Running problem

Bug reports, work arounds and fixes

Moderators: arango, robertson

Post Reply
Message
Author
nmichelet
Posts: 31
Joined: Fri Oct 02, 2015 2:24 pm
Location: Cerema

Running problem

#1 Unread post by nmichelet »

Hello everyone,
I am currently trying to run a model with only tidal forcing.
The problem is that my results for the free surface or u and v are equal to zero everywhere.
Can you help me please, here is my .in file and my .h file
Thanks

.in file

! Application title.

TITLE = Iroise Sea Tidal Configuration

! C-preprocessing Flag.

MyAppCPP = IROISE

! Input variable information file name. This file needs to be processed
! first so all information arrays can be initialized properly.

VARNAME = /home/nicolas/roms/trunk/ROMS/External/varinfo.dat

! Number of nested grids.

Ngrids = 1

! Number of grid nesting layers. This parameter is used to allow refinement
! and composite grid combinations.

NestLayers = 1

! Number of grids in each nesting layer [1:NestLayers].

GridsInLayer = 1

! Grid dimension parameters. See notes below in the Glossary for how to set
! these parameters correctly.

Lm == 98 ! Number of I-direction INTERIOR RHO-points
Mm == 98 ! Number of J-direction INTERIOR RHO-points
N == 16 ! Number of vertical levels

Nbed = 0 ! Number of sediment bed layers

NAT = 2 ! Number of active tracers (usually, 2)
NPT = 0 ! Number of inactive passive tracers
NCS = 0 ! Number of cohesive (mud) sediment tracers
NNS = 0 ! Number of non-cohesive (sand) sediment tracers

! Domain decomposition parameters for serial, distributed-memory or
! shared-memory configurations used to determine tile horizontal range
! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].

NtileI == 1 ! I-direction partition
NtileJ == 1 ! J-direction partition

! Set lateral boundary conditions keyword. Notice that a value is expected
! for each boundary segment per nested grid for each state variable.
!
! Each tracer variable requires [1:4,1:NAT+NPT,Ngrids] values. Otherwise,
! [1:4,1:Ngrids] values are expected for other variables. The boundary
! order is: 1=west, 2=south, 3=east, and 4=north. That is, anticlockwise
! starting at the western boundary.
!
! The keyword is case insensitive and usually has three characters. However,
! it is possible to have compound keywords, if applicable. For example, the
! keyword "RadNud" implies radiation boundary condition with nudging. This
! combination is usually used in active/passive radiation conditions.
!
! Keyword Lateral Boundary Condition Type
!
! Cha Chapman_implicit (free-surface)
! Che Chapman_explicit (free-surface)
! Cla Clamped
! Clo Closed
! Fla Flather (2D momentum) _____N_____ j=Mm
! Gra Gradient | 4 |
! Nes Nested (refinement) | |
! Nud Nudging 1 W E 3
! Per Periodic | |
! Rad Radiation |_____S_____|
! Red Reduced Physics (2D momentum) 2 j=1
! Shc Shchepetkin (2D momentum) i=1 i=Lm
!
! W S E N
! e o a o
! s u s r
! t t t t
! h h
!
! 1 2 3 4
!
! LBC(isFsur) == Per Clo Per Clo ! free-surface
! LBC(isUbar) == Per Clo Per Clo ! 2D U-momentum
! LBC(isVbar) == Per Clo Per Clo ! 2D V-momentum
! LBC(isUvel) == Per Clo Per Clo ! 3D U-momentum
! LBC(isVvel) == Per Clo Per Clo ! 3D V-momentum
! LBC(isMtke) == Per Clo Per Clo ! mixing TKE
!
! LBC(isTvar) == Per Clo Per Clo \ ! temperature
! Per Clo Per Clo ! salinity
!
! Adjoint-based algorithms can have different lateral boundary
! conditions keywords.
!
!ad_LBC(isFsur) == Per Clo Per Clo ! free-surface
!ad_LBC(isUbar) == Per Clo Per Clo ! 2D U-momentum
!ad_LBC(isVbar) == Per Clo Per Clo ! 2D U-momentum
!ad_LBC(isUvel) == Per Clo Per Clo ! 3D U-momentum
!ad_LBC(isVvel) == Per Clo Per Clo ! 3D V-momentum
!ad_LBC(isMtke) == Per Clo Per Clo ! mixing TKE
!
!ad_LBC(isTvar) == Per Clo Per Clo \ ! temperature
! Per Clo Per Clo ! salinity
!
! Set lateral open boundary edge volume conservation switch for
! nonlinear model and adjoint-based algorithms. Usually activated
! with radiation boundary conditions to enforce global mass
! conservation, except if tidal forcing is enabled. [1:Ngrids].
!
! VolCons(west) == F ! western boundary
! VolCons(east) == F ! eastern boundary
! VolCons(south) == F ! southern boundary
! VolCons(north) == F ! northern boundary
!
!ad_VolCons(west) == F ! western boundary
!ad_VolCons(east) == F ! eastern boundary
!ad_VolCons(south) == F ! southern boundary
!ad_VolCons(north) == F ! northern boundary

! Time-Stepping parameters.

