the focing file problems of roms3.5

General scientific issues regarding ROMS

Moderators: arango, robertson

Post Reply
Message
Author
rainbowbluegz
Posts: 5
Joined: Sun Jan 06, 2008 4:54 pm
Location: SCSIO

the focing file problems of roms3.5

#1 Unread post by rainbowbluegz »

hi, everybody

the error occurs when define BULK_FLUXES in *.h
GET_VARCOORDS - Cannot find "coordinates" attribute for variable: Uwind
in file: roms_frc_NCEP2_Y2010M2.nc

This attribute is needed to interpolate input data
to model grid. Following CF compliance, we need:

float my_var(time, lat, lon) ;
my_var:long_name = "my variable long name" ;
my_var:units = "my variable units" ;
my_var:coordinates = "lon lat" ;
my_var:time = "my_var_time" ;


GET_2DFLD - error while reading variable: uwnd at TIME index = 192


The forcing file are already in the grid of Roms, so it neednot to use "coordinates ", then how to avoid regriding and not use get_varcoords??? or has some other methods?

If I add "coordinates" in forcing file.
then ncdump it will appear:
%% ncdump('roms_frc_NCEP2_Y2010M2.nc') %% Generated 16-Dec-2011 11:24:20

nc = netcdf('roms_frc_NCEP2_Y2010M2.nc', 'noclobber');
if isempty(nc), return, end

%% Global attributes:

nc.title = ncchar(''SCS Model'');
nc.date = ncchar(''15-Dec-2011'');
nc.grd_file = ncchar(''roms_grd.nc'');
nc.type = ncchar(''ROMS forcing file'');
nc.start_tide_mjd = ncdouble(55287);
nc.components = ncchar(''M2 S2 N2 K2 K1 O1 P1 Q1 Mf Mm '');

%% Dimensions:

nc('xi_u') = 68;
nc('eta_u') = 60;
nc('xi_v') = 69;
nc('eta_v') = 59;
nc('xi_rho') = 69;
nc('eta_rho') = 60;
nc('xi_psi') = 68;
nc('eta_psi') = 59;
nc('sms_time') = 192;
nc('shf_time') = 192;
nc('swf_time') = 192;
nc('sst_time') = 192;
nc('srf_time') = 192;
nc('sss_time') = 192;
nc('wind_time') = 192;
nc('tide_period') = 10;

%% Variables and attributes:

nc{'sms_time'} = ncdouble('sms_time'); %% 192 elements.
nc{'sms_time'}.long_name = ncchar(''surface momentum stress time'');
nc{'sms_time'}.units = ncchar(''days'');
nc{'sms_time'}.cycle_length = ncdouble(1);

nc{'shf_time'} = ncdouble('shf_time'); %% 192 elements.
nc{'shf_time'}.long_name = ncchar(''surface heat flux time'');
nc{'shf_time'}.units = ncchar(''days'');
nc{'shf_time'}.cycle_length = ncdouble(1);

nc{'swf_time'} = ncdouble('swf_time'); %% 192 elements.
nc{'swf_time'}.long_name = ncchar(''surface freshwater flux time'');
nc{'swf_time'}.units = ncchar(''days'');
nc{'swf_time'}.cycle_length = ncdouble(1);

nc{'sst_time'} = ncdouble('sst_time'); %% 192 elements.
nc{'sst_time'}.long_name = ncchar(''sea surface temperature time'');
nc{'sst_time'}.units = ncchar(''days'');
nc{'sst_time'}.cycle_length = ncdouble(1);

nc{'sss_time'} = ncdouble('sss_time'); %% 192 elements.
nc{'sss_time'}.long_name = ncchar(''sea surface salinity time'');
nc{'sss_time'}.units = ncchar(''days'');
nc{'sss_time'}.cycle_length = ncdouble(1);

nc{'srf_time'} = ncdouble('srf_time'); %% 192 elements.
nc{'srf_time'}.long_name = ncchar(''solar shortwave radiation time'');
nc{'srf_time'}.units = ncchar(''days'');
nc{'srf_time'}.cycle_length = ncdouble(1);

nc{'wind_time'} = ncdouble('wind_time'); %% 192 elements.
nc{'wind_time'}.long_name = ncchar(''surface wind time'');
nc{'wind_time'}.units = ncchar(''days'');
nc{'wind_time'}.cycle_length = ncdouble(1);

