Problem

General scientific issues regarding ROMS

Moderators: arango, robertson

Post Reply
Message
Author
lithodes8

Problem

#1 Unread post by lithodes8 »

Hello community, I could help with this case, I do not understand it falls, I reviewed the mesh and interpolations speeds, I think everything is in order, but I run it and falls.

If someone sees something that I see, appreciate any guidance comment.

The case goes on the Catalan coast, a stretch that I took and what I try to simulate hydrodynamics is in a time of 6 days, attached the cpp file and ocean.in.
thank you very much.

my case:

#define UV_ADV
#define UV_COR
#define UV_LDRAG
#define UV_VIS2
#undef MIX_GEO_UV
#define MIX_S_UV
#define TS_U3HADVECTION
#define TS_C4VADVECTION
#undef TS_MPDATA
#define DJ_GRADPS
#define TS_DIF2
#undef TS_DIF4
#undef MIX_GEO_TS
#define MIX_S_TS

#define SALINITY
#define SOLVE3D
#define SPLINES
#define AVERAGES
#define DIAGNOSTICS_TS
#define DIAGNOSTICS_UV


#define ANA_BTFLUX
#define ANA_BSFLUX

my ocean.in
! Application title.

TITLE = Barcelona1

! C-preprocessing Flag.

MyAppCPP = BCN_1

! Input variable information file name. This file needs to be processed
! first so all information arrays can be initialized properly.

VARNAME = ROMS/External/varinfo.dat

! Number of nested grids.

Ngrids = 1

! Grid dimension parameters. See notes below in the Glossary for how to set
! these parameters correctly.

Lm == 252 ! Number of I-direction INTERIOR RHO-points
Mm == 162 ! Number of J-direction INTERIOR RHO-points
N == 20 ! Number of vertical levels

Nbed = 0 ! Number of sediment bed layers

NAT = 2 ! Number of active tracers (usually, 2)
NPT = 0 ! Number of inactive passive tracers
NCS = 0 ! Number of cohesive (mud) sediment tracers
NNS = 0 ! Number of non-cohesive (sand) sediment tracers

! Domain decomposition parameters for serial, distributed-memory or
! shared-memory configurations used to determine tile horizontal range
! indices (Istr,Iend) and (Jstr,Jend), [1:Ngrids].

NtileI == 1 ! I-direction partition
NtileJ == 1 ! J-direction partition

! Set lateral boundary conditions keyword. Notice that a value is expected
! for each boundary segment per nested grid for each state variable.
!
! Each tracer variable requires [1:4,1:NAT+NPT,Ngrids] values. Otherwise,
! [1:4,1:Ngrids] values are expected for other variables. The boundary
! order is: 1=west, 2=south, 3=east, and 4=north. That is, anticlockwise
! starting at the western boundary.
!
! The keyword is case insensitive and usually has three characters. However,
! it is possible to have compound keywords, if applicable. For example, the
! keyword "RadNud" implies radiation boundary condition with nudging. This
! combination is usually used in active/passive radiation conditions.
!
! Keyword Lateral Boundary Condition Type
!
! Cha Chapman
! Cla Clamped
! Clo Closed
! Fla Flather _____N_____ j=Mm
! Gra Gradient | 4 |
! Nes Nested | |
! Nud Nudging 1 W E 3
! Per Periodic | |
! Rad Radiation |_____S_____|
! Red Reduced Physics 2 j=1
! i=1 i=Lm
! W S E N
! e o a o
! s u s r
! t t t t
! h h
!
! 1 2 3 4

LBC(isFsur) == Fla Fla Fla Clo ! free-surface
LBC(isUbar) == Fla Fla Fla Clo ! 2D U-momentum
LBC(isVbar) == Fla Fla Fla Clo ! 2D V-momentum
LBC(isUvel) == RadNud RadNud RadNud Clo ! 3D U-momentum
LBC(isVvel) == RadNud RadNud RadNud Clo ! 3D V-momentum
LBC(isMtke) == Fla Fla Fla Clo ! mixing TKE

LBC(isTvar) == Rad Rad Rad Clo \ ! temperature

Rad Rad Rad Clo ! salinity

! Set lateral open boundary edge volume conservation switch for
! nonlinear model and adjoint-based algorithms. Usually activated
! with radiation boundary conditions to enforce global mass
! conservation, except if tidal forcing enabled. [1:Ngrids].

VolCons(west) == T ! western boundary
VolCons(east) == T ! eastern boundary
VolCons(south) == T ! southern boundary
VolCons(north) == T ! northern boundary

ad_VolCons(west) == F ! western boundary
ad_VolCons(east) == F ! eastern boundary
ad_VolCons(south) == F ! southern boundary
ad_VolCons(north) == F ! northern boundary

! Time-Stepping parameters.

NTIMES == 17280
DT == 30.0d0
NDTFAST == 40


! Model iteration loops parameters.

ERstr = 1
ERend = 1
Nouter = 1
Ninner = 1
Nintervals = 1

! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
! analysis. NCV must be greater than NEV (see documentation below).

NEV = 2 ! Number of eigenvalues
NCV = 10 ! Number of eigenvectors

! Input/Output parameters.

NRREC == 0
LcycleRST == T
NRST == 675
NSTA == 1
NFLT == 1
NINFO == 1 !mientras lo dejo en 1 .. pero cuando funcione lo cambio a 50 o más ...

! Output history, average, diagnostic files parameters.

LDEFOUT == T
NHIS == 720
NDEFHIS == 0
NTSAVG == 0
NAVG == 720
NDEFAVG == 0
NTSDIA == 0
NDIA == 0
NDEFDIA == 0

! Output tangent linear and adjoint models parameters.

LcycleTLM == F
NTLM == 72
NDEFTLM == 0
LcycleADJ == F
NADJ == 120
NDEFADJ == 0
NSFF == 120
!

! Output check pointing GST restart parameters.

LrstGST = F ! GST restart switch
MaxIterGST = 1 ! maximun number of iterations
NGST = 10 ! check pointing interval

! Relative accuracy of the Ritz values computed in the GST analysis.

Ritz_tol = 1.0d-15

! Harmonic/biharmonic horizontal diffusion of tracer: [1:NAT+NPT,Ngrids].

TNU2 == 0.0d0 0.0d0 ! m2/s
TNU4 == 0.0d0 0.0d0 ! m4/s

ad_TNU2 == 0.0d0 0.0d0 ! m2/s
ad_TNU4 == 0.0d0 0.0d0 ! m4/s


! Harmononic/biharmonic, horizontal viscosity coefficient: [Ngrids].

VISC2 == 0.001d0 ! m2/s
VISC4 == 0.0d0 ! m4/s

ad_VISC2 == 0.0d0 ! m2/s
ad_VISC4 == 0.0d0 ! m4/s

! Vertical mixing coefficients for active tracers: [1:NAT+NPT,Ngrids]

AKT_BAK == 5.0d-6 5.0d-6 5.0d-6 5.0d-6 ! m2/s

ad_AKT_fac== 1.0d0 1.0d0 !nondimensional

! Vertical mixing coefficient for momentum: [Ngrids].

ad_AKV_BAK == 1.0d0 ! m2/s

! Turbulent closure parameters.

AKK_BAK == 5.0d-6 ! m2/s
AKP_BAK == 5.0d-6 ! m2/s
TKENU2 == 0.0d0 ! m2/s
TKENU4 == 0.0d0 ! m4/s

! Generic length-scale turbulence closure parameters.

GLS_P == 3.0d0 ! K-epsilon
GLS_M == 1.5d0
GLS_N == -1.0d0
GLS_Kmin == 7.6d-6
GLS_Pmin == 1.0d-12

GLS_CMU0 == 0.5477d0
GLS_C1 == 1.44d0
GLS_C2 == 1.92d0
GLS_C3M == -0.4d0
GLS_C3P == 1.0d0
GLS_SIGK == 1.0d0
GLS_SIGP == 1.30d0

! Constants used in surface turbulent kinetic energy flux computation.

CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking, [CAMBIO DE 0]
WEC_ALPHA == 0.0d0 !0: ALL WAVE DISSIP GOES TO BREAK AND NONE TO ROLLER
!1: all wave dissip goes to roller and none to breaking


! Constants used in momentum stress computation.

RDRG == 3.0d-04 ! m/s
RDRG2 == 0.025d0 ! nondimensional
Zob == 0.015d0 ! m
Zos == 0.5d0 ! m

! Height (m) of atmospheric measurements for Bulk fluxes parameterization.

BLK_ZQ == 10.0d0 ! air humidity
BLK_ZT == 10.0d0 ! air temperature
BLK_ZW == 10.0d0 ! winds

! Minimum depth for wetting and drying.

DCRIT == 3.0 ! m

! Various parameters.

WTYPE == 1
LEVSFRC == 15
LEVBFRC == 1

! Set vertical, terrain-following coordinates transformation equation and
! stretching function (see below for details), [1:Ngrids].

Vtransform == 1 ! transformation equation
Vstretching == 1 ! stretching function

! Vertical S-coordinates parameters, [1:Ngrids].

THETA_S == 7.0d0 ! 0 < THETA_S < 20
THETA_B == 0.4d0 ! 0 < THETA_B < 1
TCLINE == 5.00d0 ! m

! Mean Density and Brunt-Vaisala frequency.

RHO0 = 1025.0d0 ! kg/m3
BVF_BAK = 1.0d-5 ! 1/s2

! Time-stamp assigned for model initialization, reference time
! origin for tidal forcing, and model reference time for output
! NetCDF units attribute.