NTIMES == 12
DT == 10.0d0
NDTFAST == 100

! Model iteration loops parameters.

ERstr = 1
ERend = 1
Nouter = 1
Ninner = 1
Nintervals = 1

! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
! analysis. NCV must be greater than NEV (see documentation below).

NEV = 2 ! Number of eigenvalues
NCV = 10 ! Number of eigenvectors

! Input/Output parameters.

NRREC == 0
LcycleRST == T
NRST == 288
NSTA == 1
NFLT == 1
NINFO == 1

! Output history, average, diagnostic files parameters.

LDEFOUT == T
NHIS == 72
NDEFHIS == 0
NTSAVG == 1
NAVG == 72
NDEFAVG == 0
NTSDIA == 1
NDIA == 72
NDEFDIA == 0

! Output tangent linear and adjoint models parameters.

LcycleTLM == F
NTLM == 72
NDEFTLM == 0
LcycleADJ == F
NADJ == 72
NDEFADJ == 0
NSFF == 72
NOBC == 72

! GST output and check pointing restart parameters.

LmultiGST = F ! one eigenvector per file
LrstGST = F ! GST restart switch
MaxIterGST = 500 ! maximum number of iterations
NGST = 10 ! check pointing interval

! Relative accuracy of the Ritz values computed in the GST analysis.

Ritz_tol = 1.0d-15

! Harmonic/biharmonic horizontal diffusion of tracer for nonlinear model
! and adjoint-based algorithms: [1:NAT+NPT,Ngrids].

TNU2 == 0.0d0 0.0d0 ! m2/s
TNU4 == 2*0.0d0 ! m4/s

ad_TNU2 == 0.0d0 0.0d0 ! m2/s
ad_TNU4 == 0.0d0 0.0d0 ! m4/s

! Harmonic/biharmonic, horizontal viscosity coefficient for nonlinear model
! and adjoint-based algorithms: [Ngrids].

VISC2 == 5.0d0 ! m2/s
VISC4 == 0.0d0 ! m4/s

ad_VISC2 == 0.0d0 ! m2/s
ad_VISC4 == 0.0d0 ! m4/s

! Logical switches (TRUE/FALSE) to increase/decrease horizontal viscosity
! and/or diffusivity in specific areas of the application domain (like
! sponge areas) for the desired application grid.

LuvSponge == F ! horizontal momentum
LtracerSponge == F F ! temperature, salinity, inert

! Vertical mixing coefficients for tracers in nonlinear model and
! basic state scale factor in adjoint-based algorithms: [1:NAT+NPT,Ngrids]

AKT_BAK == 1.0d-6 1.0d-6 ! m2/s

ad_AKT_fac == 1.0d0 1.0d0 ! nondimensional

! Vertical mixing coefficient for momentum for nonlinear model and
! basic state scale factor in adjoint-based algorithms: [Ngrids].

AKV_BAK == 1.0d-5 ! m2/s

ad_AKV_fac == 1.0d0 ! nondimensional

! Turbulent closure parameters.

AKK_BAK == 5.0d-6 ! m2/s
AKP_BAK == 5.0d-6 ! m2/s
TKENU2 == 0.0d0 ! m2/s
TKENU4 == 0.0d0 ! m4/s

! Generic length-scale turbulence closure parameters.

GLS_P == 3.0d0 ! K-epsilon
GLS_M == 1.5d0
GLS_N == -1.0d0
GLS_Kmin == 7.6d-6
GLS_Pmin == 1.0d-12

GLS_CMU0 == 0.5477d0
GLS_C1 == 1.44d0
GLS_C2 == 1.92d0
GLS_C3M == -0.4d0
GLS_C3P == 1.0d0
GLS_SIGK == 1.0d0
GLS_SIGP == 1.30d0

! Constants used in surface turbulent kinetic energy flux computation.

CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking

! Constants used in momentum stress computation.

RDRG == 3.0d-04 ! m/s
RDRG2 == 3.0d-03 ! nondimensional
Zob == 0.02d0 ! m
Zos == 0.02d0 ! m

! Height (m) of atmospheric measurements for Bulk fluxes parameterization.

