no output history files

Report or discuss software problems and other woes

Moderators: arango, robertson

Post Reply
Message
Author
pavel_fayman
Posts: 7
Joined: Thu Feb 24, 2011 2:40 pm
Location: FERHRI

no output history files

#1 Unread post by pavel_fayman »

During the work ROMS write the log file, but do not write restart and historical files.
-.in file is the follow:







! Application title.

TITLE = Okhotsk Sea, 10 km resolution

! C-preprocessing Flag.

MyAppCPP = SAKHALIN3

! Input variable information file name. This file needs to be processed
! first so all information arrays can be initialized properly.

VARNAME = ../roms3/ROMS/External/varinfo.dat

! Number of nested grids.

Ngrids = 1

! Grid dimension parameters. See notes below in the Glossary for how to set
! these parameters correctly.

Lm == 119 ! Number of I-direction INTERIOR RHO-points
Mm == 468 ! Number of J-direction INTERIOR RHO-points
N == 32 ! Number of vertical levels

Nbed = 0 ! Number of sediment bed layers

NAT = 2 ! Number of active tracers (usually, 2)
NPT = 0 ! Number of inactive passive tracers
NCS = 0 ! Number of cohesive (mud) sediment tracers
NNS = 0 ! Number of non-cohesive (sand) sediment tracers

! Domain decomposition parameters for serial, distributed-memory or
! shared-memory configurations used to determine tile horizontal range
! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].

NtileI == 6 ! I-direction partition
NtileJ == 16 ! J-direction partition

! Set lateral boundary conditions keyword. Notice that a value is expected
! for each boundary segment per nested grid for each state variable.
!
! Each tracer variable requires [1:4,1:NAT+NPT,Ngrids] values. Otherwise,
! [1:4,1:Ngrids] values are expected for other variables. The boundary
! order is: 1=west, 2=south, 3=east, and 4=north. That is, anticlockwise
! starting at the western boundary.
!
! The keyword is case insensitive and usually has three characters. However,
! it is possible to have compound keywords, if applicable. For example, the
! keyword "RadNud" implies radiation boundary condition with nudging. This
! combination is usually used in active/passive radiation conditions.
!
! Keyword Lateral Boundary Condition Type
!
! Cha Chapman
! Cla Clamped
! Clo Closed
! Fla Flather _____N_____ j=Mm
! Gra Gradient | 4 |
! Nes Nested | |
! Nud Nudging 1 W E 3
! Per Periodic | |
! Rad Radiation |_____S_____|
! Red Reduced Physics 2 j=1
! i=1 i=Lm
! W S E N
! e o a o
! s u s r
! t t t t
! h h
!
! 1 2 3 4

LBC(isFsur) == Cha Cha Cha Cha ! free-surface
LBC(isUbar) == Fla Fla Fla Fla ! 2D U-momentum
LBC(isVbar) == Fla Fla Fla Fla ! 2D V-momentum
LBC(isUvel) == Cla Cla Cla Cla ! 3D U-momentum
LBC(isVvel) == Cla Cla Cla Cla ! 3D V-momentum
LBC(isMtke) == Gra Gra Gra Gra ! mixing TKE

LBC(isTvar) == Cla Cla Cla Cla \ ! temperature
Cla Cla Cla Cla ! salinity

! Adjoint-based algorithms can have different lateral boundary
! conditions keywords.

ad_LBC(isFsur) == Cha Cha Cha Cha ! free-surface
ad_LBC(isUbar) == Fla Fla Fla Fla ! 2D U-momentum
ad_LBC(isVbar) == Fla Fla Fla Fla ! 2D U-momentum
ad_LBC(isUvel) == Gra Gra Gra Gra ! 3D U-momentum
ad_LBC(isVvel) == Gra Gra Gra Gra ! 3D V-momentum
ad_LBC(isMtke) == Gra Gra Gra Gra ! mixing TKE

ad_LBC(isTvar) == Gra Gra Gra Gra \ ! temperature
Gra Gra Gra Gra ! salinity

! Set lateral open boundary edge volume conservation switch for
! nonlinear model and adjoint-based algorithms. Usually activated
! with radiation boundary conditions to enforce global mass
! conservation, except if tidal forcing enabled. [1:Ngrids].