DSTART = 282.0d0 ! days
TIDE_START = 0.0d0 ! days
TIME_REF = 20101010.0d0 ! yyyymmdd.dd

! Nudging/relaxation time scales, inverse scales will be computed
! internally, [1:Ngrids].

TNUDG == 0.1d-1 ! days
ZNUDG == 0.1d0 ! days
M2NUDG == 0.0d0 ! days
M3NUDG == 0.0d0 ! days

! Factor between passive (outflow) and active (inflow) open boundary
! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
! than on outflow (recommended).

OBCFAC == 10.0d0 ! nondimensional

! Linear equation of State parameters:

R0 == 1027.0d0 ! kg/m3
T0 == 10.0d0 ! Celsius
S0 == 30.0d0 ! PSU
TCOEF == 1.7d-4 ! 1/Celsius
SCOEF == 7.6d-4 ! 1/PSU


! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)

GAMMA2 == 1.0d0

! Logical switches (TRUE/FALSE) to activate horizontal momentum transport
! point Sources/Sinks (like river runoff transport) and mass point
! Sources/Sinks (like volume vertical influx), [1:Ngrids].

LuvSrc == F ! horizontal momentum transport
LwSrc == F ! volume vertical influx

! Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks
! (like river runoff) and to specify which tracer variables to consider:
! [1:NAT+NPT,Ngrids]. See glossary below for details.

LtracerSrc == F F ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to specify which variables to process for
! tracer climatology: [1:NAT+NPT,Ngrids]. See glossary below for details.

LsshCLM == T ! sea-surface height
Lm2CLM == T ! 2D momentum
Lm3CLM == T ! 3D momentum

LtracerCLM == T T ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to nudge the desired climatology field(s).
!If not analytical climatology fields, users need to turn ON the logical switches
!above to process the fields from the climatology NetCDF file that are needed for nudging.

LnudgeTCLM == F F ! temperature, salinity
LnudgeM2CLM == F ! 2D momentum
LnudgeM3CLM == F ! 3D momentum


! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
! DstrS must be less or equal to DendS. If both values are zero, their
! values are reset internally to the full range of the adjoint integration.

DstrS == 00d0 ! starting day
DendS == 00d0 ! ending day

! Starting and ending vertical levels of the 3D adjoint state variables
! whose sensitivity is required.

KstrS == 1 ! starting level
KendS == 1 ! ending level

! Logical switches (TRUE/FALSE) to specify the adjoint state variables
! whose sensitivity is required.

Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum

! Logical switches (TRUE/FALSE) to specify the adjoint state tracer
! variables whose sensitivity is required (NT values are expected).

Lstate(isTvar) == F F ! tracers

! Stochastic optimals time decorrelation scale (days) assumed for
! red noise processes.

SO_decay == 2.0d0 ! days

! Logical switches (TRUE/FALSE) to specify the state surface forcing
! variable whose stochastic optimals is required.

SOstate(isUstr) == T ! surface u-stress
SOstate(isVstr) == T ! surface v-stress

! Logical switches (TRUE/FALSE) to specify the surface tracer forcing
! variable whose stochastic optimals is required (NT values are expected).

SOstate(isTsur) == F F ! surface tracer flux

! Stochastic optimals surface forcing standard deviation for
! dimensionalization.

SO_sdev(isUstr) == 1.0d0 ! surface u-stress
SO_sdev(isVstr) == 1.0d0 ! surface v-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux

! Logical switches (TRUE/FALSE) to activate writing of fields into
! HISTORY output file.

Hout(idUvel) == T ! u 3D U-velocity
Hout(idVvel) == T ! v 3D V-velocity
Hout(idWvel) == T ! w 3D W-velocity
Hout(idOvel) == F ! omega omega vertical velocity
Hout(idUbar) == T ! ubar 2D U-velocity
Hout(idVbar) == T ! vbar 2D V-velocity
Hout(idFsur) == T ! zeta free-surface
Hout(idBath) == F ! bath time-dependent bathymetry

Hout(idTvar) == T T ! temp, salt temperature and salinity

Hout(idUair) == F ! Uwind surface U-wind
Hout(idVair) == F ! Vwind surface V-wind
Hout(idUsms) == F ! sustr surface U-stress
Hout(idVsms) == F ! svstr surface V-stress
Hout(idUbms) == F ! bustr bottom U-stress
Hout(idVbms) == F ! bvstr bottom V-stress

Hout(idUbrs) == F ! bustrc bottom U-current stress
Hout(idVbrs) == F ! bvstrc bottom V-current stress
Hout(idUbws) == F ! bustrw bottom U-wave stress
Hout(idVbws) == F ! bvstrw bottom V-wave stress
Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress
Hout(idUVwc) == F ! bottom max wave-current stress magnitude

Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
Hout(idUbur) == F ! Ucur bottom U-velocity above bed
Hout(idVbvr) == F ! Vcur bottom V-velocity above bed

Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component

Hout(idU2rs) == F ! ubar_WECstress 2D WEC U-stress
Hout(idV2rs) == F ! vbar_WECstress 2D WEC V-stress
Hout(idU3rs) == F ! u_WECstress 3D WEC U-stress
Hout(idV3rs) == F ! v_WECstress 3D WEC V-stress

Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
Hout(idW3St) == F ! w_stokes 3D W-Stokes velocity
Hout(idW3Sd) == F ! omega_stokes 3D Omega-Stokes velocity

Hout(idWamp) == T ! Hwave wave height
Hout(idWlen) == T ! Lwave wave length, mean
Hout(idWlep) == T ! Lwavep wave length, peak
Hout(idWdir) == T ! Dwave wave direction
Hout(idWptp) == T ! Pwave_top wave surface period
Hout(idWpbt) == T ! Pwave_bot wave bottom period
Hout(idWorb) == T ! Uwave_rms wave bottom orbital velocity
Hout(idWbrk) == T ! Wave_break wave breaking (percent)
Hout(idUwav) == T ! uWave wave-depth avgeraged U-velocity
Hout(idVwav) == T ! vWave wave-depth avgeraged V-velocity
Hout(idWdif) == T ! Dissip_fric wave dissipation due to bottom friction
Hout(idWdib) == T ! Dissip_break wave dissipation due to breaking
Hout(idWdiw) == T ! Dissip_wcap wave dissipation due to white capping
Hout(idWdis) == F ! Dissip_roller wave roller dissipation
Hout(idWrol) == F ! rollA wave roller action density
Hout(idWztw) == F ! zetaw WEC quasi-static sea level adjustment
Hout(idWqsp) == F ! qsp WEC quasi-static pressure
Hout(idWbeh) == F ! bh WEC Bernoulli head

Hout(idTsur) == F ! shflux surface net heat and salt flux
Hout(idLhea) == F ! latent latent heat flux
Hout(idShea) == F ! sensible sensible heat flux
Hout(idLrad) == F ! lwrad longwave radiation flux
Hout(idSrad) == F ! swrad shortwave radiation flux
Hout(idEmPf) == F ! EminusP E-P flux
Hout(idevap) == F ! evaporation evaporation rate
Hout(idrain) == F ! rain precipitation rate

Hout(idDano) == T ! rho density anomaly
Hout(idVvis) == F ! AKv vertical viscosity
Hout(idTdif) == F ! AKt vertical T-diffusion
Hout(idSdif) == F ! AKs vertical Salinity diffusion
Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Hout(idMtke) == F ! tke turbulent kinetic energy
Hout(idMtls) == F ! gls turbulent generic length scale

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers. An inert passive tracer
! is one that it is only advected and diffused. Other processes are ignored.
! These tracers include, for example, dyes, pollutants, oil spills, etc.
! NPT values are expected. However, these switches can be activated using
! compact parameter specification.

Hout(inert) == F ! inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
! layer properties into HISTORY output file. Currently, MBOTP properties
! are expected for the bottom boundary layer and/or sediment models:
!
! Hout(idBott(isd50)), isd50 = 1 ! mean grain diameter
! Hout(idBott(idens)), idens = 2 ! mean grain density
! Hout(idBott(iwsed)), iwsed = 3 ! mean settling velocity
! Hout(idBott(itauc)), itauc = 4 ! critical erosion stress
! Hout(idBott(irlen)), irlen = 5 ! ripple length
! Hout(idBott(irhgt)), irhgt = 6 ! ripple height
! Hout(idBott(ibwav)), ibwav = 7 ! wave excursion amplitude
! Hout(idBott(izdef)), izdef = 8 ! default bottom roughness
! Hout(idBott(izapp)), izapp = 9 ! apparent bottom roughness
! Hout(idBott(izNik)), izNik = 10 ! Nikuradse bottom roughness
! Hout(idBott(izbio)), izbio = 11 ! biological bottom roughness
! Hout(idBott(izbfm)), izbfm = 12 ! bed form bottom roughness
! Hout(idBott(izbld)), izbld = 13 ! bed load bottom roughness
! Hout(idBott(izwbl)), izwbl = 14 ! wave bottom roughness
! Hout(idBott(iactv)), iactv = 15 ! active layer thickness
! Hout(idBott(ishgt)), ishgt = 16 ! saltation height
!
! 1 1 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Hout(idBott) == T T T T T T T T T F F F F F F F F F

! Generic User parameters, [1:NUSER].

NUSER = 0
USER = 0.d0

! NetCDF-4/HDF5 compression parameters for output files.

! NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
! NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
! NC_DLEVEL = 1 ! deflate level [0-9]


! Input NetCDF file names, [1:Ngrids].