nc{'sustr'} = ncdouble('sms_time', 'eta_u', 'xi_u'); %% 783360 elements.
nc{'sustr'}.long_name = ncchar(''surface u-momentum stress'');
nc{'sustr'}.units = ncchar(''Newton meter-2'');

nc{'svstr'} = ncdouble('sms_time', 'eta_v', 'xi_v'); %% 781632 elements.
nc{'svstr'}.long_name = ncchar(''surface v-momentum stress'');
nc{'svstr'}.units = ncchar(''Newton meter-2'');

nc{'Uwind'} = ncdouble('wind_time', 'eta_u', 'xi_u'); %% 783360 elements.
nc{'Uwind'}.long_name = ncchar(''surface u component'');
nc{'Uwind'}.units = ncchar(''Meter day-1'');
nc{'Uwind'}.coordinates = ncchar(''lon lat'');
nc{'Uwind'}.time = ncchar(''days'');

nc{'Vwind'} = ncdouble('wind_time', 'eta_v', 'xi_v'); %% 781632 elements.
nc{'Vwind'}.long_name = ncchar(''surface v component'');
nc{'Vwind'}.units = ncchar(''Meter day-1'');
nc{'Vwind'}.coordinates = ncchar(''lon lat'');
nc{'Vwind'}.time = ncchar(''days'');

nc{'lon'} = ncdouble('eta_u', 'xi_u'); %% 4080 elements.
nc{'lon'}.units = ncchar(''degree'');
nc{'lon'}.point_spacing = ncchar(''even'');
nc{'lon'}.axis = ncchar(''X'');

nc{'lat'} = ncdouble('eta_v', 'xi_v'); %% 4071 elements.
nc{'lat'}.units = ncchar(''degree'');
nc{'lat'}.point_spacing = ncchar(''even'');
nc{'lat'}.axis = ncchar(''Y'');

nc{'shflux'} = ncdouble('shf_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'shflux'}.long_name = ncchar(''surface net heat flux'');
nc{'shflux'}.units = ncchar(''Watts meter-2'');

nc{'swflux'} = ncdouble('swf_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'swflux'}.long_name = ncchar(''surface freshwater flux (E-P)'');
nc{'swflux'}.units = ncchar(''centimeter day-1'');
nc{'swflux'}.positive = ncchar(''net evaporation'');
nc{'swflux'}.negative = ncchar(''net precipitation'');

nc{'SST'} = ncdouble('sst_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'SST'}.long_name = ncchar(''sea surface temperature'');
nc{'SST'}.units = ncchar(''Celsius'');

nc{'SSS'} = ncdouble('sss_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'SSS'}.long_name = ncchar(''sea surface salinity'');
nc{'SSS'}.units = ncchar(''PSU'');

nc{'dQdSST'} = ncdouble('sst_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'dQdSST'}.long_name = ncchar(''surface net heat flux sensitivity to SST'');
nc{'dQdSST'}.units = ncchar(''Watts meter-2 Celsius-1'');

nc{'swrad'} = ncdouble('srf_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'swrad'}.long_name = ncchar(''solar shortwave radiation'');
nc{'swrad'}.units = ncchar(''Watts meter-2'');
nc{'swrad'}.positive = ncchar(''downward flux, heating'');
nc{'swrad'}.negative = ncchar(''upward flux, cooling'');

nc{'bwflux'} = ncdouble('swf_time', 'eta_rho', 'xi_rho'); %% 794880 elements.
nc{'bwflux'}.long_name = ncchar(''bottom freshwater flux (E-P)'');
nc{'bwflux'}.units = ncchar(''centimeter day-1'');
nc{'bwflux'}.positive = ncchar(''net evaporation'');
nc{'bwflux'}.negative = ncchar(''net precipitation'');

nc{'tide_period'} = ncdouble('tide_period'); %% 10 elements.
nc{'tide_period'}.long_name = ncchar(''Tide angular period'');
nc{'tide_period'}.units = ncchar(''Hours'');

nc{'tide_Ephase'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Ephase'}.long_name = ncchar(''Tidal elevation phase angle'');
nc{'tide_Ephase'}.units = ncchar(''Degrees'');

nc{'tide_Eamp'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Eamp'}.long_name = ncchar(''Tidal elevation amplitude'');
nc{'tide_Eamp'}.units = ncchar(''Meter'');

nc{'tide_Cmin'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Cmin'}.long_name = ncchar(''Tidal current ellipse semi-minor axis'');
nc{'tide_Cmin'}.units = ncchar(''Meter second-1'');