VolCons(west) == T ! western boundary
VolCons(east) == T ! eastern boundary
VolCons(south) == T ! southern boundary
VolCons(north) == T ! northern boundary

ad_VolCons(west) == T ! western boundary
ad_VolCons(east) == T ! eastern boundary
ad_VolCons(south) == T ! southern boundary
ad_VolCons(north) == T ! northern boundary

! Time-Stepping parameters.

! NTIMES == 264960
! NTIMES == 259200
! NTIMES == 345600
! NTIMES == 89280
! NTIMES == 29760
! NTIMES == 57600
! NTIMES == 87360
! NTIMES == 116160
! NTIMES == 145920
! NTIMES == 174720
! NTIMES == 306720
! NTIMES == 217440
NTIMES == 2000
DT == 30.000d0
NDTFAST ==180

! Model iteration loops parameters.

ERstr = 1
ERend = 1
Nouter = 1
Ninner = 1
Nintervals = 1

! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
! analysis. NCV must be greater than NEV (see documentation below).

NEV = 2 ! Number of eigenvalues
NCV = 10 ! Number of eigenvectors

! Input/Output parameters.

NRREC == 0
LcycleRST == T
NRST == 100
NSTA == 1
NFLT == 40
NINFO == 1

! Output history, average, diagnostic files parameters.

LDEFOUT == T
NHIS == 100
NDEFHIS == 100
NTSAVG == 1
NAVG == 2880
NDEFAVG == 2880
NTSDIA == 1
NDIA == 432
NDEFDIA == 0

! Output tangent linear and adjoint models parameters.

LcycleTLM == F
NTLM == 432
NDEFTLM == 0
LcycleADJ == F
NADJ == 432
NDEFADJ == 0
NSFF == 432
NOBC == 432

! GST output and check pointing restart parameters.

LmultiGST = F ! one eigenvector per file
LrstGST = F ! GST restart switch
MaxIterGST = 500 ! maximum number of iterations
NGST = 10 ! check pointing interval

! Relative accuracy of the Ritz values computed in the GST analysis.

Ritz_tol = 1.0d-15

! Harmonic/biharmonic horizontal diffusion of tracer for nonlinear model
! and adjoint-based algorithms: [1:NAT+NPT,Ngrids].

TNU2 == 6.0d0 8.0d0 2.0d0 20.0d0 ! m2/s
TNU4 == 8.0d+7 10.0d+7 2.0d+7 2.0d+8 ! m4/s

ad_TNU2 == 0.0d0 0.0d0 ! m2/s
ad_TNU4 == 0.0d0 0.0d0 ! m4/s

! Harmonic/biharmonic, horizontal viscosity coefficient for nonlinear model
! and adjoint-based algorithms: [Ngrids].

VISC2 == 200.0d0 25.0d0 5.0d0 ! m2/s
VISC4 == 15.0d+8 20.0d+7 4.0d+7 ! m4/s

ad_VISC2 == 0.0d0 ! m2/s
ad_VISC4 == 0.0d0 ! m4/s

! Vertical mixing coefficients for tracers in nonlinear model and
! basic state scale factor in adjoint-based algorithms: [1:NAT+NPT,Ngrids]

AKT_BAK == 10.0d-6 1.0d-6 ! m2/s

ad_AKT_fac == 1.0d0 1.0d0 ! nondimensional

! Vertical mixing coefficient for momentum for nonlinear model and
! basic state scale factor in adjoint-based algorithms: [Ngrids].

AKV_BAK == 10.0d-5 ! m2/s

ad_AKV_fac == 1.0d0 ! nondimensional

! Turbulent closure parameters.

AKK_BAK == 5.0d-6 ! m2/s
AKP_BAK == 5.0d-6 ! m2/s
TKENU2 == 2000.0d0 ! m2/s
TKENU4 == 0.0d0 ! m4/s

! Generic length-scale turbulence closure parameters.

GLS_P == 3.0d0 ! K-epsilon
GLS_M == 1.5d0
GLS_N == -1.0d0
GLS_Kmin == 7.6d-6
GLS_Pmin == 1.0d-12

GLS_CMU0 == 0.5477d0
GLS_C1 == 1.44d0
GLS_C2 == 1.92d0
GLS_C3M == -0.4d0
GLS_C3P == 1.0d0
GLS_SIGK == 1.0d0
GLS_SIGP == 1.30d0

! Constants used in surface turbulent kinetic energy flux computation.

CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking

! Constants used in momentum stress computation.

RDRG == 3.0d-04 ! m/s
RDRG2 == 3.0d-03 ! nondimensional
Zob == 0.02d0 ! m
Zos == 0.02d0 ! m

! Height (m) of atmospheric measurements for Bulk fluxes parameterization.

BLK_ZQ == 10.0d0 ! air humidity
BLK_ZT == 10.0d0 ! air temperature
BLK_ZW == 10.0d0 ! winds

! Minimum depth for wetting and drying.

DCRIT == 0.10d0 ! m

! Various parameters.

WTYPE == 1
LEVSFRC == 15
LEVBFRC == 1

! Set vertical, terrain-following coordinates transformation equation and
! stretching function (see below for details), [1:Ngrids].

Vtransform == 1 ! transformation equation
Vstretching == 1 ! stretching function

! Vertical S-coordinates parameters (see below for details), [1:Ngrids].

THETA_S == 3.0d0 ! surface stretching parameter
THETA_B == 0.4d0 ! bottom stretching parameter
TCLINE == 10.0d0 ! critical depth (m)

! Mean Density and Brunt-Vaisala frequency.

RHO0 = 1025.0d0 ! kg/m3
BVF_BAK = 1.0d-5 ! 1/s2

! Time-stamp assigned for model initialization, reference time
! origin for tidal forcing, and model reference time for output
! NetCDF units attribute.

DSTART = 0.0d0 ! days
TIDE_START = 0.0d0 ! days
TIME_REF = 20130101.0d0 ! yyyymmdd.dd

! Nudging/relaxation time scales, inverse scales will be computed
! internally, [1:Ngrids].

TNUDG == 60.0d0 50.0d0 ! days
ZNUDG == 60.0d0 ! days
M2NUDG == 60.0d0 ! days
M3NUDG == 60.0d0 ! days


! Factor between passive (outflow) and active (inflow) open boundary
! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
! than on outflow (recommended).

OBCFAC == 0.0d0 ! nondimensional

! Linear equation of State parameters:

R0 == 1027.0d0 ! kg/m3
T0 == 10.0d0 ! Celsius
S0 == 35.0d0 ! PSU
TCOEF == 1.7d-4 ! 1/Celsius
SCOEF == 7.6d-4 ! 1/PSU

! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)

GAMMA2 == 1.0d0

! Logical switches (TRUE/FALSE) to specify which variables to process for
! tracers climatology: [1:NAT+NPT,Ngrids]. See glossary below for details.

LtracerCLM == T T ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to specify which variables to consider on
! tracers point Sources/Sinks (like river runoff): [1:NAT+NPT,Ngrids].
! See glossary below for details.

LtracerSrc == F F ! temperature, salinity, inert

! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
! DstrS must be less or equal to DendS. If both values are zero, their
! values are reset internally to the full range of the adjoint integration.

DstrS == 0.0d0 ! starting day
DendS == 0.0d0 ! ending day

! Starting and ending vertical levels of the 3D adjoint state variables
! whose sensitivity is required.

KstrS == 1 ! starting level
KendS == 1 ! ending level

! Logical switches (TRUE/FALSE) to specify the adjoint state variables
! whose sensitivity is required.

Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum

Lstate(isTvar) == F F ! NT tracers

! Logical switches (TRUE/FALSE) to specify the state variables for
! which Forcing Singular Vectors or Stochastic Optimals is required.

Fstate(isFsur) == F ! free-surface
Fstate(isUbar) == F ! 2D U-momentum
Fstate(isVbar) == F ! 2D V-momentum
Fstate(isUvel) == F ! 3D U-momentum
Fstate(isVvel) == F ! 3D V-momentum
Fstate(isTvar) == F F ! NT tracers

Fstate(isUstr) == T ! surface U-stress
Fstate(isVstr) == T ! surface V-stress
Fstate(isTsur) == F F ! NT surface tracers flux

! Stochastic Optimals time decorrelation scale (days) assumed for
! red noise processes.

