As the nudging parameters seem to be important for my current modeling runs, I've been looking at this more closely.
!------------------------------------------------------------------------------ ! Nudging/relaxation time scales, inverse scales will be computed internally. !------------------------------------------------------------------------------ ! ! When passive/active open boundary conditions are activated, these nudging ! values correspond to the passive (outflow) nudging time scales. ! ! TNUDG Nudging time scale (days) for active tracer variables. ! (1:NAT+NPT,1:Ngrids) values are expected. ! ! ZNUDG Nudging time scale (days) for free-surface. ! ! M2NUDG Nudging time scale (days) for 2D momentum. ! ! M3NUDG Nudging time scale (days) for 3D momentum. ! ! OBCFAC Factor between passive (outflow) and active (inflow) open ! boundary conditions. The nudging time scales for the ! active (inflow) conditions are obtained by multiplying ! the passive values by OBCFAC. If OBCFAC > 1, nudging on ! inflow is stronger than on outflow (recommended).
So according to this, the values I input for the NUDG parameters correspond to the outflow conditions. I may just truly be lacking in common sense, but will I not get the active (inflow) conditions by dividing by rather than multiplying the passive (outflow) values by OBCFAC?
|