GRDNAME == CASOS/bcn_4/roms_grd1.nc
ININAME == CASOS/bcn_4/ocean_ini.nc
CLMNAME == CASOS/bcn_4/clim.nc

! Input lateral boundary conditions and climatology file names. The
! USER has the option to split input data time records into several
! NetCDF files (see prologue instructions above). If so, use a single
! line per entry with a vertical bar (|) symbol after each entry,
! except the last one.


BRYNAME == CASOS/bcn_4/ocean_bry.nc


! Input forcing NetCDF file name(s). The USER has the option to enter
! several file names for each nested grid. For example, the USER may
! have different files for wind products, heat fluxes, rivers, tides,
! etc. The model will scan the file list and will read the needed data
! from the first file in the list containing the forcing field. Therefore,
! the order of the file names is very important. If using multiple forcing
! files per grid, first enter all the file names for grid 1, then grid 2,
! and so on. Use a single line per entry with a continuation (\) symbol
! at the each entry, except the last one.

NFFILES == 5 ! number of forcing files

FRCNAME ==
CASOS/bcn_4/swrad6.nc\
CASOS/bcn_4/shflux6.nc\
CASOS/bcn_4/swflux6.nc\
CASOS/bcn_4/sustr6.nc\
CASOS/bcn_4/svstr6.nc
! Output NetCDF file names, [1:Ngrids].

GSTNAME == ocean_gst.nc
RSTNAME == ocean_rst.nc
HISNAME == ocean_his.nc
TLMNAME == ocean_tlm.nc
TLFNAME == ocean_tlf.nc
ADJNAME == ocean_adj.nc
AVGNAME == ocean_avg.nc
DIANAME == ocean_dia.nc
STANAME == ocean_sta.nc
FLTNAME == ocean_flt.nc

! Input ASCII parameter filenames.

APARNAM = ROMS/External/s4dvar.in
SPOSNAM = CASOS/BILBAO/BILBAO_i/stations.in
FPOSNAM = ROMS/External/floats.in
BPARNAM = ROMS/External/bioFasham.in
SPARNAM = ROMS/External/sediment.in
USRNAME = ROMS/External/MyFile.dat

----------------------------------------------------------------------------------------------------------
270 282 02:15:00 7.621213E-04 1.543231E+02 1.543239E+02 5.960062E+08
(003,013,20) 5.423932E-01 2.915856E-01 1.852929E-01 6.176983E-01
271 282 02:15:30 7.661505E-04 1.543232E+02 1.543239E+02 5.960063E+08
(004,013,18) 2.074851E-02 1.220515E-01 1.408806E+00 9.215636E-01
272 282 02:16:00 7.726468E-04 1.543232E+02 1.543239E+02 5.960064E+08
(004,012,18) 4.784149E-02 1.918805E-01 2.327960E+00 1.772757E+00
273 282 02:16:30 8.067030E-04 1.543232E+02 1.543240E+02 5.960065E+08
(003,012,20) 2.777658E+00 1.073515E+00 2.407454E+00 5.586910E+00
274 282 02:17:00 2.977045E-03 1.543232E+02 1.543261E+02 5.960065E+08
(002,012,20) 2.739901E+01 9.369714E+00 8.074240E+00 4.528114E+01

Blowing-up: Saving latest model state into RESTART file

WRT_RST - wrote re-start fields (Index=1,1) into time record = 0000001

Elapsed CPU time (seconds):

Thread # 0 CPU: 727.404
Total: 727.404

Nonlinear model elapsed time profile:

Allocation and array initialization .............. 0.689 ( 0.0947 %)
Ocean state initialization ....................... 0.328 ( 0.0451 %)
Reading of input data ............................ 0.248 ( 0.0341 %)
Processing of input data ......................... 3.447 ( 0.4738 %)
Processing of output time averaged data .......... 0.436 ( 0.0600 %)
Computation of vertical boundary conditions ...... 0.079 ( 0.0108 %)
Computation of global information integrals ...... 5.018 ( 0.6899 %)
Writing of output data ........................... 0.181 ( 0.0249 %)
Model 2D kernel .................................. 539.348 (74.1470 %)
2D/3D coupling, vertical metrics ................. 3.945 ( 0.5423 %)
Omega vertical velocity .......................... 2.459 ( 0.3380 %)
Equation of state for seawater ................... 1.845 ( 0.2537 %)
3D equations right-side terms .................... 20.406 ( 2.8054 %)
3D equations predictor step ...................... 38.839 ( 5.3394 %)
Pressure gradient ................................ 14.971 ( 2.0581 %)
Harmonic mixing of tracers, S-surfaces ........... 6.955 ( 0.9562 %)
Harmonic stress tensor, S-surfaces ............... 13.153 ( 1.8081 %)
Corrector time-step for 3D momentum .............. 43.864 ( 6.0302 %)
Corrector time-step for tracers .................. 27.897 ( 3.8352 %)
Total: 724.108 99.5469

All percentages are with respect to total time = 727.404

ROMS/TOMS - Output NetCDF summary for Grid 01:
number of time records written in HISTORY file = 00000001
number of time records written in RESTART file = 00000001

Analytical header files used:

ROMS/Functionals/ana_btflux.h
------------------------------------------------------------------------------------------

number courant
Minimum barotropic Courant Number = 2.71042248E-01
Maximum barotropic Courant Number = 8.70451626E-01
Maximum Coriolis Courant Number = 2.89524458E-03
-------------------------------------------------------------------------------------------------
PLEASE IF ANYONE CAN SEE SOMETHING STRANGE NOTIFY ME, THANK YOU

User avatar
kate
Posts: 4088
Joined: Wed Jul 02, 2003 5:29 pm
Location: CFOS/UAF, USA

Re: Problem

#2 Unread post by kate »

Have you looked at the output to see what's going wrong? It could be bad at (002,012,20).

I don't believe LBC(isFsur) of Fla is a valid option - try Cha or Che instead.

lithodes8

Re: Problem

#3 Unread post by lithodes8 »

Hello Kate, if I looked at the point (002,012,20) I still can not find the fault. And I tried LBC (isFsur) = cha on the surface as you suggested me ... it falls in the same time step.

2:16:30 273 282 8.414003E-04 1.543233E + 02 1.543241E + 02 5.960080E + 08
(004,012,20) 3.398158E 2.079186E + 00 + 00 + 00 2.970152E 8.160121E + 00
2:17:00 274 282 1.130490E-02 1.543233E + 02 1.543346E + 02 5.960081E + 08
(003,012,20) 5.093458E 2.226080E + 01 + 01 + 01 1.209906E 9.887029E + 01

I will continue checking may be happening at this point. If you see something that I have not seen you appreciate any comments.
Regards
Monica

User avatar
kate
Posts: 4088
Joined: Wed Jul 02, 2003 5:29 pm
Location: CFOS/UAF, USA

Re: Problem

#4 Unread post by kate »

It isn't guaranteed to be bad at that point. You need to look at the restart file to see where it went bad and in which field. Probably velocity, but still - what does it look like?

lithodes8

Re: Problem

#5 Unread post by lithodes8 »

hello kate, I looked at the file and evidently ocean_rst.nc disturbance velocity is observed at the point where the model falls. I've been looking at the data input and not encounter errors. I've tried different configurations cpp and have modified some data ocean.in file and I can not make the model run. I personally believe that the input data are well. No it can be bad if you see something you do not see me comment, thanks.

Here I leave another model output.
My CPP:

#define SOLVE3D
#define CURVGRID
#define ASSUMED_SHAPE
#undef AVERAGES
#define MASKING
#define SPLINES
#define SPHERICAL
#define DOUBLE PRECISION
#define NONLINEAL
#define POWER_LAW
#define PROFILE
#define VAR_RHO_2D
#define K_GSCHEME
#define UV_VIS2
#define UV_ADV
#define UV_COR
#define UV_U3HADVECTION
#define UV_C4VADVECTION
#define UV_QDRAG
#define SALINITY
#define TS_MPDATA
#define TS_DIF2
#define NONLIN_EOS
#define SOLAR_SOURCE
#define MIX_GEO_TS
#define MIX_GEO_UV
#define DJ_GRADPS
#define ANA_BTFLUX
#define ANA_BSFLUX
#define MY25_MIXING
#define N2S2_HORAVG
#define KANTHA_CLAYSON

My ocean.in:
Application title.

TITLE = Barcelona1

! C-preprocessing Flag.

MyAppCPP = BCN_1

! Input variable information file name. This file needs to be processed
! first so all information arrays can be initialized properly.

VARNAME = ROMS/External/varinfo.dat

! Number of nested grids.

Ngrids = 1

! Grid dimension parameters. See notes below in the Glossary for how to set
! these parameters correctly.

Lm == 252
Mm == 162
N == 20

Nbed = 0

NAT = 2
NPT = 0
NCS = 0
NNS = 0




! 1 2 3 4

LBC(isFsur) == Cha Cha Cha Clo ! free-surface
LBC(isUbar) == Fla Fla Fla Clo ! 2D U-momentum
LBC(isVbar) == Fla Fla Fla Clo ! 2D V-momentum
LBC(isUvel) == RadNud RadNud RadNud Clo ! 3D U-momentum
LBC(isVvel) == RadNud RadNud RadNud Clo ! 3D V-momentum
LBC(isMtke) == Rad Rad Rad Clo ! mixing TKE

LBC(isTvar) == Rad Rad Rad Clo \ ! temperature

Rad Rad Rad Clo ! salinity



VolCons(west) == T ! western boundary
VolCons(east) == T ! eastern boundary
VolCons(south) == T ! southern boundary
VolCons(north) == T ! northern boundary

ad_VolCons(west) == F ! western boundary
ad_VolCons(east) == F ! eastern boundary
ad_VolCons(south) == F ! southern boundary
ad_VolCons(north) == F ! northern boundary

! Time-Stepping parameters.