nc{'tide_Cmax'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Cmax'}.long_name = ncchar(''Tidal current, ellipse semi-major axis'');
nc{'tide_Cmax'}.units = ncchar(''Meter second-1'');

nc{'tide_Cangle'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Cangle'}.long_name = ncchar(''Tidal current inclination angle'');
nc{'tide_Cangle'}.units = ncchar(''Degrees between semi-major axis and East'');

nc{'tide_Cphase'} = ncdouble('tide_period', 'eta_rho', 'xi_rho'); %% 41400 elements.
nc{'tide_Cphase'}.long_name = ncchar(''Tidal current phase angle'');
nc{'tide_Cphase'}.units = ncchar(''Degrees'');

endef(nc)


then run model , it shows:
Physical Parameters, Grid: 01
=============================

2016 ntimes Number of timesteps for 3-D equations.
1200.000 dt Timestep size (s) for 3-D equations.
20 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
2016 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information
to standard output.
T ldefout Switch to create a new output NetCDF file(s).
144 nHIS Number of timesteps between the writing fields
into history file.
7200 ndefHIS Number of timesteps between creation of new
history files.
1 ntsAVG Starting timestep for the accumulation of output
time-averaged data.
144 nAVG Number of timesteps between the writing of
time-averaged data into averages file.
1 ntsDIA Starting timestep for the accumulation of output
time-averaged diagnostics data.
7200 nDIA Number of timesteps between the writing of
time-averaged data into diagnostics file.
0.0000E+00 nl_visc2 NLM Horizontal, harmonic mixing coefficient
(m2/s) for momentum.
1.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
1.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)
for tracer 02: salt
1.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
5.0000E-06 Akk_bak Background vertical mixing coefficient (m2/s)
for turbulent energy.
5.0000E-06 Akp_bak Background vertical mixing coefficient (m2/s)
for turbulent generic statistical field.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
3.0000E-03 rdrg2 Quadratic bottom drag coefficient.
5.0000E-03 Zob Bottom roughness (m).
1.0000E+01 blk_ZQ Height (m) of surface air humidity measurement.
1.0000E+01 blk_ZT Height (m) of surface air temperature measurement.
1.0000E+01 blk_ZW Height (m) of surface winds measurement.
1 Vtransform S-coordinate transformation equation.
1 Vstretching S-coordinate stretching function.
2.5000E+00 theta_s S-coordinate surface control parameter.
8.0000E-01 theta_b S-coordinate bottom control parameter.
10.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1025.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
12538.000 dstart Time-stamp assigned to model initialization (days).
12538.000 tide_start Reference time origin for tidal forcing (days).
-2.00 time_ref Reference time for units attribute (yyyymmdd.dd)
0.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
0.0000E+00 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
0.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.
0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
0.0000E+00 obcfac Factor between passive and active
open boundary conditions.
10.000 T0 Background potential temperature (C) constant.
35.000 S0 Background salinity (PSU) constant.
-1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt
T Hout(idUsms) Write out surface U-momentum stress.
T Hout(idVsms) Write out surface V-momentum stress.
T Hout(idTsur) Write out surface net heat flux.
T Hout(idTsur) Write out surface net salt flux.
T Hout(idSrad) Write out shortwave radiation flux.
T Hout(idLrad) Write out longwave radiation flux.
T Hout(idLhea) Write out latent heat flux.
T Hout(idShea) Write out sensible heat flux.
T Hout(idEmPf) Write out E-P flux.
T Hout(idVvis) Write out vertical viscosity: AKv.

T Aout(idFsur) Write out averaged free-surface.
T Aout(idUbar) Write out averaged 2D U-momentum component.
T Aout(idVbar) Write out averaged 2D V-momentum component.
T Aout(idUvel) Write out averaged 3D U-momentum component.
T Aout(idVvel) Write out averaged 3D V-momentum component.
T Aout(idWvel) Write out averaged W-momentum component.
T Aout(idOvel) Write out averaged omega vertical velocity.
T Aout(idTvar) Write out averaged tracer 01: temp
T Aout(idTvar) Write out averaged tracer 02: salt
T Aout(idUsms) Write out averaged surface U-momentum stress.
T Aout(idVsms) Write out averaged surface V-momentum stress.