BLK_ZQ == 10.0d0 ! air humidity
BLK_ZT == 10.0d0 ! air temperature
BLK_ZW == 10.0d0 ! winds

! Minimum depth for wetting and drying.

DCRIT == 0.10d0 ! m

! Various parameters.

WTYPE == 1
LEVSFRC == 15
LEVBFRC == 1

! Set vertical, terrain-following coordinates transformation equation and
! stretching function (see below for details), [1:Ngrids].

Vtransform == 2 ! transformation equation
Vstretching == 1 ! stretching function

! Vertical S-coordinates parameters (see below for details), [1:Ngrids].

THETA_S == 3.0d0 ! surface stretching parameter
THETA_B == 0.0d0 ! bottom stretching parameter
TCLINE == 0.0d0 ! critical depth (m)

! Mean Density and Brunt-Vaisala frequency.

RHO0 = 1025.0d0 ! kg/m3
BVF_BAK = 1.0d-5 ! 1/s2

! Time-stamp assigned for model initialization, reference time
! origin for tidal forcing, and model reference time for output
! NetCDF units attribute.

DSTART = 0.0d0 ! days
TIDE_START = 0.0d0 ! days
TIME_REF = 0.0d0 ! yyyymmdd.dd

! Nudging/relaxation time scales, inverse scales will be computed
! internally, [1:Ngrids].

TNUDG == 2*0.0d0 ! days
ZNUDG == 0.0d0 ! days
M2NUDG == 0.0d0 ! days
M3NUDG == 0.0d0 ! days

! Factor between passive (outflow) and active (inflow) open boundary
! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
! than on outflow (recommended).

OBCFAC == 0.0d0 ! nondimensional

! Linear equation of State parameters:

R0 == 1027.0d0 ! kg/m3
T0 == 14.0d0 ! Celsius
S0 == 35.0d0 ! nondimensional
TCOEF == 1.7d-4 ! 1/Celsius
SCOEF == 0.0d0 ! nondimensional

! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)

GAMMA2 == 1.0d0

! Logical switches (TRUE/FALSE) to activate horizontal momentum transport
! point Sources/Sinks (like river runoff transport) and mass point
! Sources/Sinks (like volume vertical influx), [1:Ngrids].

LuvSrc == F ! horizontal momentum transport
LwSrc == F ! volume vertical influx

! Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks
! (like river runoff) and to specify which tracer variables to consider:
! [1:NAT+NPT,Ngrids]. See glossary below for details.

LtracerSrc == F F ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to read and process climatology fields.
! See glossary below for details.

LsshCLM == F ! sea-surface height
Lm2CLM == F ! 2D momentum
Lm3CLM == F ! 3D momentum

LtracerCLM == F F ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to nudge the desired climatology field(s).
! If not analytical climatology fields, users need to turn ON the logical
! switches above to process the fields from the climatology NetCDF file
! that are needed for nudging. See glossary below for details.

LnudgeM2CLM == F ! 2D momentum
LnudgeM3CLM == F ! 3D momentum

LnudgeTCLM == F F ! temperature, salinity, inert

! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
! DstrS must be less or equal to DendS. If both values are zero, their
! values are reset internally to the full range of the adjoint integration.

DstrS == 0.0d0 ! starting day
DendS == 0.0d0 ! ending day

! Starting and ending vertical levels of the 3D adjoint state variables
! whose sensitivity is required.

KstrS == 1 ! starting level
KendS == 1 ! ending level

! Logical switches (TRUE/FALSE) to specify the adjoint state variables
! whose sensitivity is required.

Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum

Lstate(isTvar) == F F ! NT tracers

! Logical switches (TRUE/FALSE) to specify the state variables for
! which Forcing Singular Vectors or Stochastic Optimals is required.

Fstate(isFsur) == F ! free-surface
Fstate(isUbar) == F ! 2D U-momentum
Fstate(isVbar) == F ! 2D V-momentum
Fstate(isUvel) == F ! 3D U-momentum
Fstate(isVvel) == F ! 3D V-momentum
Fstate(isTvar) == F F ! NT tracers

Fstate(isUstr) == T ! surface U-stress
Fstate(isVstr) == T ! surface V-stress
Fstate(isTsur) == F F ! NT surface tracers flux

! Stochastic Optimals time decorrelation scale (days) assumed for
! red noise processes.

SO_decay == 2.0d0 ! days

! Stochastic Optimals surface forcing standard deviation for
! dimensionalization.

