hout(idVbws) Write out wind-induced, bottom V-wave stress.
|
---|
1158 | ! Hout(idUbcs) Write out bottom maximum wave and current U-stress.
|
---|
1159 | ! Hout(idVbcs) Write out bottom maximum wave and current V-stress.
|
---|
1160 | !
|
---|
1161 | ! Hout(idUbot) Write out wind-induced, bed wave orbital U-velocity.
|
---|
1162 | ! Hout(idVbot) Write out wind-induced, bed wave orbital V-velocity.
|
---|
1163 | ! Hout(idUbur) Write out bottom U-velocity above bed.
|
---|
1164 | ! Hout(idVbvr) Write out bottom V-velocity above bed.
|
---|
1165 | !
|
---|
1166 | ! Hout(idW2xx) Write out 2D radiation stress, Sxx component.
|
---|
1167 | ! Hout(idW2xy) Write out 2D radiation stress, Sxy component.
|
---|
1168 | ! Hout(idW2yy) Write out 2D radiation stress, Syy component.
|
---|
1169 | ! Hout(idU2rs) Write out 2D U-radiation stress.
|
---|
1170 | ! Hout(idV2rs) Write out 2D V-radiation stress.
|
---|
1171 | ! Hout(idU2Sd) Write out 2D U-Stokes velocity.
|
---|
1172 | ! Hout(idV2Sd) Write out 2D V-Stokes velocity.
|
---|
1173 | !
|
---|
1174 | ! Hout(idW3xx) Write out 3D radiation stress, Sxx component.
|
---|
1175 | ! Hout(idW3xy) Write out 3D radiation stress, Sxy component.
|
---|
1176 | ! Hout(idW3yy) Write out 3D radiation stress, Syy component.
|
---|
1177 | ! Hout(idW3zx) Write out 3D radiation stress, Szx component.
|
---|
1178 | ! Hout(idW3zy) Write out 3D radiation stress, Szy component.
|
---|
1179 | ! Hout(idU3rs) Write out 3D U-radiation stress.
|
---|
1180 | ! Hout(idV3rs) Write out 3D V-radiation stress.
|
---|
1181 | ! Hout(idU3Sd) Write out 3D U-Stokes velocity.
|
---|
1182 | ! Hout(idV3Sd) Write out 3D V-Stokes velocity.
|
---|
1183 | !
|
---|
1184 | ! Hout(idWamp) Write out wave height.
|
---|
1185 | ! Hout(idWlen) Write out wave length.
|
---|
1186 | ! Hout(idWdir) Write out wave direction.
|
---|
1187 | !
|
---|
1188 | ! Hout(idTsur) Write out surface net heat and salt flux
|
---|
1189 | ! Hout(idLhea) Write out latent heat flux.
|
---|
1190 | ! Hout(idShea) Write out sensible heat flux.
|
---|
1191 | ! Hout(idLrad) Write out long-wave radiation flux.
|
---|
1192 | ! Hout(idSrad) Write out short-wave radiation flux.
|
---|
1193 | ! Hout(idevap) Write out evaporation rate.
|
---|
1194 | ! Hout(idrain) Write out precipitation rate.
|
---|
1195 | !
|
---|
1196 | ! Hout(idDano) Write out density anomaly.
|
---|
1197 | ! Hout(idVvis) Write out vertical viscosity coefficient.
|
---|
1198 | ! Hout(idTdif) Write out vertical diffusion coefficient of temperature.
|
---|
1199 | ! Hout(idSdif) Write out vertical diffusion coefficient of salinity.
|
---|
1200 | ! Hout(idHsbl) Write out depth of oceanic surface boundary layer.
|
---|
1201 | ! Hout(idHbbl) Write out depth of oceanic bottom boundary layer.
|
---|
1202 | ! Hout(idMtke) Write out turbulent kinetic energy.
|
---|
1203 | ! Hout(idMtls) Write out turbulent kinetic energy times length scale.
|
---|
1204 | !
|
---|
1205 | ! Hout(inert) Write out extra inert passive tracers.
|
---|
1206 | !
|
---|
1207 | ! Hout(idBott) Write out exposed sediment layer properties, 1:MBOTP.
|
---|
1208 | !
|
---|
1209 | !------------------------------------------------------------------------------
|
---|
1210 | ! Generic User parameters.
|
---|
1211 | !------------------------------------------------------------------------------
|
---|
1212 | !