Output/Input Files:

Output Restart File: roms_rst.nc
Prefix for History Files: roms_his
Output Averages File: roms_avg.nc
Output Diagnostics File: roms_dia.nc
Input Grid File: roms_grd.nc
Input Nonlinear Initial File: roms_ini_ECCO_Y2010M2.nc
Input Forcing File 01: roms_frc_NCEP2_Y2010M2.nc
Input Forcing File 02: roms_blk_NCEP2_Y2010M2.nc
Input Climatology File: roms_clm_ECCO_Y2010M2.nc
Biology Parameters File: /home/xie/roms-3.5/User/External/bio_Fennel_scs.in

Tile partition information for Grid 01: 0067x0058x0020 tiling: 001x008

tile Istr Iend Jstr Jend Npts

0 1 67 1 5 6700
1 1 67 6 13 10720
2 1 67 14 21 10720
3 1 67 22 29 10720
4 1 67 30 37 10720
5 1 67 38 45 10720
6 1 67 46 53 10720
7 1 67 54 58 6700

Tile minimum and maximum fractional grid coordinates:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 0.50 67.50 0.50 60.50 RHO-points
1 0.50 67.50 -0.50 60.50 RHO-points
2 0.50 67.50 -0.50 60.50 RHO-points
3 0.50 67.50 -0.50 60.50 RHO-points
4 0.50 67.50 -0.50 60.50 RHO-points
5 0.50 67.50 -0.50 60.50 RHO-points
6 0.50 67.50 -0.50 60.50 RHO-points
7 0.50 67.50 -0.50 59.50 RHO-points

0 0.00 67.00 0.50 60.50 U-points
1 0.00 67.00 -0.50 60.50 U-points
2 0.00 67.00 -0.50 60.50 U-points
3 0.00 67.00 -0.50 60.50 U-points
4 0.00 67.00 -0.50 60.50 U-points
5 0.00 67.00 -0.50 60.50 U-points
6 0.00 67.00 -0.50 60.50 U-points
7 0.00 67.00 -0.50 59.50 U-points

0 0.50 67.50 0.00 60.50 V-points
1 0.50 67.50 -0.50 60.50 V-points
2 0.50 67.50 -0.50 60.50 V-points
3 0.50 67.50 -0.50 60.50 V-points
4 0.50 67.50 -0.50 60.50 V-points
5 0.50 67.50 -0.50 60.50 V-points
6 0.50 67.50 -0.50 60.50 V-points
7 0.50 67.50 -0.50 59.00 V-points