SO_sdev(isFsur) == 1.0d0 ! free-surface
SO_sdev(isUbar) == 1.0d0 ! 2D U-momentum
SO_sdev(isVbar) == 1.0d0 ! 2D V-momentum
SO_sdev(isUvel) == 1.0d0 ! 3D U-momentum
SO_sdev(isVvel) == 1.0d0 ! 3D V-momentum
SO_sdev(isTvar) == 1.0d0 1.0d0 ! NT tracers

SO_sdev(isUstr) == 1.0d0 ! surface U-stress
SO_sdev(isVstr) == 1.0d0 ! surface V-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracers flux

! Logical switches (TRUE/FALSE) to activate writing of fields into
! HISTORY output file.

Hout(idUvel) == F ! u 3D U-velocity
Hout(idVvel) == F ! v 3D V-velocity
Hout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
Hout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
Hout(idWvel) == F ! w 3D W-velocity
Hout(idOvel) == F ! omega omega vertical velocity
Hout(idUbar) == F ! ubar 2D U-velocity
Hout(idVbar) == F ! vbar 2D V-velocity
Hout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
Hout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
Hout(idFsur) == T ! zeta free-surface
Hout(idBath) == F ! bath time-dependent bathymetry

Hout(idTvar) == F F ! temp, salt temperature and salinity

Hout(idUsms) == F ! sustr surface U-stress
Hout(idVsms) == F ! svstr surface V-stress
Hout(idUbms) == F ! bustr bottom U-stress
Hout(idVbms) == F ! bvstr bottom V-stress

Hout(idUbrs) == F ! bustrc bottom U-current stress
Hout(idVbrs) == F ! bvstrc bottom V-current stress
Hout(idUbws) == F ! bustrw bottom U-wave stress
Hout(idVbws) == F ! bvstrw bottom V-wave stress
Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress

Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
Hout(idUbur) == F ! Ur bottom U-velocity above bed
Hout(idVbvr) == F ! Vr bottom V-velocity above bed

Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Hout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Hout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity

Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Hout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Hout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity

Hout(idWamp) == F ! Hwave wave height
Hout(idWlen) == F ! Lwave wave length
Hout(idWdir) == F ! Dwave wave direction
Hout(idWptp) == F ! Pwave_top wave surface period
Hout(idWpbt) == F ! Pwave_bot wave bottom period
Hout(idWorb) == F ! Ub_swan wave bottom orbital velocity
Hout(idWdis) == F ! Wave_dissip wave dissipation

Hout(idPair) == F ! Pair surface air pressure
Hout(idUair) == F ! Uair surface U-wind component
Hout(idVair) == F ! Vair surface V-wind component

Hout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Hout(idLhea) == F ! latent latent heat flux
Hout(idShea) == F ! sensible sensible heat flux
Hout(idLrad) == F ! lwrad longwave radiation flux
Hout(idSrad) == F ! swrad shortwave radiation flux
Hout(idEmPf) == F ! EminusP E-P flux
Hout(idevap) == F ! evaporation evaporation rate
Hout(idrain) == F ! rain precipitation rate

Hout(idDano) == F ! rho density anomaly
Hout(idVvis) == F ! AKv vertical viscosity
Hout(idTdif) == F ! AKt vertical T-diffusion
Hout(idSdif) == F ! AKs vertical Salinity diffusion
Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Hout(idMtke) == F ! tke turbulent kinetic energy
Hout(idMtls) == F ! gls turbulent length scale

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers. An inert passive tracer
! is one that it is only advected and diffused. Other processes are ignored.
! These tracers include, for example, dyes, pollutants, oil spills, etc.
! NPT values are expected. However, these switches can be activated using
! compact parameter specification.

Hout(inert) == T ! dye_01, ... inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
! layer properties into HISTORY output file. Currently, MBOTP properties
! are expected for the bottom boundary layer and/or sediment models:
!
! idBott( 1=isd50) grain_diameter mean grain diameter
! idBott( 2=idens) grain_density mean grain density
! idBott( 3=iwsed) settling_vel mean settling velocity
! idBott( 4=itauc) erosion_stress critical erosion stress
! idBott( 5=irlen) ripple_length ripple length
! idBott( 6=irhgt) ripple_height ripple height
! idBott( 7=ibwav) bed_wave_amp wave excursion amplitude
! idBott( 8=izdef) Zo_def default bottom roughness
! idBott( 9=izapp) Zo_app apparent bottom roughness
! idBott(10=izNik) Zo_Nik Nikuradse bottom roughness
! idBott(11=izbio) Zo_bio biological bottom roughness
! idBott(12=izbfm) Zo_bedform bed form bottom roughness
! idBott(13=izbld) Zo_bedload bed load bottom roughness
! idBott(14=izwbl) Zo_wbl wave bottom roughness
! idBott(15=iactv) active_layer_thickness active layer thickness
! idBott(16=ishgt) saltation saltation height
!
! 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Hout(idBott) == F F F F F F F F F F F F F F F F

! Logical switches (TRUE/FALSE) to activate writing of time-averaged
! fields into AVERAGE output file.