NTIMES == 25920
DT == 20.0d0
NDTFAST == 40


! Model iteration loops parameters.

ERstr = 1
ERend = 1
Nouter = 1
Ninner = 1
Nintervals = 1

! Number of eigenvalues (NEV) and eigenvectors (NCV) to compute for the
! Lanczos/Arnoldi problem in the Generalized Stability Theory (GST)
! analysis. NCV must be greater than NEV (see documentation below).

NEV = 2 ! Number of eigenvalues
NCV = 10 ! Number of eigenvectors

! Input/Output parameters.

NRREC == 0
LcycleRST == T
NRST == 540
NSTA == 1
NFLT == 1
NINFO == 1 !mientras lo dejo en 1 .. pero cuando funcione lo cambio a 50 o más ...

! Output history, average, diagnostic files parameters.

LDEFOUT == T
NHIS == 1080
NDEFHIS == 0
NTSAVG == 0
NAVG == 1080
NDEFAVG == 0
NTSDIA == 0
NDIA == 0
NDEFDIA == 0

! Output tangent linear and adjoint models parameters.

LcycleTLM == F
NTLM == 72
NDEFTLM == 0
LcycleADJ == F
NADJ == 120
NDEFADJ == 0
NSFF == 120
!

! Output check pointing GST restart parameters.

LrstGST = F ! GST restart switch
MaxIterGST = 1 ! maximun number of iterations
NGST = 10 ! check pointing interval

! Relative accuracy of the Ritz values computed in the GST analysis.

Ritz_tol = 1.0d-15

! Harmonic/biharmonic horizontal diffusion of tracer: [1:NAT+NPT,Ngrids].

TNU2 == 0.0d0 0.0d0 ! m2/s
TNU4 == 0.0d0 0.0d0 ! m4/s

ad_TNU2 == 0.0d0 0.0d0 ! m2/s
ad_TNU4 == 0.0d0 0.0d0 ! m4/s


! Harmononic/biharmonic, horizontal viscosity coefficient: [Ngrids].

VISC2 == 0.001d0 ! m2/s
VISC4 == 0.0d0 ! m4/s

ad_VISC2 == 0.0d0 ! m2/s
ad_VISC4 == 0.0d0 ! m4/s

! Vertical mixing coefficients for active tracers: [1:NAT+NPT,Ngrids]

AKT_BAK == 5.0d-6 5.0d-6 5.0d-6 5.0d-6 ! m2/s

ad_AKT_fac== 1.0d0 1.0d0 !nondimensional

! Vertical mixing coefficient for momentum: [Ngrids].

ad_AKV_BAK == 1.0d0 ! m2/s

! Turbulent closure parameters.

AKK_BAK == 5.0d-6 ! m2/s
AKP_BAK == 5.0d-6 ! m2/s
TKENU2 == 0.0d0 ! m2/s
TKENU4 == 0.0d0 ! m4/s

! Generic length-scale turbulence closure parameters.

GLS_P == 3.0d0 ! K-epsilon
GLS_M == 1.5d0
GLS_N == -1.0d0
GLS_Kmin == 7.6d-6
GLS_Pmin == 1.0d-12

GLS_CMU0 == 0.5477d0
GLS_C1 == 1.44d0
GLS_C2 == 1.92d0
GLS_C3M == -0.4d0
GLS_C3P == 1.0d0
GLS_SIGK == 1.0d0
GLS_SIGP == 1.30d0

! Constants used in surface turbulent kinetic energy flux computation.

CHARNOK_ALPHA == 1400.0d0 ! Charnok surface roughness
ZOS_HSIG_ALPHA == 0.5d0 ! roughness from wave amplitude
SZ_ALPHA == 0.25d0 ! roughness from wave dissipation
CRGBAN_CW == 100.0d0 ! Craig and Banner wave breaking, [CAMBIO DE 0]
WEC_ALPHA == 0.0d0 !0: ALL WAVE DISSIP GOES TO BREAK AND NONE TO ROLLER
!1: all wave dissip goes to roller and none to breaking


! Constants used in momentum stress computation.

RDRG == 3.0d-04 ! m/s
RDRG2 == 0.025d0 ! nondimensional
Zob == 0.015d0 ! m
Zos == 0.5d0 ! m

! Height (m) of atmospheric measurements for Bulk fluxes parameterization.

BLK_ZQ == 10.0d0 ! air humidity
BLK_ZT == 10.0d0 ! air temperature
BLK_ZW == 10.0d0 ! winds

! Minimum depth for wetting and drying.

DCRIT == 3.0 ! m

! Various parameters.

WTYPE == 1
LEVSFRC == 15
LEVBFRC == 1

! Set vertical, terrain-following coordinates transformation equation and
! stretching function (see below for details), [1:Ngrids].

Vtransform == 1 ! transformation equation
Vstretching == 1 ! stretching function

! Vertical S-coordinates parameters, [1:Ngrids].

THETA_S == 7.0d0 ! 0 < THETA_S < 20
THETA_B == 0.4d0 ! 0 < THETA_B < 1
TCLINE == 3.00d0 ! m

! Mean Density and Brunt-Vaisala frequency.

RHO0 = 1025.0d0 ! kg/m3
BVF_BAK = 1.0d-5 ! 1/s2

! Time-stamp assigned for model initialization, reference time
! origin for tidal forcing, and model reference time for output
! NetCDF units attribute.

DSTART = 282.0d0 ! days
TIDE_START = 0.0d0 ! days
TIME_REF = 20101010.0d0 ! yyyymmdd.dd

! Nudging/relaxation time scales, inverse scales will be computed
! internally, [1:Ngrids].

TNUDG == 0.1d-1 ! days
ZNUDG == 0.1d0 ! days
M2NUDG == 0.0d0 ! days
M3NUDG == 0.0d0 ! days

! Factor between passive (outflow) and active (inflow) open boundary
! conditions, [1:Ngrids]. If OBCFAC > 1, nudging on inflow is stronger
! than on outflow (recommended).

OBCFAC == 10.0d0 ! nondimensional

! Linear equation of State parameters:

R0 == 1027.0d0 ! kg/m3
T0 == 10.0d0 ! Celsius
S0 == 30.0d0 ! PSU
TCOEF == 1.7d-4 ! 1/Celsius
SCOEF == 7.6d-4 ! 1/PSU


! Slipperiness parameter: 1.0 (free slip) or -1.0 (no slip)

GAMMA2 == 1.0d0

! Logical switches (TRUE/FALSE) to activate horizontal momentum transport
! point Sources/Sinks (like river runoff transport) and mass point
! Sources/Sinks (like volume vertical influx), [1:Ngrids].

LuvSrc == F ! horizontal momentum transport
LwSrc == F ! volume vertical influx

! Logical switches (TRUE/FALSE) to activate tracers point Sources/Sinks
! (like river runoff) and to specify which tracer variables to consider:
! [1:NAT+NPT,Ngrids]. See glossary below for details.

LtracerSrc == F F ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to specify which variables to process for
! tracer climatology: [1:NAT+NPT,Ngrids]. See glossary below for details.

LsshCLM == T ! sea-surface height
Lm2CLM == T ! 2D momentum
Lm3CLM == T ! 3D momentum

LtracerCLM == T T ! temperature, salinity, inert

! Logical switches (TRUE/FALSE) to nudge the desired climatology field(s).
!If not analytical climatology fields, users need to turn ON the logical switches
!above to process the fields from the climatology NetCDF file that are needed for nudging.

LnudgeTCLM == F F ! temperature, salinity
LnudgeM2CLM == F ! 2D momentum
LnudgeM3CLM == F ! 3D momentum


! Starting (DstrS) and ending (DendS) day for adjoint sensitivity forcing.
! DstrS must be less or equal to DendS. If both values are zero, their
! values are reset internally to the full range of the adjoint integration.

DstrS == 00d0 ! starting day
DendS == 00d0 ! ending day

! Starting and ending vertical levels of the 3D adjoint state variables
! whose sensitivity is required.

KstrS == 1 ! starting level
KendS == 1 ! ending level

! Logical switches (TRUE/FALSE) to specify the adjoint state variables
! whose sensitivity is required.

Lstate(isFsur) == F ! free-surface
Lstate(isUbar) == F ! 2D U-momentum
Lstate(isVbar) == F ! 2D V-momentum
Lstate(isUvel) == F ! 3D U-momentum
Lstate(isVvel) == F ! 3D V-momentum

! Logical switches (TRUE/FALSE) to specify the adjoint state tracer
! variables whose sensitivity is required (NT values are expected).

Lstate(isTvar) == F F ! tracers

! Stochastic optimals time decorrelation scale (days) assumed for
! red noise processes.

SO_decay == 2.0d0 ! days

! Logical switches (TRUE/FALSE) to specify the state surface forcing
! variable whose stochastic optimals is required.

SOstate(isUstr) == T ! surface u-stress
SOstate(isVstr) == T ! surface v-stress

! Logical switches (TRUE/FALSE) to specify the surface tracer forcing
! variable whose stochastic optimals is required (NT values are expected).

SOstate(isTsur) == F F ! surface tracer flux

! Stochastic optimals surface forcing standard deviation for
! dimensionalization.

SO_sdev(isUstr) == 1.0d0 ! surface u-stress
SO_sdev(isVstr) == 1.0d0 ! surface v-stress
SO_sdev(isTsur) == 1.0d0 1.0d0 ! NT surface tracer flux

! Logical switches (TRUE/FALSE) to activate writing of fields into
! HISTORY output file.