Fennel Model Parameters, Grid: 01
=================================

1 BioIter Number of iterations for nonlinear convergence.
4.0000E-02 AttSW Light attenuation of seawater (m-1).
2.4860E-02 AttChl Light attenuation by chlorophyll (1/(mg_Chl m-2)).
4.3000E-01 PARfrac Fraction of shortwave radiation that is
photosynthetically active (nondimensional).
1.0000E+00 Vp0 Eppley temperature-limited growth parameter
(nondimensional).
9.5000E-03 I_thNH4 Radiation threshold for nitrification (W/m2).
1.0000E-01 D_p5NH4 Half-saturation radiation for nitrification (W/m2).
5.0000E-02 NitriR Nitrification rate (day-1).
2.0000E+00 K_NO3 Inverse half-saturation for phytoplankton NO3
uptake (1/(mmol_N m-3)).
2.0000E+00 K_NH4 Inverse half-saturation for phytoplankton NH4
uptake (1/(mmol_N m-3)).
2.0000E+00 K_Phy Zooplankton half-saturation constant for ingestion
(mmol_N m-3)^2.
5.3500E-02 Chl2C_m Maximum chlorophyll to carbon ratio (mg_Chl/mg_C).
1.0000E-03 ChlMin Chlorophyll minimum threshold (mg_Chl/m3).
6.6250E+00 PhyCN Phytoplankton Carbon:Nitrogen ratio (mol_C/mol_N).
1.5000E+00 PhyIP Phytoplankton NH4 inhibition parameter (1/mmol_N).
2.5000E-02 PhyIS Phytoplankton growth, initial slope of P-I curve
(mg_C/(mg_Chl Watts m-2 day)).
1.0000E-03 PhyMin Phytoplankton minimum threshold (mmol_N/m3).
1.5000E-01 PhyMR Phytoplankton mortality rate (day-1).
7.5000E-01 ZooAE_N Zooplankton nitrogen assimilation efficiency
(nondimensional).
1.0000E-01 ZooBM Rate for zooplankton basal metabolism (1/day).
6.6250E+00 ZooCN Zooplankton Carbon:Nitrogen ratio (mol_C/mol_N).
1.0000E-01 ZooER Zooplankton specific excretion rate (day-1).
6.0000E-01 ZooGR Zooplankton maximum growth rate (day-1).
1.0000E-03 ZooMin Zooplankton minimum threshold (mmol_N/m3).
2.5000E-02 ZooMR Zooplankton mortality rate (day-1).
1.0000E-02 LDeRRN Large detritus N re-mineralization rate (day-1).
1.0000E-02 LDeRRC Large detritus C re-mineralization rate (day-1).
5.0000E-03 CoagR Coagulation rate (day-1).
3.0000E-02 SDeRRN Remineralization rate for small detritus N (day-1).
3.0000E-02 SDeRRC Remineralization rate for small detritus C (day-1).
1.0000E-01 wPhy Phytoplankton sinking velocity (m/day).
1.0000E+00 wLDet Large detritus sinking velocity (m/day).
1.0000E-01 wSDet Small detritus sinking velocity (m/day).
1.0000E-06 Akt_bak(03) Background vertical mixing coefficient (m2/s)
for tracer 03: NO3
1.0000E-06 Akt_bak(04) Background vertical mixing coefficient (m2/s)
for tracer 04: NH4
1.0000E-06 Akt_bak(05) Background vertical mixing coefficient (m2/s)
for tracer 05: chlorophyll
1.0000E-06 Akt_bak(06) Background vertical mixing coefficient (m2/s)
for tracer 06: phytoplankton
1.0000E-06 Akt_bak(07) Background vertical mixing coefficient (m2/s)
for tracer 07: zooplankton
1.0000E-06 Akt_bak(08) Background vertical mixing coefficient (m2/s)
for tracer 08: LdetritusN
1.0000E-06 Akt_bak(09) Background vertical mixing coefficient (m2/s)
for tracer 09: SdetritusN
1.0000E-06 Akt_bak(10) Background vertical mixing coefficient (m2/s)
for tracer 10: LdetritusC
1.0000E-06 Akt_bak(11) Background vertical mixing coefficient (m2/s)
for tracer 11: SdetritusC
1.0000E-06 Akt_bak(12) Background vertical mixing coefficient (m2/s)
for tracer 12: TIC
1.0000E-06 Akt_bak(13) Background vertical mixing coefficient (m2/s)
for tracer 13: alkalinity
0.0000E+00 Tnudg(03) Nudging/relaxation time scale (days)
for tracer 03: NO3
0.0000E+00 Tnudg(04) Nudging/relaxation time scale (days)
for tracer 04: NH4
0.0000E+00 Tnudg(05) Nudging/relaxation time scale (days)
for tracer 05: chlorophyll
0.0000E+00 Tnudg(06) Nudging/relaxation time scale (days)
for tracer 06: phytoplankton
0.0000E+00 Tnudg(07) Nudging/relaxation time scale (days)
for tracer 07: zooplankton
0.0000E+00 Tnudg(08) Nudging/relaxation time scale (days)
for tracer 08: LdetritusN
0.0000E+00 Tnudg(09) Nudging/relaxation time scale (days)
for tracer 09: SdetritusN
0.0000E+00 Tnudg(10) Nudging/relaxation time scale (days)
for tracer 10: LdetritusC
0.0000E+00 Tnudg(11) Nudging/relaxation time scale (days)
for tracer 11: SdetritusC
0.0000E+00 Tnudg(12) Nudging/relaxation time scale (days)
for tracer 12: TIC
0.0000E+00 Tnudg(13) Nudging/relaxation time scale (days)
for tracer 13: alkalinity
T Hout(idTvar) Write out tracer 03: NO3
T Hout(idTvar) Write out tracer 04: NH4
T Hout(idTvar) Write out tracer 05: chlorophyll
T Hout(idTvar) Write out tracer 06: phytoplankton
T Hout(idTvar) Write out tracer 07: zooplankton
T Hout(idTvar) Write out tracer 08: LdetritusN
T Hout(idTvar) Write out tracer 09: SdetritusN
T Hout(idTvar) Write out tracer 10: LdetritusC
T Hout(idTvar) Write out tracer 11: SdetritusC
T Hout(idTvar) Write out tracer 12: TIC
T Hout(idTvar) Write out tracer 13: alkalinity