Aout(idUvel) == F ! u 3D U-velocity
Aout(idVvel) == F ! v 3D V-velocity
Aout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
Aout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
Aout(idWvel) == F ! w 3D W-velocity
Aout(idOvel) == F ! omega omega vertical velocity
Aout(idUbar) == F ! ubar 2D U-velocity
Aout(idVbar) == F ! vbar 2D V-velocity
Aout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
Aout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
Aout(idFsur) == T ! zeta free-surface

Aout(idTvar) == F F ! temp, salt temperature and salinity

Aout(idUsms) == F ! sustr surface U-stress
Aout(idVsms) == F ! svstr surface V-stress
Aout(idUbms) == F ! bustr bottom U-stress
Aout(idVbms) == F ! bvstr bottom V-stress

Aout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Aout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Aout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Aout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Aout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Aout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Aout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity

Aout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Aout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Aout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Aout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Aout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Aout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Aout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Aout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Aout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity

Aout(idPair) == F ! Pair surface air pressure
Aout(idUair) == F ! Uair surface U-wind component
Aout(idVair) == F ! Vair surface V-wind component

Aout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Aout(idLhea) == F ! latent latent heat flux
Aout(idShea) == F ! sensible sensible heat flux
Aout(idLrad) == F ! lwrad longwave radiation flux
Aout(idSrad) == F ! swrad shortwave radiation flux
Aout(idevap) == F ! evaporation evaporation rate
Aout(idrain) == F ! rain precipitation rate

Aout(idDano) == F ! rho density anomaly
Aout(idVvis) == F ! AKv vertical viscosity
Aout(idTdif) == F ! AKt vertical T-diffusion
Aout(idSdif) == F ! AKs vertical Salinity diffusion
Aout(idHsbl) == F ! Hsbl depth of surface boundary layer
Aout(idHbbl) == F ! Hbbl depth of bottom boundary layer

Aout(id2dRV) == F ! pvorticity_bar 2D relative vorticity
Aout(id3dRV) == F ! pvorticity 3D relative vorticity
Aout(id2dPV) == F ! rvorticity_bar 2D potential vorticity
Aout(id3dPV) == F ! rvorticity 3D potential vorticity

Aout(idu3dD) == T ! u_detided detided 3D U-velocity
Aout(idv3dD) == T ! v_detided detided 3D V-velocity
Aout(idu2dD) == T ! ubar_detided detided 2D U-velocity
Aout(idv2dD) == T ! vbar_detided detided 2D V-velocity
Aout(idFsuD) == T ! zeta_detided detided free-surface

Aout(idTrcD) == F F ! temp_detided, ... detided temperature and salinity

Aout(idHUav) == F ! Huon u-volume flux, Huon
Aout(idHVav) == F ! Hvom v-volume flux, Hvom
Aout(idUUav) == F ! uu quadratic <u*u> term
Aout(idUVav) == F ! uv quadratic <u*v> term
Aout(idVVav) == F ! vv quadratic <v*v> term
Aout(idU2av) == F ! ubar2 quadratic <ubar*ubar> term
Aout(idV2av) == F ! vbar2 quadratic <vbar*vbar> term
Aout(idZZav) == F ! zeta2 quadratic <zeta*zeta> term

Aout(idTTav) == F F ! temp_2, ... quadratic <t*t> tracer terms
Aout(idUTav) == F F ! u_temp, ... quadratic <u*t> tracer terms
Aout(idVTav) == F F ! v_temp, ... quadratic <v*t> tracer terms
Aout(iHUTav) == F F ! Huon_temp, ... tracer volume flux, <Huon*t>
Aout(iHVTav) == F F ! Hvom_temp, ... tracer volume flux, <Hvom*t>

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers into the AVERAGE file.

Aout(inert) == T ! dye_01, ... inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! 2D momentum (ubar,vbar) diagnostic terms into DIAGNOSTIC output file.