SO_decay == 2.0d0 ! days

! Stochastic Optimals surface forcing standard deviation for
! dimensionalization.

SO_sdev(isFsur) == 1.0d0 ! free-surface
SO_sdev(isUbar) == 1.0d0 ! 2D U-momentum
SO_sdev(isVbar) == 1.0d0 ! 2D V-momentum
SO_sdev(isUvel) == 1.0d0 ! 3D U-momentum
SO_sdev(isVvel) == 1.0d0 ! 3D V-momentum
SO_sdev(isTvar) == 1.0d0 1.0d0 ! NT tracers

SO_sdev(isUstr) == 1.0d0 ! surface U-stress
SO_sdev(isVstr) == 1.0d0 ! surface V-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracers flux

! Logical switches (TRUE/FALSE) to activate writing of fields into
! HISTORY output file.

Hout(idUvel) == T ! u 3D U-velocity
Hout(idVvel) == T ! v 3D V-velocity
Hout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
Hout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
Hout(idWvel) == F ! w 3D W-velocity
Hout(idOvel) == F ! omega omega vertical velocity
Hout(idUbar) == T ! ubar 2D U-velocity
Hout(idVbar) == T ! vbar 2D V-velocity
Hout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
Hout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
Hout(idFsur) == T ! zeta free-surface
Hout(idBath) == T ! bath time-dependent bathymetry

Hout(idTvar) == T T ! temp, salt temperature and salinity

Hout(idUsms) == F ! sustr surface U-stress
Hout(idVsms) == F ! svstr surface V-stress
Hout(idUbms) == F ! bustr bottom U-stress
Hout(idVbms) == F ! bvstr bottom V-stress

Hout(idUbrs) == F ! bustrc bottom U-current stress
Hout(idVbrs) == F ! bvstrc bottom V-current stress
Hout(idUbws) == F ! bustrw bottom U-wave stress
Hout(idVbws) == F ! bvstrw bottom V-wave stress
Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress

Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
Hout(idUbur) == F ! Ur bottom U-velocity above bed
Hout(idVbvr) == F ! Vr bottom V-velocity above bed

Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Hout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Hout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity

Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Hout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Hout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity

Hout(idWamp) == F ! Hwave wave height
Hout(idWlen) == F ! Lwave wave length
Hout(idWdir) == F ! Dwave wave direction
Hout(idWptp) == F ! Pwave_top wave surface period
Hout(idWpbt) == F ! Pwave_bot wave bottom period
Hout(idWorb) == F ! Ub_swan wave bottom orbital velocity
Hout(idWdis) == F ! Wave_dissip wave dissipation

Hout(idPair) == F ! Pair surface air pressure
Hout(idUair) == F ! Uair surface U-wind component
Hout(idVair) == F ! Vair surface V-wind component

Hout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Hout(idLhea) == F ! latent latent heat flux
Hout(idShea) == F ! sensible sensible heat flux
Hout(idLrad) == F ! lwrad longwave radiation flux
Hout(idSrad) == F ! swrad shortwave radiation flux
Hout(idEmPf) == F ! EminusP E-P flux
Hout(idevap) == F ! evaporation evaporation rate
Hout(idrain) == F ! rain precipitation rate

Hout(idDano) == F ! rho density anomaly
Hout(idVvis) == F ! AKv vertical viscosity
Hout(idTdif) == F ! AKt vertical T-diffusion
Hout(idSdif) == F ! AKs vertical Salinity diffusion
Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Hout(idMtke) == F ! tke turbulent kinetic energy
Hout(idMtls) == F ! gls turbulent length scale

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers. An inert passive tracer
! is one that it is only advected and diffused. Other processes are ignored.
! These tracers include, for example, dyes, pollutants, oil spills, etc.
! NPT values are expected. However, these switches can be activated using
! compact parameter specification.