T Aout(idTvar) Write out averaged tracer 03: NO3
T Aout(idTvar) Write out averaged tracer 04: NH4
T Aout(idTvar) Write out averaged tracer 05: chlorophyll
T Aout(idTvar) Write out averaged tracer 06: phytoplankton
T Aout(idTvar) Write out averaged tracer 07: zooplankton
T Aout(idTvar) Write out averaged tracer 08: LdetritusN
T Aout(idTvar) Write out averaged tracer 09: SdetritusN
T Aout(idTvar) Write out averaged tracer 10: LdetritusC
T Aout(idTvar) Write out averaged tracer 11: SdetritusC
T Aout(idTvar) Write out averaged tracer 12: TIC
T Aout(idTvar) Write out averaged tracer 13: alkalinity
T Hout(iDbio3) Write out diagnostics for P_Production
T Hout(iDbio3) Write out diagnostics for NO3_uptake

Activated C-preprocessing Options:

SCS SCS, scs1/5
ANA_BIOLOGY Analytical biology initial conditions.
ANA_BPFLUX Analytical bottom passive tracers fluxes.
ANA_BTFLUX Analytical kinematic bottom temperature flux.
ANA_FSOBC Analytical free-surface boundary conditions.
ANA_M2OBC Analytical 2D momentum boundary conditions.
ANA_RAIN Analytical rain fall rate.
ANA_SPFLUX Analytical surface passive tracer fluxes.
ASSUMED_SHAPE Using assumed-shape arrays.
AVERAGES Writing out time-averaged nonlinear model fields.
BIO_FENNEL Fennel et al. (2006) nitrogen-based model.
BIO_SEDIMENT Restore fallen particulate material to the nutrient pool.
BULK_FLUXES Surface bulk fluxes parametererization.
CARBON Add Carbon constituents.
CURVGRID Orthogonal curvilinear grid.
DENITRIFICATION Add denitrification processes.
DIAGNOSTICS_BIO Computing and writing biological diagnostic terms.
DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002).
DOUBLE_PRECISION Double precision arithmetic.
EAST_FSCHAPMAN Eastern edge, free-surface, Chapman condition.
EAST_M2FLATHER Eastern edge, 2D momentum, Flather condition.
EAST_M3RADIATION Eastern edge, 3D momentum, radiation condition.
EAST_TRADIATION Eastern edge, tracers, radiation condition.
EMINUSP Compute Salt Flux using E-P.
KANTHA_CLAYSON Kantha and Clayson stability function formulation.
LONGWAVE_OUT Compute outgoing longwave radiation internally.
M2CLIMATOLOGY Processing 2D momentum climatology data.
M3CLIMATOLOGY Processing 3D momentum climatology data.
MASKING Land/Sea masking.
MIX_S_UV Mixing of momentum along constant S-surfaces.
MY25_MIXING Mellor/Yamada Level-2.5 mixing closure.
NONLINEAR Nonlinear Model.
NONLIN_EOS Nonlinear Equation of State for seawater.
NORTH_FSGRADIENT Northern edge, free-surface, gradient condition.
NORTH_M2RADIATION Northern edge, 2D momentum, radiation condition.
NORTH_M3RADIATION Northern edge, 3D momentum, radiation condition.
NORTH_TRADIATION Northern edge, tracers, radiation condition.
N2S2_HORAVG Horizontal smoothing of buoyancy and shear.
PERFECT_RESTART Processing perfect restart variables.
POWER_LAW Power-law shape time-averaging barotropic filter.
PROFILE Time profiling activated .
K_GSCHEME Third-order upstream advection of TKE fields.
RAMP_TIDES Ramping tidal forcing for one day.
!RST_SINGLE Double precision fields in restart NetCDF file.
SOLVE3D Solving 3D Primitive Equations.
SOUTH_FSGRADIENT Southern edge, free-surface, gradient condition.
SOUTH_M2RADIATION Southern edge, 2D momentum, radiation condition.
SOUTH_M3RADIATION Southern edge, 3D momentum, radiation condition.
SOUTH_TRADIATION Southern edge, tracers, radiation condition.
SPONGE Enhanced horizontal mixing in the sponge areas.
SSH_TIDES Add tidal elevation to SSH climatology.
!TALK_PROGNOSTIC Diagnostic computation of alkalinity.
TCLIMATOLOGY Processing tracer climatology data.
TS_A4HADVECTION Fourth-order Akima horizontal advection of tracers.
TS_A4VADVECTION Fourth-order Akima vertical advection of tracers.
UV_ADV Advection of momentum.
UV_COR Coriolis term.
UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum.
UV_C4VADVECTION Fourth-order centered vertical advection of momentum.
UV_QDRAG Quadratic bottom stress.
UV_TIDES Add tidal currents to 2D momentum climatologies.
UV_VIS2 Harmonic mixing of momentum.
VAR_RHO_2D Variable density barotropic mode.
WESTERN_WALL Wall boundary at Western edge.
ZCLIMATOLOGY Processing sea surface height climatology data.