Dout(M2rate) == T ! ubar_accel, ... acceleration
Dout(M2pgrd) == T ! ubar_prsgrd, ... pressure gradient
Dout(M2fcor) == T ! ubar_cor, ... Coriolis force
Dout(M2hadv) == T ! ubar_hadv, ... horizontal total advection
Dout(M2xadv) == T ! ubar_xadv, ... horizontal XI-advection
Dout(M2yadv) == T ! ubar_yadv, ... horizontal ETA-advection
Dout(M2hrad) == T ! ubar_hrad, ... horizontal total radiation stress
Dout(M2hvis) == T ! ubar_hvisc, ... horizontal total viscosity
Dout(M2xvis) == T ! ubar_xvisc, ... horizontal XI-viscosity
Dout(M2yvis) == T ! ubar_yvisc, ... horizontal ETA-viscosity
Dout(M2sstr) == T ! ubar_sstr, ... surface stress
Dout(M2bstr) == T ! ubar_bstr, ... bottom stress

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! 3D momentum (u,v) diagnostic terms into DIAGNOSTIC output file.

Dout(M3rate) == T ! u_accel, ... acceleration
Dout(M3pgrd) == T ! u_prsgrd, ... pressure gradient
Dout(M3fcor) == T ! u_cor, ... Coriolis force
Dout(M3hadv) == T ! u_hadv, ... horizontal total advection
Dout(M3xadv) == T ! u_xadv, ... horizontal XI-advection
Dout(M3yadv) == T ! u_yadv, ... horizontal ETA-advection
Dout(M3vadv) == T ! u_vadv, ... vertical advection
Dout(M3hrad) == T ! u_hrad, ... horizontal total radiation stress
Dout(M3vrad) == T ! u_vrad, ... vertical radiation stress
Dout(M3hvis) == T ! u_hvisc, ... horizontal total viscosity
Dout(M3xvis) == T ! u_xvisc, ... horizontal XI-viscosity
Dout(M3yvis) == T ! u_yvisc, ... horizontal ETA-viscosity
Dout(M3vvis) == T ! u_vvisc, ... vertical viscosity

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! active (temperature and salinity) and passive (inert) tracer diagnostic
! terms into DIAGNOSTIC output file: [1:NAT+NPT,Ngrids].

Dout(iTrate) == T T ! temp_rate, ... time rate of change
Dout(iThadv) == T T ! temp_hadv, ... horizontal total advection
Dout(iTxadv) == T T ! temp_xadv, ... horizontal XI-advection
Dout(iTyadv) == T T ! temp_yadv, ... horizontal ETA-advection
Dout(iTvadv) == T T ! temp_vadv, ... vertical advection
Dout(iThdif) == T T ! temp_hdiff, ... horizontal total diffusion
Dout(iTxdif) == T T ! temp_xdiff, ... horizontal XI-diffusion
Dout(iTydif) == T T ! temp_ydiff, ... horizontal ETA-diffusion
Dout(iTsdif) == T T ! temp_sdiff, ... horizontal S-diffusion
Dout(iTvdif) == T T ! temp_vdiff, ... vertical diffusion

! Generic User parameters, [1:NUSER].

NUSER = 0
USER = 0.d0

! NetCDF-4/HDF5 compression parameters for output files.

NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
NC_DLEVEL = 1 ! deflate level [0-9]

! Input NetCDF file names, [1:Ngrids].

GRDNAME == grid.nc
ININAME == roms_ini.nc
ITLNAME == ocean_itl.nc
IRPNAME == ocean_irp.nc
IADNAME == ocean_iad.nc
FWDNAME == ocean_fwd.nc
ADSNAME == ocean_ads.nc

! Nesting grids connectivity data: contact points information. This
! NetCDF file is special and complex. It is currently generated using
! the script "matlab/grid/contact.m" from the Matlab repository.

NGCNAME = ocean_ngc.nc

! Input lateral boundary conditions and climatology file names. The
! USER has the option to split input data time records into several
! NetCDF files (see prologue instructions above). If so, use a single
! line per entry with a vertical bar (|) symbol after each entry,
! except the last one.

BRYNAME == roms_bry.nc
CLMNAME == roms_clm.nc

! Input climatology nudging coefficients file name.

NUDNAME == ocean_nud.nc

! Input Sources/Sinks forcing (like river runoff) file name.

SSFNAME == ocean_rivers.nc

! Input forcing NetCDF file name(s). The USER has the option to enter
! several file names for each nested grid. For example, the USER may
! have different files for wind products, heat fluxes, tides, etc.
! The model will scan the file list and will read the needed data from
! the first file in the list containing the forcing field. Therefore,
! the order of the file names is very important. If using multiple forcing
! files per grid, first enter all the file names for grid 1, then grid 2,
! and so on. It is also possible to split input data time records into
! several NetCDF files (see prologue instructions above). Use a single line
! per entry with a continuation (\) or vertical bar (|) symbol after each
! entry, except the last one.