Hout(idUvel) == T ! u 3D U-velocity
Hout(idVvel) == T ! v 3D V-velocity
Hout(idWvel) == T ! w 3D W-velocity
Hout(idOvel) == F ! omega omega vertical velocity
Hout(idUbar) == T ! ubar 2D U-velocity
Hout(idVbar) == T ! vbar 2D V-velocity
Hout(idFsur) == T ! zeta free-surface
Hout(idBath) == F ! bath time-dependent bathymetry

Hout(idTvar) == T T ! temp, salt temperature and salinity

Hout(idUair) == F ! Uwind surface U-wind
Hout(idVair) == F ! Vwind surface V-wind
Hout(idUsms) == F ! sustr surface U-stress
Hout(idVsms) == F ! svstr surface V-stress
Hout(idUbms) == F ! bustr bottom U-stress
Hout(idVbms) == F ! bvstr bottom V-stress

Hout(idUbrs) == F ! bustrc bottom U-current stress
Hout(idVbrs) == F ! bvstrc bottom V-current stress
Hout(idUbws) == F ! bustrw bottom U-wave stress
Hout(idVbws) == F ! bvstrw bottom V-wave stress
Hout(idUbcs) == F ! bustrcwmax bottom max wave-current U-stress
Hout(idVbcs) == F ! bvstrcwmax bottom max wave-current V-stress
Hout(idUVwc) == F ! bottom max wave-current stress magnitude

Hout(idUbot) == F ! Ubot bed wave orbital U-velocity
Hout(idVbot) == F ! Vbot bed wave orbital V-velocity
Hout(idUbur) == F ! Ucur bottom U-velocity above bed
Hout(idVbvr) == F ! Vcur bottom V-velocity above bed

Hout(idW2xx) == F ! Sxx_bar 2D radiation stress, Sxx component
Hout(idW2xy) == F ! Sxy_bar 2D radiation stress, Sxy component
Hout(idW2yy) == F ! Syy_bar 2D radiation stress, Syy component
Hout(idW3xx) == F ! Sxx 3D radiation stress, Sxx component
Hout(idW3xy) == F ! Sxy 3D radiation stress, Sxy component
Hout(idW3yy) == F ! Syy 3D radiation stress, Syy component
Hout(idW3zx) == F ! Szx 3D radiation stress, Szx component
Hout(idW3zy) == F ! Szy 3D radiation stress, Szy component

Hout(idU2rs) == F ! ubar_WECstress 2D WEC U-stress
Hout(idV2rs) == F ! vbar_WECstress 2D WEC V-stress
Hout(idU3rs) == F ! u_WECstress 3D WEC U-stress
Hout(idV3rs) == F ! v_WECstress 3D WEC V-stress

Hout(idU2Sd) == F ! ubar_stokes 2D U-Stokes velocity
Hout(idV2Sd) == F ! vbar_stokes 2D V-Stokes velocity
Hout(idU3Sd) == F ! u_stokes 3D U-Stokes velocity
Hout(idV3Sd) == F ! v_stokes 3D V-Stokes velocity
Hout(idW3St) == F ! w_stokes 3D W-Stokes velocity
Hout(idW3Sd) == F ! omega_stokes 3D Omega-Stokes velocity

Hout(idWamp) == T ! Hwave wave height
Hout(idWlen) == T ! Lwave wave length, mean
Hout(idWlep) == T ! Lwavep wave length, peak
Hout(idWdir) == T ! Dwave wave direction
Hout(idWptp) == T ! Pwave_top wave surface period
Hout(idWpbt) == T ! Pwave_bot wave bottom period
Hout(idWorb) == T ! Uwave_rms wave bottom orbital velocity
Hout(idWbrk) == T ! Wave_break wave breaking (percent)
Hout(idUwav) == T ! uWave wave-depth avgeraged U-velocity
Hout(idVwav) == T ! vWave wave-depth avgeraged V-velocity
Hout(idWdif) == T ! Dissip_fric wave dissipation due to bottom friction
Hout(idWdib) == T ! Dissip_break wave dissipation due to breaking
Hout(idWdiw) == T ! Dissip_wcap wave dissipation due to white capping
Hout(idWdis) == F ! Dissip_roller wave roller dissipation
Hout(idWrol) == F ! rollA wave roller action density
Hout(idWztw) == F ! zetaw WEC quasi-static sea level adjustment
Hout(idWqsp) == F ! qsp WEC quasi-static pressure
Hout(idWbeh) == F ! bh WEC Bernoulli head

Hout(idTsur) == F ! shflux surface net heat and salt flux
Hout(idLhea) == F ! latent latent heat flux
Hout(idShea) == F ! sensible sensible heat flux
Hout(idLrad) == F ! lwrad longwave radiation flux
Hout(idSrad) == F ! swrad shortwave radiation flux
Hout(idEmPf) == F ! EminusP E-P flux
Hout(idevap) == F ! evaporation evaporation rate
Hout(idrain) == F ! rain precipitation rate

Hout(idDano) == T ! rho density anomaly
Hout(idVvis) == F ! AKv vertical viscosity
Hout(idTdif) == F ! AKt vertical T-diffusion
Hout(idSdif) == F ! AKs vertical Salinity diffusion
Hout(idHsbl) == F ! Hsbl depth of surface boundary layer
Hout(idHbbl) == F ! Hbbl depth of bottom boundary layer
Hout(idMtke) == F ! tke turbulent kinetic energy
Hout(idMtls) == F ! gls turbulent generic length scale

! Logical switches (TRUE/FALSE) to activate writing of extra inert passive
! tracers other than biological and sediment tracers. An inert passive tracer
! is one that it is only advected and diffused. Other processes are ignored.
! These tracers include, for example, dyes, pollutants, oil spills, etc.
! NPT values are expected. However, these switches can be activated using
! compact parameter specification.

Hout(inert) == F ! inert passive tracers

! Logical switches (TRUE/FALSE) to activate writing of exposed sediment
! layer properties into HISTORY output file. Currently, MBOTP properties
! are expected for the bottom boundary layer and/or sediment models:
!
! Hout(idBott(isd50)), isd50 = 1 ! mean grain diameter
! Hout(idBott(idens)), idens = 2 ! mean grain density
! Hout(idBott(iwsed)), iwsed = 3 ! mean settling velocity
! Hout(idBott(itauc)), itauc = 4 ! critical erosion stress
! Hout(idBott(irlen)), irlen = 5 ! ripple length
! Hout(idBott(irhgt)), irhgt = 6 ! ripple height
! Hout(idBott(ibwav)), ibwav = 7 ! wave excursion amplitude
! Hout(idBott(izdef)), izdef = 8 ! default bottom roughness
! Hout(idBott(izapp)), izapp = 9 ! apparent bottom roughness
! Hout(idBott(izNik)), izNik = 10 ! Nikuradse bottom roughness
! Hout(idBott(izbio)), izbio = 11 ! biological bottom roughness
! Hout(idBott(izbfm)), izbfm = 12 ! bed form bottom roughness
! Hout(idBott(izbld)), izbld = 13 ! bed load bottom roughness
! Hout(idBott(izwbl)), izwbl = 14 ! wave bottom roughness
! Hout(idBott(iactv)), iactv = 15 ! active layer thickness
! Hout(idBott(ishgt)), ishgt = 16 ! saltation height
!
! 1 1 1 1 1 1 1 1 1
! 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Hout(idBott) == T T T T T T T T T F F F F F F F F F

! Generic User parameters, [1:NUSER].

NUSER = 0
USER = 0.d0

! NetCDF-4/HDF5 compression parameters for output files.

! NC_SHUFFLE = 1 ! if non-zero, turn on shuffle filter
! NC_DEFLATE = 1 ! if non-zero, turn on deflate filter
! NC_DLEVEL = 1 ! deflate level [0-9]


! Input NetCDF file names, [1:Ngrids].

GRDNAME == CASOS/bcn_4/roms_grd1.nc
ININAME == CASOS/bcn_4/ocean_ini.nc
CLMNAME == CASOS/bcn_4/clim.nc




! Input lateral boundary conditions and climatology file names. The
! USER has the option to split input data time records into several
! NetCDF files (see prologue instructions above). If so, use a single
! line per entry with a vertical bar (|) symbol after each entry,
! except the last one.


BRYNAME == CASOS/bcn_4/ocean_bry.nc


! Input forcing NetCDF file name(s). The USER has the option to enter
! several file names for each nested grid. For example, the USER may
! have different files for wind products, heat fluxes, rivers, tides,
! etc. The model will scan the file list and will read the needed data
! from the first file in the list containing the forcing field. Therefore,
! the order of the file names is very important. If using multiple forcing
! files per grid, first enter all the file names for grid 1, then grid 2,
! and so on. Use a single line per entry with a continuation (\) symbol
! at the each entry, except the last one.

NFFILES == 5 ! number of forcing files

FRCNAME ==
CASOS/bcn_4/swrad6.nc\
CASOS/bcn_4/shflux6.nc\
CASOS/bcn_4/swflux6.nc\
CASOS/bcn_4/sustr6.nc\
CASOS/bcn_4/svstr6.nc
! Output NetCDF file names, [1:Ngrids].

GSTNAME == ocean_gst.nc
RSTNAME == ocean_rst.nc
HISNAME == ocean_his.nc
TLMNAME == ocean_tlm.nc
TLFNAME == ocean_tlf.nc
ADJNAME == ocean_adj.nc
AVGNAME == ocean_avg.nc
DIANAME == ocean_dia.nc
STANAME == ocean_sta.nc
FLTNAME == ocean_flt.nc

! Input ASCII parameter filenames.