|
---|
1213 | ! NUSER Number of User parameters to consider (integer).
|
---|
1214 | ! USER Vector containing user parameters (real array). This array
|
---|
1215 | ! is used with the SANITY_CHECK to test the correctness of
|
---|
1216 | ! the tangent linear adjoint models. It contains information
|
---|
1217 | ! of the model variable and grid point to perturb:
|
---|
1218 | !
|
---|
1219 | ! INT(user(1)): tangent state variable to perturb
|
---|
1220 | ! INT(user(2)): adjoint state variable to perturb
|
---|
1221 | ! [isFsur=1] free-surface
|
---|
1222 | ! [isUbar=2] 2D U-momentum
|
---|
1223 | ! [isVbar=3] 2D V-momentum
|
---|
1224 | ! [isUvel=4] 3D U-momentum
|
---|
1225 | ! [isVvel=5] 3D V-momentum
|
---|
1226 | ! [isTvar=6] First tracer (temperature)
|
---|
1227 | ! [ ... ]
|
---|
1228 | ! [isTvar=?] Last tracer
|
---|
1229 | !
|
---|
1230 | ! INT(user(3)): I-index of tangent variable to perturb
|
---|
1231 | ! INT(user(4)): I-index of adjoint variable to perturb
|
---|
1232 | ! INT(user(5)): J-index of tangent variable to perturb
|
---|
1233 | ! INT(user(6)): J-index of adjoint variable to perturb
|
---|
1234 | ! INT(user(7)): K-index of tangent variable to perturb, if 3D
|
---|
1235 | ! INT(user(8)): K-index of adjoint variable to perturb, if 3D
|
---|
1236 | !
|
---|
1237 | ! Set tangent and adjoint parameters to the same values
|
---|
1238 | ! if perturbing and reporting the same variable.
|
---|
1239 | !
|
---|
1240 | !------------------------------------------------------------------------------
|
---|
1241 | ! Input/output NetCDF file names (string with a maximum of eighty characters).
|
---|
1242 | !------------------------------------------------------------------------------
|
---|
1243 | !
|
---|
1244 | ! GRDNAME Input grid file name.
|
---|
1245 | ! ININAME Input nonlinear initial conditions file name. It can be a
|
---|
1246 | ! re-start file.
|
---|
1247 | ! IRPNAME Input representer model initial conditions file name.
|
---|
1248 | ! ITLNAME Input tangent linear model initial conditions file name.
|
---|
1249 | ! IADNAME Input adjoint model initial conditions file name.
|
---|
1250 | ! FRCNAME Input forcing fields file name.
|
---|
1251 | ! CLMNAME Input climatology fields file name.
|
---|
1252 | ! BRYNAME Input open boundary data file name.
|
---|
1253 | ! FWDNAME Input forward solution fields file name.
|
---|
1254 | ! ADSNAME Input adjoint sensitivity functional file name.
|
---|
1255 | !
|
---|
1256 | ! GSTNAME Output GST analysis re-start file name.
|
---|
1257 | ! RSTNAME Output re-start file name.
|
---|
1258 | ! HISNAME Output history file name.
|
---|
1259 | ! TLFNAME Output impulse forcing for tangent linear (TLM and RPM) models.
|
---|
1260 | ! TLMNAME Output tangent linear file name.
|
---|
1261 | ! ADJNAME Output adjoint file name.
|
---|
1262 | ! AVGNAME Output averages file name.
|
---|
1263 | ! DIANAME Output diagnostics file name.
|
---|
1264 | ! STANAME Output stations file name.
|
---|
1265 | ! FLTNAME Output floats file name.
|
---|
1266 | !
|
---|
1267 | !------------------------------------------------------------------------------
|
---|
1268 | ! Input ASCII parameters file names.
|
---|
1269 | !------------------------------------------------------------------------------
|
---|
1270 | !
|
---|
1271 | ! APARNAM Input assimilation parameters file name.
|
---|
1272 | ! SPOSNAM Input stations positions file name.
|
---|
1273 | ! FPOSNAM Input initial drifters positions file name.
|
---|
1274 | ! BPARNAM Input biological parameters file name.
|
---|
1275 | ! SPARNAM Input sediment transport parameters file name.
|
---|
1276 | ! USRNAME USER's input generic file name.
|
---|
1277 | !
|
---|