Process Information:

Thread # 0 (pid= 24836) is active.

INITIAL: Configuring and initializing forward nonlinear model ...


Vertical S-coordinate System:

level S-coord Cs-curve Z at hmin at hc half way at hmax

20 0.0000000 0.0000000 0.000 0.000 0.000 0.000
19 -0.0500000 -0.0225247 -4.780 -0.500 -58.839 -112.898
18 -0.1000000 -0.0492281 -10.353 -1.000 -128.501 -246.648
17 -0.1500000 -0.0807689 -16.846 -1.500 -210.692 -404.537
16 -0.2000000 -0.1177273 -24.368 -2.000 -306.914 -589.459
15 -0.2500000 -0.1605159 -32.998 -2.500 -418.236 -803.474
14 -0.3000000 -0.2092762 -42.762 -3.000 -545.025 -1047.288
13 -0.3500000 -0.2637795 -53.618 -3.500 -686.689 -1319.759
12 -0.4000000 -0.3233593 -65.438 -4.000 -841.501 -1617.563
11 -0.4500000 -0.3869075 -78.012 -4.500 -1006.590 -1935.169
10 -0.5000000 -0.4529542 -91.061 -5.000 -1178.151 -2265.242
9 -0.5500000 -0.5198294 -104.268 -5.500 -1351.858 -2599.449
8 -0.6000000 -0.5858761 -117.316 -6.000 -1523.419 -2929.522
7 -0.6500000 -0.6496633 -129.936 -6.500 -1689.128 -3248.320
6 -0.7000000 -0.7101489 -141.928 -7.000 -1846.286 -3550.643
5 -0.7500000 -0.7667600 -153.184 -7.500 -1993.408 -3833.632
4 -0.8000000 -0.8193905 -163.684 -8.000 -2130.222 -4096.759
3 -0.8500000 -0.8683362 -173.484 -8.500 -2257.491 -4341.498
2 -0.9000000 -0.9141971 -182.697 -9.000 -2376.771 -4570.844
1 -0.9500000 -0.9577775 -191.478 -9.500 -2490.144 -4788.810
0 -1.0000000 -1.0000000 -200.000 -10.000 -2600.000 -5000.000

Time Splitting Weights: ndtfast = 20 nfast = 29

Primary Secondary Accumulated to Current Step

1-0.0009651193358779 0.0500000000000000-0.0009651193358779 0.0500000000000000
2-0.0013488780126037 0.0500482559667939-0.0023139973484816 0.1000482559667939
3-0.0011514592651645 0.0501156998674241-0.0034654566136460 0.1501639558342179
4-0.0003735756740661 0.0501732728306823-0.0038390322877122 0.2003372286649002
5 0.0009829200513762 0.0501919516143856-0.0028561122363360 0.2505291802792858
6 0.0029141799764308 0.0501428056118168 0.0000580677400948 0.3006719858911026
7 0.0054132615310267 0.0499970966129952 0.0054713292711215 0.3506690825040978
8 0.0084687837865132 0.0497264335364439 0.0139401130576347 0.4003955160405417
9 0.0120633394191050 0.0493029943471183 0.0260034524767397 0.4496985103876600
10 0.0161716623600090 0.0486998273761630 0.0421751148367486 0.4983983377638230
11 0.0207585511322367 0.0478912442581626 0.0629336659689853 0.5462895820219856
12 0.0257765478740990 0.0468533167015507 0.0887102138430843 0.5931428987235363
13 0.0311633730493853 0.0455644893078458 0.1198735868924696 0.6387073880313821
14 0.0368391158442262 0.0440063206553765 0.1567127027366958 0.6827137086867585
15 0.0427031802506397 0.0421643648631652 0.1994158829873354 0.7248780735499237
16 0.0486309868367616 0.0400292058506332 0.2480468698240970 0.7649072794005569
17 0.0544704302037591 0.0375976565087951 0.3025173000278562 0.8025049359093520
18 0.0600380921294285 0.0348741349986072 0.3625553921572847 0.8373790709079592
19 0.0651152103984763 0.0318722303921358 0.4276706025557610 0.8692513013000949
20 0.0694434033194839 0.0286164698722119 0.4971140058752449 0.8978677711723068
21 0.0727201499285569 0.0251442997062377 0.5698341558038018 0.9230120708785445
22 0.0745940258796570 0.0215082922098099 0.6444281816834588 0.9445203630883544
23 0.0746596950216180 0.0177785909158270 0.7190878767050768 0.9622989540041814
24 0.0724526566618460 0.0140456061647461 0.7915405333669228 0.9763445601689276
25 0.0674437485167025 0.0104229733316538 0.8589842818836253 0.9867675335005814
26 0.0590334053485720 0.0070507859058187 0.9180176872321973 0.9938183194064002
27 0.0465456732896125 0.0040991156383901 0.9645633605218099 0.9979174350447904
28 0.0292219798521905 0.0017718319739095 0.9937853403740005 0.9996892670186999
29 0.0062146596259994 0.0003107329813000 0.9999999999999999 0.9999999999999999