APARNAM = ROMS/External/s4dvar.in
SPOSNAM = CASOS/BILBAO/BILBAO_i/stations.in
FPOSNAM = ROMS/External/floats.in
BPARNAM = ROMS/External/bioFasham.in
SPARNAM = ROMS/External/sediment.in
USRNAME = ROMS/External/MyFile.dat

Output model:

Barcelona1

Operating system : Linux

Physical Parameters, Grid: 01
=============================

25920 ntimes Number of timesteps for 3-D equations.
20.000 dt Timestep size (s) for 3-D equations.
40 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
540 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information
to standard output.
T ldefout Switch to create a new output NetCDF file(s).
1080 nHIS Number of timesteps between the writing fields
into history file.
0.0000E+00 nl_tnu2(01) NLM Horizontal, harmonic mixing coefficient
(m2/s) for tracer 01: temp
0.0000E+00 nl_tnu2(02) NLM Horizontal, harmonic mixing coefficient
(m2/s) for tracer 02: salt
1.0000E-03 nl_visc2 NLM Horizontal, harmonic mixing coefficient
(m2/s) for momentum.
F LuvSponge Turning OFF sponge on horizontal momentum.
F LtracerSponge(01) Turning OFF sponge on tracer 01: temp
F LtracerSponge(02) Turning OFF sponge on tracer 02: salt
5.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
5.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)
for tracer 02: salt
0.0000E+00 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
5.0000E-06 Akk_bak Background vertical mixing coefficient (m2/s)
for turbulent energy.
5.0000E-06 Akp_bak Background vertical mixing coefficient (m2/s)
for turbulent generic statistical field.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
2.5000E-02 rdrg2 Quadratic bottom drag coefficient.
1.5000E-02 Zob Bottom roughness (m).
1 lmd_Jwt Jerlov water type.
1 Vtransform S-coordinate transformation equation.
1 Vstretching S-coordinate stretching function.
7.0000E+00 theta_s S-coordinate surface control parameter.
4.0000E-01 theta_b S-coordinate bottom control parameter.
3.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1025.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
282.000 dstart Time-stamp assigned to model initialization (days).
20101010.00 time_ref Reference time for units attribute (yyyymmdd.dd)
1.0000E-02 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
1.0000E-02 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
1.0000E-01 Znudg Nudging/relaxation time scale (days)
for free-surface.
0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
1.0000E+01 obcfac Factor between passive and active
open boundary conditions.
T VolCons(1) NLM western edge boundary volume conservation.
T VolCons(2) NLM southern edge boundary volume conservation.
T VolCons(3) NLM eastern edge boundary volume conservation.
T VolCons(4) NLM northern edge boundary volume conservation.
10.000 T0 Background potential temperature (C) constant.
30.000 S0 Background salinity (PSU) constant.
1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
F LuvSrc Turning OFF momentum point Sources/Sinks.
F LwSrc Turning OFF volume influx point Sources/Sinks.
F LtracerSrc(01) Turning OFF point Sources/Sinks on tracer 01: temp
F LtracerSrc(02) Turning OFF point Sources/Sinks on tracer 02: salt
T LsshCLM Turning ON processing of SSH climatology.
T Lm2CLM Turning ON processing of 2D momentum climatology.
T Lm3CLM Turning ON processing of 3D momentum climatology.
T LtracerCLM(01) Turning ON processing of climatology tracer 01: temp
T LtracerCLM(02) Turning ON processing of climatology tracer 02: salt
F LnudgeM2CLM Turning OFF nudging of 2D momentum climatology.
F LnudgeM3CLM Turning OFF nudging of 3D momentum climatology.
F LnudgeTCLM(01) Turning OFF nudging of climatology tracer 01: temp
F LnudgeTCLM(02) Turning OFF nudging of climatology tracer 02: salt
T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt
T Hout(idDano) Write out density anomaly.

Output/Input Files:

Output Restart File: ocean_rst.nc
Output History File: ocean_his.nc
Input Grid File: CASOS/bcn_4/roms_grd1.nc
Input Nonlinear Initial File: CASOS/bcn_4/ocean_ini.nc
Input Forcing File 01: CASOS/bcn_4/swrad6.nc
Input Forcing File 02: CASOS/bcn_4/shflux6.nc
Input Forcing File 03: CASOS/bcn_4/swflux6.nc
Input Forcing File 04: CASOS/bcn_4/sustr6.nc
Input Forcing File 05: CASOS/bcn_4/svstr6.nc
Input Climatology File: CASOS/bcn_4/clim.nc
Input Boundary File: CASOS/bcn_4/ocean_bry.nc

Tile partition information for Grid 01: 0252x0162x0020 tiling: 001x001

tile Istr Iend Jstr Jend Npts

0 1 252 1 162 816480

Tile minimum and maximum fractional coordinates for Grid 01:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 0.50 253.50 0.50 163.50 RHO-points

0 0.00 253.00 0.50 163.50 U-points

0 0.50 253.50 0.00 163.00 V-points

Lateral Boundary Conditions: NLM
============================

Variable Grid West Edge South Edge East Edge North Edge
--------- ---- ---------- ---------- ---------- ----------

zeta 1 Chapman Imp Chapman Imp Chapman Imp Closed

ubar 1 Flather Flather Flather Closed

vbar 1 Flather Flather Flather Closed

u 1 Rad + Nud Rad + Nud Rad + Nud Closed

v 1 Rad + Nud Rad + Nud Rad + Nud Closed

temp 1 Radiation Radiation Radiation Closed

salt 1 Radiation Radiation Radiation Closed

tke 1 Radiation Radiation Radiation Closed

Activated C-preprocessing Options:

Process Information:

Thread # 0 (pid= 29764) is active.

INITIAL: Configuring and initializing forward nonlinear model ...
*******

Vertical S-coordinate System, Grid 01:

level S-coord Cs-curve Z at hmin at hc half way at hmax

20 0.0000000 -0.0000000 0.000 0.000 -0.000 -0.000
19 -0.0500000 -0.0007603 -0.150 -0.150 -0.168 -0.187
18 -0.1000000 -0.0019414 -0.300 -0.300 -0.347 -0.394
17 -0.1500000 -0.0039690 -0.450 -0.450 -0.546 -0.642
16 -0.2000000 -0.0076391 -0.600 -0.600 -0.785 -0.969
15 -0.2500000 -0.0144346 -0.750 -0.750 -1.099 -1.448
14 -0.3000000 -0.0270074 -0.900 -0.900 -1.553 -2.206
13 -0.3500000 -0.0496464 -1.050 -1.050 -2.250 -3.450
12 -0.4000000 -0.0878699 -1.200 -1.200 -3.324 -5.448
11 -0.4500000 -0.1453465 -1.350 -1.350 -4.864 -8.377
10 -0.5000000 -0.2181019 -1.500 -1.500 -6.772 -12.045
9 -0.5500000 -0.2930976 -1.650 -1.650 -8.735 -15.820
8 -0.6000000 -0.3575721 -1.800 -1.800 -10.444 -19.088
7 -0.6500000 -0.4084171 -1.950 -1.950 -11.823 -21.696
6 -0.7000000 -0.4508634 -2.100 -2.100 -12.999 -23.898
5 -0.7500000 -0.4928804 -2.250 -2.250 -14.165 -26.079
4 -0.8000000 -0.5424010 -2.400 -2.400 -15.512 -28.624
3 -0.8500000 -0.6073645 -2.550 -2.550 -17.232 -31.914
2 -0.9000000 -0.6968391 -2.700 -2.700 -19.545 -36.390
1 -0.9500000 -0.8224431 -2.850 -2.850 -22.731 -42.613
0 -1.0000000 -1.0000000 -3.000 -3.000 -27.174 -51.347

Time Splitting Weights for Grid 01: ndtfast = 40 nfast = 56
==================================