NFFILES == 1 ! number of unique forcing files

FRCNAME == roms_frc.nc ! forcing file 1, grid 1

! Output NetCDF file names, [1:Ngrids].

GSTNAME == ocean_gst.nc
RSTNAME == ocean_rst.nc
HISNAME == ocean_his.nc
TLMNAME == ocean_tlm.nc
TLFNAME == ocean_tlf.nc
ADJNAME == ocean_adj.nc
AVGNAME == ocean_avg.nc
DIANAME == ocean_dia.nc
STANAME == ocean_sta.nc
FLTNAME == ocean_flt.nc

! Input ASCII parameter filenames.

APARNAM = ROMS/External/s4dvar.in
SPOSNAM = ROMS/External/stations.in
FPOSNAM = ROMS/External/floats.in
BPARNAM = ROMS/External/bio_Fennel.in
SPARNAM = ROMS/External/sediment.in
USRNAME = ROMS/External/MyFile.dat



.h file




/*
** svn $Id: latte_c.h 342 2007-06-06 18:50:48Z zhang $
*******************************************************************************
** Copyright (c) 2002-2007 The ROMS/TOMS Group **
** Licensed under a MIT/X style license **
** See License_ROMS.txt **
*******************************************************************************
**
** Options for Lagrangian Transport and Transformation Experiment
** coarse grid resolution.
**
** Application flag: MANCHE
** Input script: ocean_manche.in
*/

#define NLM_DRIVER

#undef DIAGNOSTICS_TS
#undef DIAGNOSTICS_UV

#define UV_ADV
#define DJ_GRADPS
#define UV_COR
#undef UV_LOGDRAG
#define WET_DRY

#define DIFF_3DCOEF
#define VISC_3DCOEF
#undef TS_SMAGORINSKY use to turn ON or OFF Smagorinsky-like diffusion
#define UV_SMAGORINSKY

#define UV_VIS2
#define MIX_S_UV
#define TS_DIF2
#define MIX_GEO_TS

#define TS_MPDATA
#undef TS_U3HADVECTION
#undef TS_SVADVECTION

#define SOLVE3D
#undef SALINITY
#define NONLIN_EOS
#define CURVGRID
#undef AVERAGES
#undef STATIONS
#define MASKING
#undef SPLINES
#define OUT_DOUBLE

#undef UV_PSOURCE
#undef TS_PSOURCE

#define GLS_MIXING
#ifdef GLS_MIXING
# define KANTHA_CLAYSON
# undef CANUTO_A
# define N2S2_HORAVG
#endif

#define ANA_INITIAL
#define ANA_BSFLUX
#define ANA_BTFLUX

#undef BULK_FLUXES


#undef ANA_WINDS
#undef ANA_TAIR
#undef ANA_PAIR
#define ANA_SRFLUX
#undef ANA_HUMIDITY
#define LONGWAVE
#define ANA_RAIN
#define ANA_CLOUD


/* Open boundary condition settings */
#define NORTH_FSCLAMPED
#define NORTH_M2REDUCED
#define NORTH_M3GRADIENT
#define NORTH_TGRADIENT

#define WEST_FSCLAMPED
#define WEST_M2REDUCED
#define WEST_M3GRADIENT
#define WEST_TGRADIENT

#define EAST_WALL

#define SOUTH_WALL

#undef TCLIMATOLOGY
#undef TCLM_NUDGING
#undef M3CLM_NUDGING

#define ANA_FSOBC
#undef ANA_M2OBC

/* define UV_TIDES to specify boundary tidal currents from data e.g. ADCIRC */
/* undef UV_TIDES to compute tidal currents using reduced physics */
#define SSH_TIDES /* read tidal SSH from file */
#undef UV_TIDES /* read tidal U and V from file */

#ifdef SSH_TIDES
# define ADD_FSOBC
#endif
# define FSOBC_REDUCED
#ifdef UV_TIDES
# undef FSOBC_REDUCED /* boundary pg is calculated using bounday zeta */
# define ADD_M2OBC
#endif


#define ANA_BPFLUX /* needed when sediment and bulk fluxes are on */
#define ANA_SPFLUX /* needed when sediment and bulk fluxes are on */

#define UV_LDRAG

User avatar
kate
Posts: 4088
Joined: Wed Jul 02, 2003 5:29 pm
Location: CFOS/UAF, USA

Re: Running problem

#2 Unread post by kate »

What the heck version is this? You've got cpp boundary options from 2007 and a newer ocean.in with the LBC stuff all commented out. You need to have it all be from one consistent version, ideally a new one so we have a clue.

nmichelet
Posts: 31
Joined: Fri Oct 02, 2015 2:24 pm
Location: Cerema

Re: Running problem

#3 Unread post by nmichelet »

I am using the 3.7 version of ROMS.
I change what you said but it still gives me the same results, here is the .h file
Can you tell me if something is wrong?