Hout(inert) == T ! dye_01, ... inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
! layer properties into HISTORY output file. Currently, MBOTP properties
! are expected for the bottom boundary layer and/or sediment models:
!
! idBott( 1=isd50) grain_diameter mean grain diameter
! idBott( 2=idens) grain_density mean grain density
! idBott( 3=iwsed) settling_vel mean settling velocity
! idBott( 4=itauc) erosion_stres critical erosion stress
! idBott( 5=irlen) ripple_length ripple length
! idBott( 6=irhgt) ripple_height ripple height
! idBott( 7=ibwav) bed_wave_amp wave excursion amplitude
! idBott( 8=izdef) Zo_def default bottom roughness
! idBott( 9=izapp) Zo_app apparent bottom roughness
! idBott(10=izNik) Zo_Nik Nikuradse bottom roughness
! idBott(11=izbio) Zo_bio biological bottom roughness
! idBott(12=izbfm) Zo_bedform bed form bottom roughness
! idBott(13=izbld) Zo_bedload bed load bottom roughness
! idBott(14=izwbl) Zo_wbl wave bottom roughness
! idBott(15=iactv) active_layer_thickness active layer thickness
! idBott(16=ishgt) saltation saltation height
!
! 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

Hout(idBott) == T T T T T T T T T F F F F F F F

! Logical switches (TRUE/FALSE) to activate writing of time-averaged
! fields into AVERAGE output file.

Aout(idUvel) == T ! u 3D U-velocity
Aout(idVvel) == T ! v 3D V-velocity
Aout(idu3dE) == F ! u_eastward 3D U-eastward at RHO-points
Aout(idv3dN) == F ! v_northward 3D V-northward at RHO-points
Aout(idWvel) == T ! w 3D W-velocity
Aout(idOvel) == T ! omega omega vertical velocity
Aout(idUbar) == T ! ubar 2D U-velocity
Aout(idVbar) == T ! vbar 2D V-velocity
Aout(idu2dE) == F ! ubar_eastward 2D U-eastward at RHO-points
Aout(idv2dN) == F ! vbar_northward 2D V-northward at RHO-points
Aout(idFsur) == T ! zeta free-surface

Aout(idTvar) == T T ! temp, salt temperature and salinity

Aout(idUsms) == F ! sustr surface U-stress
Aout(idVsms) == F ! svstr surface V-stress
Aout(idUbms) == F ! bustr bottom U-stress
Aout(idVbms) == F ! bvstr bottom V-stress

Aout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Aout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Aout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Aout(idU2rs) == F ! Ubar_Rstress 2D radiation U-stress
Aout(idV2rs) == F ! Vbar_Rstress 2D radiation V-stress
Aout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Aout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity

Aout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Aout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Aout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Aout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Aout(idW3zy) == F ! Szy 3D radiation stress, Szy component
Aout(idU3rs) == F ! u_Rstress 3D U-radiation stress
Aout(idV3rs) == F ! v_Rstress 3D V-radiation stress
Aout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Aout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity

Aout(idPair) == F ! Pair surface air pressure
Aout(idUair) == F ! Uair surface U-wind component
Aout(idVair) == F ! Vair surface V-wind component

Aout(idTsur) == F F ! shflux, ssflux surface net heat and salt flux
Aout(idLhea) == F ! latent latent heat flux
Aout(idShea) == F ! sensible sensible heat flux
Aout(idLrad) == F ! lwrad longwave radiation flux
Aout(idSrad) == F ! swrad shortwave radiation flux
Aout(idevap) == F ! evaporation evaporation rate
Aout(idrain) == F ! rain precipitation rate

Aout(idDano) == F ! rho density anomaly
Aout(idVvis) == F ! AKv vertical viscosity
Aout(idTdif) == F ! AKt vertical T-diffusion
Aout(idSdif) == F ! AKs vertical Salinity diffusion
Aout(idHsbl) == F ! Hsbl depth of surface boundary layer
Aout(idHbbl) == F ! Hbbl depth of bottom boundary layer

Aout(id2dRV) == F ! pvorticity_bar 2D relative vorticity
Aout(id3dRV) == F ! pvorticity 3D relative vorticity
Aout(id2dPV) == F ! rvorticity_bar 2D potential vorticity
Aout(id3dPV) == F ! rvorticity 3D potential vorticity

Aout(idu3dD) == F ! u_detided detided 3D U-velocity
Aout(idv3dD) == F ! v_detided detided 3D V-velocity
Aout(idu2dD) == F ! ubar_detided detided 2D U-velocity
Aout(idv2dD) == F ! vbar_detided detided 2D V-velocity
Aout(idFsuD) == F ! zeta_detided detided free-surface