Primary Secondary Accumulated to Current Step

1-0.0006038999279304 0.0250000000000000-0.0006038999279304 0.0250000000000000
2-0.0011053727845635 0.0250150974981983-0.0017092727124939 0.0500150974981983
3-0.0015044206959555 0.0250427318178123-0.0032136934084494 0.0750578293160106
4-0.0018010519301026 0.0250803423352112-0.0050147453385520 0.1001381716512218
5-0.0019952879837948 0.0251253686334638-0.0070100333223467 0.1252635402846856
6-0.0020871735042116 0.0251752508330587-0.0090972068265583 0.1504387911177443
7-0.0020767890452586 0.0252274301706640-0.0111739958718169 0.1756662212884082
8-0.0019642666586465 0.0252793498967954-0.0131382625304634 0.2009455711852036
9-0.0017498083197106 0.0253284565632616-0.0148880708501740 0.2262740277484652
10-0.0014337071879729 0.0253722017712543-0.0163217780381469 0.2516462295197196
11-0.0010163717024450 0.0254080444509537-0.0173381497405919 0.2770542739706733
12-0.0004983525116731 0.0254334537435148-0.0178365022522649 0.3024877277141881
13 0.0001196277614762 0.0254459125563066-0.0177168744907887 0.3279336402704947
14 0.0008366419202876 0.0254429218622697-0.0168802325705011 0.3533765621327644
15 0.0016515227599278 0.0254220058142625-0.0152287098105733 0.3787985679470269
16 0.0025628247984349 0.0253807177452643-0.0126658850121384 0.4041792856922913
17 0.0035687831729657 0.0253166471253035-0.0090971018391727 0.4294959328175947
18 0.0046672697013015 0.0252274275459793-0.0044298321378712 0.4547233603635741
19 0.0058557461086128 0.0251107458034468 0.0014259139707416 0.4798341061670209
20 0.0071312144194823 0.0249643521507315 0.0085571283902239 0.5047984583177524
21 0.0084901645151857 0.0247860717902444 0.0170472929054096 0.5295845301079968
22 0.0099285188562319 0.0245738176773648 0.0269758117616416 0.5541583477853615
23 0.0114415743701613 0.0243256047059590 0.0384173861318028 0.5784839524913206
24 0.0130239415046020 0.0240395653467049 0.0514413276364049 0.6025235178380255
25 0.0146694804455855 0.0237139668090899 0.0661108080819904 0.6262374846471154
26 0.0163712345011199 0.0233472297979502 0.0824820425831103 0.6495847144450656
27 0.0181213606500220 0.0229379489354222 0.1006034032331323 0.6725226633804878
28 0.0199110572560077 0.0224849149191717 0.1205144604891400 0.6950075782996595
29 0.0217304889470413 0.0219871384877715 0.1422449494361813 0.7169947167874310
30 0.0235687086599425 0.0214438762640955 0.1658136580961238 0.7384385930515265
31 0.0254135768502523 0.0208546585475969 0.1912272349463761 0.7592932515991234
32 0.0272516778673573 0.0202193191263406 0.2184789128137333 0.7795125707254640
33 0.0290682334948725 0.0195380271796567 0.2475471463086058 0.7990505979051207
34 0.0308470136562825 0.0188113213422849 0.2783941599648883 0.8178619192474056
35 0.0325702442858409 0.0180401460008778 0.3109644042507291 0.8359020652482834
36 0.0342185123647286 0.0172258898937318 0.3451829166154578 0.8531279551420151
37 0.0357706681224704 0.0163704270846136 0.3809535847379282 0.8694983822266287
38 0.0372037244036097 0.0154761603815518 0.4181573091415379 0.8849745426081804
39 0.0384927531996420 0.0145460672714616 0.4566500623411799 0.8995206098796420
40 0.0396107793462069 0.0135837484414705 0.4962608416873868 0.9131043583211125
41 0.0405286713855386 0.0125934789578153 0.5367895130729254 0.9256978372789278
42 0.0412150295941741 0.0115802621731769 0.5780045426670996 0.9372780994521047
43 0.0416360711759210 0.0105498864333225 0.6196406138430206 0.9478279858854273
44 0.0417555126200830 0.0095089846539245 0.6613961264631036 0.9573369705393517
45 0.0415344492249439 0.0084650968384224 0.7029305756880475 0.9658020673777742
46 0.0409312317865102 0.0074267356077988 0.7438618074745578 0.9732288029855730
47 0.0399013404525124 0.0064034548131361 0.7837631479270702 0.9796322577987091
48 0.0383972557416642 0.0054059213018233 0.8221604036687344 0.9850381791005324
49 0.0363683267281804 0.0044459899082817 0.8585287303969148 0.9894841690088140
50 0.0337606363915535 0.0035367817400771 0.8922893667884684 0.9930209507488911
51 0.0305168641315885 0.0026927658302883 0.9228062309200569 0.9957137165791794
52 0.0265761454486959 0.0019298442269986 0.9493823763687528 0.9976435608061780
53 0.0218739287894439 0.0012654405907812 0.9712563051581966 0.9989090013969592
54 0.0163418295573680 0.0007185923710451 0.9875981347155646 0.9996275937680043
55 0.0099074812890402 0.0003100466321109 0.9975056160046047 0.9999376404001151
56 0.0024943839953957 0.0000623595998849 1.0000000000000004 1.0000000000000000

ndtfast, nfast = 40 56 nfast/ndtfast = 1.40000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.039265571007 0.519632785503 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.21300

Metrics information for Grid 01:
===============================

Minimum X-grid spacing, DXmin = 2.58599529E-02 km
Maximum X-grid spacing, DXmax = 2.59406915E-02 km
Minimum Y-grid spacing, DYmin = 2.90516375E-02 km
Maximum Y-grid spacing, DYmax = 2.91736244E-02 km
Minimum Z-grid spacing, DZmin = 1.50000000E-01 m
Maximum Z-grid spacing, DZmax = 8.73439803E+00 m

Minimum barotropic Courant Number = 1.80707181E-01
Maximum barotropic Courant Number = 5.80301084E-01
Maximum Coriolis Courant Number = 1.93015441E-03


NLM: GET_STATE - Read state initial conditions, t = 282 00:00:00
(Grid 01, File: ocean_ini.nc, Rec=0001, Index=1)
- free-surface
(Min = -4.75686155E-02 Max = -4.68640514E-02)
- vertically integrated u-momentum component
(Min = -1.68286972E-02 Max = 8.52795783E-03)
- vertically integrated v-momentum component
(Min = -1.04508307E-02 Max = 3.14428136E-02)
- u-momentum component
(Min = -4.30831648E-02 Max = 3.23080756E-02)
- v-momentum component
(Min = -3.38471904E-02 Max = 5.60225472E-02)
- potential temperature
(Min = 1.98577404E+01 Max = 2.26086121E+01)
- salinity
(Min = 3.77595253E+01 Max = 3.81493454E+01)
GET_2DFLD - surface u-momentum stress, t = 282 00:00:00
(Rec=0000001, Index=1, File: sustr6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.21995541E-06 Max = -4.21995541E-06)
GET_2DFLD - surface v-momentum stress, t = 282 00:00:00
(Rec=0000001, Index=1, File: svstr6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -8.60704946E-06 Max = -8.60704946E-06)
GET_2DFLD - solar shortwave radiation flux, t = 282 00:00:00
(Rec=0000001, Index=1, File: swrad6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 0.00000000E+00 Max = 0.00000000E+00)
GET_2DFLD - surface net heat flux, t = 282 00:00:00
(Rec=0000001, Index=1, File: shflux6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 9.52333353E-06 Max = 9.52333353E-06)
GET_2DFLD - surface net freswater flux, (E-P), t = 282 00:00:00
(Rec=0000001, Index=1, File: swflux6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -6.70138671E-13 Max = -6.70138671E-13)
GET_NGFLD - free-surface western boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.69566435E-02 Max = -4.68640514E-02)
GET_NGFLD - free-surface eastern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.75686155E-02 Max = -4.73041758E-02)
GET_NGFLD - free-surface southern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.75598648E-02 Max = -4.69292477E-02)
GET_NGFLD - 2D u-momentum western boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.81029644E-03 Max = 5.90772880E-03)
GET_NGFLD - 2D v-momentum western boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 0.00000000E+00 Max = 1.85734350E-02)
GET_NGFLD - 2D u-momentum eastern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.68286972E-02 Max = 0.00000000E+00)
GET_NGFLD - 2D v-momentum eastern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.04508307E-02 Max = 9.80745535E-04)
GET_NGFLD - 2D u-momentum southern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.68286972E-02 Max = 3.74676939E-03)
GET_NGFLD - 2D v-momentum southern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.04508307E-02 Max = 1.31975661E-03)
GET_NGFLD - 3D u-momentum western boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.47706280E-02 Max = 1.60237700E-02)
GET_NGFLD - 3D v-momentum western boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.20345009E-02 Max = 3.74556296E-02)
GET_NGFLD - 3D u-momentum eastern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.30457070E-02 Max = 3.14428769E-02)
GET_NGFLD - 3D v-momentum eastern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.26971523E-02 Max = 5.38541190E-02)
GET_NGFLD - 3D u-momentum southern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.30831648E-02 Max = 2.77706143E-02)
GET_NGFLD - 3D v-momentum southern boundary condition, t = 282 00:00:00
(Rec=0000001, Index=2, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -2.94906776E-02 Max = 5.06360568E-02)
GET_2DFLD - sea surface height climatology, t = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.75686155E-02 Max = -4.68640514E-02)
GET_2DFLD - vertically integrated u-momentum climatologt = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.68286972E-02 Max = 8.52795783E-03)
GET_2DFLD - vertically integrated v-momentum climatologt = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.04508307E-02 Max = 3.14428136E-02)
GET_3DFLD - u-momentum component climatology, t = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.30831648E-02 Max = 3.23080756E-02)
GET_3DFLD - v-momentum component climatology, t = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.38471904E-02 Max = 5.60225472E-02)
GET_3DFLD - potential temperature climatology, t = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 1.98577404E+01 Max = 2.26086121E+01)
GET_3DFLD - salinity climatology, t = 282 00:00:00
(Rec=0000001, Index=1, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 3.77595253E+01 Max = 3.81493454E+01)

Basin information for Grid 01:

Maximum grid stiffness ratios: rx0 = 6.500888E-02 (Beckmann and Haidvogel)
rx1 = 1.353364E+00 (Haney)

Initial basin volumes: TotVolume = 5.2783853736E+08 m3
MinVolume = 1.1440514089E+02 m3
MaxVolume = 6.5637570868E+03 m3
Max/Min = 5.7372920796E+01

NL ROMS/TOMS: started time-stepping: (Grid: 01 TimeSteps: 00000001 - 00025920)