/*
** svn $Id: latte_c.h 342 2007-06-06 18:50:48Z zhang $
*******************************************************************************
** Copyright (c) 2002-2007 The ROMS/TOMS Group **
** Licensed under a MIT/X style license **
** See License_ROMS.txt **
*******************************************************************************
**
** Options for Lagrangian Transport and Transformation Experiment
** coarse grid resolution.
**
** Application flag: IROISE
** Input script: roms.in
*/

#define NLM_DRIVER

#undef DIAGNOSTICS_TS
#undef DIAGNOSTICS_UV

#define UV_ADV
#define DJ_GRADPS
#define UV_COR
#undef UV_LOGDRAG
#define WET_DRY

#define DIFF_3DCOEF
#define VISC_3DCOEF
#undef TS_SMAGORINSKY use to turn ON or OFF Smagorinsky-like diffusion
#define UV_SMAGORINSKY

#define UV_VIS2
#define MIX_S_UV
#define TS_DIF2
#define MIX_GEO_TS

#define TS_MPDATA
#undef TS_U3HADVECTION
#undef TS_SVADVECTION

#define SOLVE3D
#undef SALINITY
#define NONLIN_EOS
#define CURVGRID
#undef AVERAGES
#undef STATIONS
#define MASKING
#undef SPLINES
#define OUT_DOUBLE

#undef UV_PSOURCE
#undef TS_PSOURCE

#define GLS_MIXING
#ifdef GLS_MIXING
# define KANTHA_CLAYSON
# undef CANUTO_A
# define N2S2_HORAVG
#endif

#define ANA_INITIAL
#define ANA_BSFLUX
#define ANA_BTFLUX

#undef ANA_WINDS
#undef ANA_TAIR
#undef ANA_PAIR
#define ANA_SRFLUX
#undef ANA_HUMIDITY
#define LONGWAVE
#define ANA_RAIN
#define ANA_CLOUD


/* Open boundary condition settings */

#undef TCLIMATOLOGY
#undef TCLM_NUDGING
#undef M3CLM_NUDGING

#define ANA_FSOBC
#undef ANA_M2OBC

#define ADD_FSOBC
#define ADD_M2OBC

#define SSH_TIDES /* read tidal SSH from file */
#define UV_TIDES /* read tidal U and V from file */

#ifdef SSH_TIDES
# define ADD_FSOBC
#endif
# define FSOBC_REDUCED
#ifdef UV_TIDES
# undef FSOBC_REDUCED /* boundary pg is calculated using bounday zeta */
# define ADD_M2OBC
#endif

#define UV_LDRAG

mjfconan
Posts: 20
Joined: Mon Mar 03, 2014 1:57 pm
Location: SKLEC, ECNU, China

Re: Running problem

#4 Unread post by mjfconan »

I met a similar problem. Maybe it can give you a small hint or nothing :o .
My fault was giving a wrong time unit in boundary file, says the 'units' attribute of "zeta_time". viewtopic.php?f=19&t=3450&hilit=time+unit

User avatar
kate
Posts: 4088
Joined: Wed Jul 02, 2003 5:29 pm
Location: CFOS/UAF, USA

Re: Running problem

#5 Unread post by kate »

These will all be ignored in ROMS 2015, but shouldn't hurt anything:

Code: Select all

/* Open boundary condition settings */
#define NORTH_FSCLAMPED
#define NORTH_M2REDUCED
#define NORTH_M3GRADIENT
#define NORTH_TGRADIENT

#define WEST_FSCLAMPED
#define WEST_M2REDUCED
#define WEST_M3GRADIENT
#define WEST_TGRADIENT

#define EAST_WALL

#define SOUTH_WALL

#undef TCLIMATOLOGY
#undef TCLM_NUDGING
#undef M3CLM_NUDGING
You do need to set the LBC options in ocean.in.

You seem to have consistent tides options, so I don't know. I tend to solve these issues with a debugger - that's what they're for.

nmichelet
Posts: 31
Joined: Fri Oct 02, 2015 2:24 pm
Location: Cerema

Re: Running problem

#6 Unread post by nmichelet »

Thanks for your reply, I solved the problem.
It was a problem with the boundary condition and the cppkeys I used
Thanks for your help

Post Reply