Aout(idTrcD) == F F ! temp_detided, ... detided temperature and salinity

Aout(idHUav) == F ! Huon u-volume flux, Huon
Aout(idHVav) == F ! Hvom v-volume flux, Hvom
Aout(idUUav) == F ! uu quadratic <u*u> term
Aout(idUVav) == F ! uv quadratic <u*v> term
Aout(idVVav) == F ! vv quadratic <v*v> term
Aout(idU2av) == F ! ubar2 quadratic <ubar*ubar> term
Aout(idV2av) == F ! vbar2 quadratic <vbar*vbar> term
Aout(idZZav) == F ! zeta2 quadratic <zeta*zeta> term

Aout(idTTav) == F F ! temp2, ... quadratic <t*t> tracer terms
Aout(idUTav) == F F ! utemp, ... quadratic <u*t> tracer terms
Aout(idVTav) == F F ! vtemp, ... quadratic <v*t> tracer terms
Aout(iHUTav) == F F ! Huontemp, ... tracer volume flux, <Huon*t>
Aout(iHVTav) == F F ! Hvomtemp, ... tracer volume flux, <Hvom*t>

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers into the AVERAGE file.

Aout(inert) == T ! dye_01, ... inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! 2D momentum (ubar,vbar) diagnostic terms into DIAGNOSTIC output file.

Dout(M2rate) == T ! ubar_accel, ... acceleration
Dout(M2pgrd) == T ! ubar_prsgrd, ... pressure gradient
Dout(M2fcor) == T ! ubar_cor, ... Coriolis force
Dout(M2hadv) == T ! ubar_hadv, ... horizontal total advection
Dout(M2xadv) == T ! ubar_xadv, ... horizontal XI-advection
Dout(M2yadv) == T ! ubar_yadv, ... horizontal ETA-advection
Dout(M2hrad) == T ! ubar_hrad, ... horizontal total radiation stress
Dout(M2hvis) == T ! ubar_hvisc, ... horizontal total viscosity
Dout(M2xvis) == T ! ubar_xvisc, ... horizontal XI-viscosity
Dout(M2yvis) == T ! ubar_yvisc, ... horizontal ETA-viscosity
Dout(M2sstr) == T ! ubar_sstr, ... surface stress
Dout(M2bstr) == T ! ubar_bstr, ... bottom stress

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! 3D momentum (u,v) diagnostic terms into DIAGNOSTIC output file.

Dout(M3rate) == T ! u_accel, ... acceleration
Dout(M3pgrd) == T ! u_prsgrd, ... pressure gradient
Dout(M3fcor) == T ! u_cor, ... Coriolis force
Dout(M3hadv) == T ! u_hadv, ... horizontal total advection
Dout(M3xadv) == T ! u_xadv, ... horizontal XI-advection
Dout(M3yadv) == T ! u_yadv, ... horizontal ETA-advection
Dout(M3vadv) == T ! u_vadv, ... vertical advection
Dout(M3hrad) == T ! u_hrad, ... horizontal total radiation stress
Dout(M3vrad) == T ! u_vrad, ... vertical radiation stress
Dout(M3hvis) == T ! u_hvisc, ... horizontal total viscosity
Dout(M3xvis) == T ! u_xvisc, ... horizontal XI-viscosity
Dout(M3yvis) == T ! u_yvisc, ... horizontal ETA-viscosity
Dout(M3vvis) == T ! u_vvisc, ... vertical viscosity

! Logical switches (TRUE/FALSE) to activate writing of time-averaged,
! active (temperature and salinity) and passive (inert) tracer diagnostic
! terms into DIAGNOSTIC output file: [1:NAT+NPT,Ngrids].

Dout(iTrate) == T T ! temp_rate, ... time rate of change
Dout(iThadv) == T T ! temp_hadv, ... horizontal total advection
Dout(iTxadv) == T T ! temp_xadv, ... horizontal XI-advection
Dout(iTyadv) == T T ! temp_yadv, ... horizontal ETA-advection
Dout(iTvadv) == T T ! temp_vadv, ... vertical advection
Dout(iThdif) == T T ! temp_hdiff, ... horizontal total diffusion
Dout(iTxdif) == T T ! temp_xdiff, ... horizontal XI-diffusion
Dout(iTydif) == T T ! temp_ydiff, ... horizontal ETA-diffusion
Dout(iTsdif) == T T ! temp_sdiff, ... horizontal S-diffusion
Dout(iTvdif) == T T ! temp_vdiff, ... vertical diffusion

! Generic User parameters, [1:NUSER].