ndtfast, nfast = 20 29 nfast/ndtfast = 1.45000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.060707743385 0.530353871693 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.14200

Minimum X-grid spacing, DXmin = 4.89227532E+01 km
Maximum X-grid spacing, DXmax = 5.55664205E+01 km
Minimum Y-grid spacing, DYmin = 4.92244448E+01 km
Maximum Y-grid spacing, DYmax = 5.55653626E+01 km
Minimum Z-grid spacing, DZmin = 4.77969624E+00 m
Maximum Z-grid spacing, DZmax = 3.34207169E+02 m

Minimum barotropic Courant Number = 6.76406017E-02
Maximum barotropic Courant Number = 3.67413174E-01
Maximum Coriolis Courant Number = 8.27567575E-02


NLM: GET_STATE - Read state initial conditions, t = 31 00:00:00
(File: roms_ini_ECCO_Y2010M2.nc, Rec=0001, Index=1)
- free-surface
(Min = 2.40833945E-01 Max = 9.12962079E-01)
- vertically integrated u-momentum component
(Min = -5.48634745E-01 Max = 3.04510668E-01)
- vertically integrated v-momentum component
(Min = -7.64609595E-01 Max = 1.87634051E-01)
- u-momentum component
(Min = -1.25016059E+00 Max = 6.91072106E-01)
- v-momentum component
(Min = -1.42649664E+00 Max = 3.71314483E-01)
- potential temperature
(Min = 1.21492100E+00 Max = 2.98439578E+01)
- salinity
(Min = 3.02197781E+01 Max = 3.56948882E+01)
GET_NGFLD - tidal period
(Min = 4.30819210E+04 Max = 2.38071599E+06)
GET_2DFLD - tidal elevation amplitude
(Min = 1.14676386E-04 Max = 1.84815601E+01)
GET_2DFLD - tidal elevation phase angle
(Min = 5.29610642E-05 Max = 6.28166889E+00)
GET_2DFLD - tidal current inclination angle
(Min = 8.00838154E-05 Max = 6.28310852E+00)
GET_2DFLD - tidal current phase angle
(Min = 8.43458278E-05 Max = 6.28311432E+00)
GET_2DFLD - maximum tidal current, ellipse major axis
(Min = 3.42173542E-06 Max = 2.59553102E+00)
GET_2DFLD - minimum tidal current, ellipse minor axis
(Min = -2.10984642E-01 Max = 3.62902895E-01)

NETCDF_GET_FVAR_2D - error while reading variable: lat
in input file: roms_frc_NCEP2_Y2010M2.nc
call from: get_varcoords.F

GET_2DFLD - error while reading variable: Uwind at TIME index = 192

Elapsed CPU time (seconds):

Thread # 0 CPU: 0.595
Total: 0.595

Nonlinear model elapsed time profile:

Allocation and array initialization .............. 0.429 (72.1008 %)
Reading of input data ............................ 0.030 ( 5.0419 %)
2D/3D coupling, vertical metrics ................. 0.016 ( 2.6892 %)
Omega vertical velocity .......................... 0.007 ( 1.1763 %)
Equation of state for seawater ................... 0.047 ( 7.8994 %)
Total: 0.529 88.9075

All percentages are with respect to total time = 0.595

ROMS/TOMS - Output NetCDF summary for Grid 01:

Analytical header files used:

ROMS/Functionals/ana_biology.h
ROMS/Functionals/ana_hmixcoef.h

ROMS/TOMS - Input error ............. exit_flag: 2


ERROR: Abnormal termination: NetCDF INPUT.
REASON: NetCDF: Start+count exceeds dimension bound

Then what's the problem?? Thanks for any help.

Post Reply