GET_2DFLD - surface u-momentum stress, t = 282 06:00:00
(Rec=0000002, Index=2, File: sustr6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.98346302E-06 Max = -4.98346302E-06)
GET_2DFLD - surface v-momentum stress, t = 282 06:00:00
(Rec=0000002, Index=2, File: svstr6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -8.77611746E-06 Max = -8.77611746E-06)
GET_2DFLD - solar shortwave radiation flux, t = 282 06:00:00
(Rec=0000002, Index=2, File: swrad6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 9.79282064E-07 Max = 9.79282064E-07)
GET_2DFLD - surface net heat flux, t = 282 06:00:00
(Rec=0000002, Index=2, File: shflux6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 9.52333353E-06 Max = 9.52333353E-06)
GET_2DFLD - surface net freswater flux, (E-P), t = 282 06:00:00
(Rec=0000002, Index=2, File: swflux6.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -6.70138671E-13 Max = -6.70138671E-13)
GET_NGFLD - free-surface western boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.16261256E-02 Max = -4.13955040E-02)
GET_NGFLD - free-surface eastern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.21330892E-02 Max = -4.13663946E-02)
GET_NGFLD - free-surface southern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.21330892E-02 Max = -4.16261256E-02)
GET_NGFLD - 2D u-momentum western boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -7.05329655E-03 Max = 0.00000000E+00)
GET_NGFLD - 2D v-momentum western boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -5.46532776E-03 Max = 7.50006596E-03)
GET_NGFLD - 2D u-momentum eastern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.32110785E-02 Max = 0.00000000E+00)
GET_NGFLD - 2D v-momentum eastern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.73836630E-02 Max = 0.00000000E+00)
GET_NGFLD - 2D u-momentum southern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.32110785E-02 Max = -7.05329655E-03)
GET_NGFLD - 2D v-momentum southern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.64540987E-02 Max = -5.46532776E-03)
GET_NGFLD - 3D u-momentum western boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -2.62717977E-02 Max = 5.34539530E-03)
GET_NGFLD - 3D v-momentum western boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.51458308E-02 Max = 1.90994795E-02)
GET_NGFLD - 3D u-momentum eastern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -6.21158145E-02 Max = 1.08285658E-02)
GET_NGFLD - 3D v-momentum eastern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.37868407E-02 Max = 2.61279792E-02)
GET_NGFLD - 3D u-momentum southern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -6.22515157E-02 Max = 9.63686593E-03)
GET_NGFLD - 3D v-momentum southern boundary condition, t = 282 06:00:00
(Rec=0000002, Index=1, File: ocean_bry.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.04044560E-02 Max = 2.51563080E-02)
GET_2DFLD - sea surface height climatology, t = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -4.21330892E-02 Max = -4.13201377E-02)
GET_2DFLD - vertically integrated u-momentum climatologt = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.32110785E-02 Max = 1.93782919E-03)
GET_2DFLD - vertically integrated v-momentum climatologt = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -1.75860785E-02 Max = 1.59236267E-02)
GET_3DFLD - u-momentum component climatology, t = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -6.22515157E-02 Max = 1.27959438E-02)
GET_3DFLD - v-momentum component climatology, t = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = -3.59462500E-02 Max = 3.38078290E-02)
GET_3DFLD - potential temperature climatology, t = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 1.99542446E+01 Max = 2.25935993E+01)
GET_3DFLD - salinity climatology, t = 282 06:00:00
(Rec=0000002, Index=2, File: clim.nc)
(Tmin= 282.0000 Tmax= 288.0000)
(Min = 3.77610054E+01 Max = 3.81456871E+01)

STEP Day HH:MM:SS KINETIC_ENRG POTEN_ENRG TOTAL_ENRG NET_VOLUME
C => (i,j,k) Cu Cv Cw Max Speed

0 282 00:00:00 2.500370E-04 1.535144E+02 1.535147E+02 5.966100E+08
(148,072,20) 2.615600E-02 3.788935E-02 0.000000E+00 6.472584E-02
DEF_HIS - creating history file, Grid 01: ocean_his.nc
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000001
1 282 00:00:20 2.472315E-04 1.535125E+02 1.535127E+02 5.966100E+08
(122,072,07) 2.696143E-03 5.031236E-04 1.895106E-01 6.611556E-02
2 282 00:00:40 2.466406E-04 1.535115E+02 1.535118E+02 5.966100E+08
(127,078,18) 3.726799E-03 1.363789E-02 6.103641E-01 6.885610E-02
________________________________________
1926 282 10:42:00 4.493968E-03 1.535481E+02 1.535526E+02 5.967331E+08
(225,005,07) 1.198266E-01 5.693774E-02 4.283715E+00 1.627468E+00
1927 282 10:42:20 4.819068E-03 1.535481E+02 1.535529E+02 5.967332E+08
(227,005,07) 2.009752E+00 1.227441E-01 4.368652E+00 4.397832E+00
1928 282 10:42:40 6.561588E-03 1.535481E+02 1.535546E+02 5.967333E+08
(226,005,06) 1.869035E+00 6.507227E-01 1.208935E+01 1.029872E+01
1929 282 10:43:00 2.936633E-02 1.536598E+02 1.536892E+02 5.967334E+08
(225,005,07) 5.002982E+00 4.321150E-01 2.153778E+01 3.258854E+01

Blowing-up: Saving latest model state into RESTART file

WRT_RST - wrote re-start fields (Index=1,2) into time record = 0000003

Elapsed CPU time (seconds):

Thread # 0 CPU: 4630.433
Total: 4630.433

Nonlinear model elapsed time profile:

Allocation and array initialization .............. 0.225 ( 0.0049 %)
Ocean state initialization ....................... 0.031 ( 0.0007 %)
Reading of input data ............................ 0.388 ( 0.0084 %)
Processing of input data ......................... 25.627 ( 0.5534 %)
Computation of vertical boundary conditions ...... 1.158 ( 0.0250 %)
Computation of global information integrals ...... 34.793 ( 0.7514 %)
Writing of output data ........................... 1.024 ( 0.0221 %)
Model 2D kernel .................................. 1582.227 (34.1702 %)
2D/3D coupling, vertical metrics ................. 29.175 ( 0.6301 %)
Omega vertical velocity .......................... 17.761 ( 0.3836 %)
Equation of state for seawater ................... 60.463 ( 1.3058 %)
My2.5 vertical mixing parameterization ........... 429.981 ( 9.2860 %)
3D equations right-side terms .................... 115.450 ( 2.4933 %)
3D equations predictor step ...................... 233.590 ( 5.0447 %)
Pressure gradient ................................ 95.124 ( 2.0543 %)
Harmonic mixing of tracers, geopotentials ........ 161.787 ( 3.4940 %)
Harmonic stress tensor, geopotentials ............ 261.755 ( 5.6529 %)
Corrector time-step for 3D momentum .............. 114.467 ( 2.4720 %)
Corrector time-step for tracers .................. 1440.522 (31.1099 %)
Total: 4605.548 99.4626

All percentages are with respect to total time = 4630.433

ROMS/TOMS - Output NetCDF summary for Grid 01:
number of time records written in HISTORY file = 00000002
number of time records written in RESTART file = 00000004

Analytical header files used:

ROMS/Functionals/ana_btflux.h

ROMS/TOMS: DONE... Friday - March 13, 2015 - 3:29:04 PM
_________________________________________________________________________________

thank

User avatar
kate
Posts: 4088
Joined: Wed Jul 02, 2003 5:29 pm
Location: CFOS/UAF, USA

Re: Problem

#6 Unread post by kate »

We like to see plots of the fields going bad - which is it? Where is the trouble?

User avatar
wilkin
Posts: 884
Joined: Mon Apr 28, 2003 5:44 pm
Location: Rutgers University
Contact:

Re: Problem

#7 Unread post by wilkin »

Your log file says:
Minimum X-grid spacing, DXmin = 2.58599529E-02 km
... etc.
Is your grid really so fine that you have grid spacings of 25 m

Your log file says:
1.0000E-02 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
1.0000E-02 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt
1.0000E-01 Znudg Nudging/relaxation time scale (days)
for free-surface.
Those are very stiff nudging time scales. Especially for the free-surface that would be almost reflecting, except you are not doing any nudging on the boundary because you have Chapman Implicit.

Check your boundary conditions, because the logfile says you have a mix of Radiation and Radiation+Nudging. Did you mean to treat boundary 1 differently?
Lateral Boundary Conditions: NLM
============================
Variable Grid West Edge South Edge East Edge North Edge
--------- ---- ---------- ---------- ---------- ----------
zeta 1 Chapman Imp Chapman Imp Chapman Imp Closed
ubar 1 Flather Flather Flather Closed
vbar 1 Flather Flather Flather Closed
u 1 Rad + Nud Rad + Nud Rad + Nud Closed
v 1 Rad + Nud Rad + Nud Rad + Nud Closed
temp 1 Radiation Radiation Radiation Closed
salt 1 Radiation Radiation Radiation Closed
tke 1 Radiation Radiation Radiation Closed
You have activated explicit horizontal viscosity (UV_VIS2) and diffusion (TS_DIF2) but set a very small coefficient for viscosity, and zero for tracers. The log file reports:
0.0000E+00 nl_tnu2(01) NLM Horizontal, harmonic mixing coefficient
(m2/s) for tracer 01: temp
0.0000E+00 nl_tnu2(02) NLM Horizontal, harmonic mixing coefficient
(m2/s) for tracer 02: salt
1.0000E-03 nl_visc2 NLM Horizontal, harmonic mixing coefficient
(m2/s) for momentum.
Even for a 25 m grid, that's a grid Reynolds number of Re = U.dx/nu = 2500 at a modest characteristic U scale of 10 cm/s. So that's effectively no friction at all.
John Wilkin: DMCS Rutgers University
71 Dudley Rd, New Brunswick, NJ 08901-8521, USA. ph: 609-630-0559 jwilkin@rutgers.edu

Post Reply