NUSER = 0
USER = 0.d0

! NetCDF-4/HDF5 compression parameters for output files.

NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
NC_DLEVEL = 1 ! deflate level [0-9]

! Input NetCDF file names, [1:Ngrids].

GRDNAME == data_s/roms_grd.nc
! ININAME == result_s/SAH_rst.nc
! ININAME == result_s/SAH_his_0010.nc
ININAME == data_s/initial_2013_01.nc

ITLNAME == NATL_itl.nc
IRPNAME == NATL_irp.nc
IADNAME == NATL_iad.nc
FWDNAME == NATL_fwd.nc
ADSNAME == NATL_ads.nc

! Nesting grids connectivity data: contact points information. This
! NetCDF file is special and complex. It is currently generated using
! the script "matlab/grid/contact.m" from the Matlab repository.

NGCNAME = sw06f_ngc.nc

! Input lateral boundary conditions and climatology file names. The
! USER has the option to split input data time records into several
! NetCDF files (see prologue instructions above). If so, use a single
! line per entry with a vertical bar (|) symbol after each entry,
! except the last one.

BRYNAME == data_s/bound_2013_01.nc
CLMNAME == result_s/SAH_his_0001.nc

! Input climatology nudging coefficients file name.

NUDNAME == sw06f_nud.nc

! Input Sources/Sinks forcing (like river runoff) file name.

SSFNAME == sw06f_rivers.nc


! Input forcing NetCDF file name(s). The USER has the option to enter
! several file names for each nested grid. For example, the USER may
! have different files for wind products, heat fluxes, rivers, tides,
! etc. The model will scan the file list and will read the needed data
! from the first file in the list containing the forcing field. Therefore,
! the order of the file names is very important. If using multiple forcing
! files per grid, first enter all the file names for grid 1, then grid 2,
! and so on. It is also possible to split input data time records into
! several NetCDF files (see prologue instructions above). Use a single line
! per entry with a continuation (\) or vertical bar (|) symbol after each
! entry, except the last one.

NFFILES == 1 ! number of unique forcing files

FRCNAME == data_s/force_2013_01.nc ! forcing file 1, grid 1
! data_s/force_2013_02.nc |
! data_s/force_2013_03.nc |
! data_s/force_2013_04.nc |
! data_s/force_2013_05.nc
! data_s/tide2.nc

! NFFILES == 9 ! number of forcing files

! FRCNAME == data/force_Pair_2008_08.nc\
! data/force_Qair_2008_08.nc\
! data/force_Tair_2008_08.nc\
! data/force_Uwind_2008_08.nc\
! data/force_Vwind_2008_08.nc\
! data/force_cloud_2008_08.nc\
! data/force_lwrad_2008_08.nc\
! data/force_rain_2008_08.nc\
! data/force_swrad_2008_08.nc

! Output NetCDF file names, [1:Ngrids].

GSTNAME == result_s/SAH_gst.nc
RSTNAME == result_s/SAH_rst.nc
HISNAME == result_s/SAH_his.nc
TLMNAME == result_s/SAH_tlm.nc
TLFNAME == result_s/SAH_tlf.nc
ADJNAME == result_s/SAH_adj.nc
AVGNAME == result_s/SAH_avg.nc
DIANAME == result_s/SAH_dia.nc
STANAME == result_s/SAH_sta.nc
FLTNAME == result_s/SAH_flt.nc

! Input ASCII parameter filenames.

APARNAM = ../roms3/External/s4dvar.in
SPOSNAM = ../roms3/External/stations.in
FPOSNAM = ../roms3/External/floats.in
BPARNAM = ../roms3/External/bio_Fennel.in
SPARNAM = ../roms3/External/sediment.in
USRNAME = ../roms3/External/MyFile.da






what its happen?

Post Reply