Headland Test Case

Discussion of how to use ROMS on different regional and basin scale applications.

Moderators: arango, robertson

Post Reply
Posts: 4
Joined: Thu Dec 31, 2015 1:05 pm
Location: Macquarie University

Headland Test Case

#1 Post by tmortlock » Tue Feb 02, 2016 10:54 am

Hi all,

I am a newbie at ROMS but have managed to compile and install ROMS using Cygwin, and run the Upwelling test case successfully. However, my interest is coupled SWAN/ROMS results for sediment transport, therefore I am trying to run the Headland test case but running into problems (this may also be a relevant question for COAWST forum I guess).

I’ve downloaded and compiled the MCT ok using the openmpi library in Cygwin. I’ve also managed to compile the test head build.bash OK – here’s what I needed to modify to compile successfully (may be useful for others):

• Modified environmental variables (ROMS_APPLICATION, MY_ROOT_DIR and MY_PROJECT_DIR).
• I found that I also needed to change MCT_INCDIR to /usr/local/include and MCT_LIBDIR to /usr/local/lib, and
• I made sure “USE_NETCDF4=on” and “USE_MY_LIBS=on” were both set

Once compiled, I get the executable OceanM.exe. After some trial and error, I found I needed to change:
• VARNAME in ocean_test_head.in to /home/Tom/roms/trunk/ROMS/External/varinfo.dat
• CPLname in coupling_test_head.in to /home/Tom/roms/trunk/ROMS/External/coupling.dat

I then execute the command: mpiexec -np 2 ./oceanM coupling_test_head.in (as shown in the COAWT User Manual) to run the Test Head case using mpi.

Here’s where I’m stumped: the model runs up until this point:

Coupled Input File name = coupling_test_head.in

Model Coupling Parallel Threads:

Ocean Model MPI nodes: 000 - 000
Waves Model MPI nodes: 001 - 001

Ocean Export: bath:SSH:Ubar:Vbar:ZO
Waves Export: Wdir:Wamp:Wlen:Wptop:Wpbot:Wubot

Model Input Parameters: ROMS/TOMS version 3.7
Tuesday - February 2, 2016 - 9:47:51 PM

SWAN is preparing computation ...

Sediment Test Headland Case

Operating system : CYGWIN
CPU/hardware : i686
Compiler system : gfortran
Compiler command : /usr/bin/mpif90
Compiler flags : -frepack-arrays -O3 -ffast-math -I/usr/local/include -fno-bounds-check -ffree-form -ffree-line-length-none -ffree-form -ffree-line-length-none

Input Script :

SVN Root URL : https://www.myroms.org/svn/src/trunk
SVN Revision : 783

Local Root : /home/Administrator/roms/trunk
Header Dir : /home/Administrator/roms/Projects/Test_Head
Header file : test_head.h
Analytical Dir: /home/Administrator/roms/Projects/Test_Head

Resolution, Grid 01: 0056x0026x010, Parallel Nodes: 1, Tiling: 001x001

Physical Parameters, Grid: 01

1440 ntimes Number of timesteps for 3-D equations.
30.000 dt Timestep size (s) for 3-D equations.
20 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.
1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.
120 nRST Number of timesteps between the writing of data
into restart fields.
1 ninfo Number of timesteps between print of information
to standard output.
T ldefout Switch to create a new output NetCDF file(s).
120 nHIS Number of timesteps between the writing fields
into history file.
F LuvSponge Turning OFF sponge on horizontal momentum.
F LtracerSponge(01) Turning OFF sponge on tracer 01: temp
1.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)
for tracer 01: temp
1.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)
for momentum.
5.0000E-06 Akk_bak Background vertical mixing coefficient (m2/s)
for turbulent energy.
5.0000E-06 Akp_bak Background vertical mixing coefficient (m2/s)
for turbulent generic statistical field.
-1.000 gls_p GLS stability exponent.
0.500 gls_m GLS turbulent kinetic energy exponent.
-1.000 gls_n GLS turbulent length scale exponent.
7.6000E-06 gls_Kmin GLS minimum value of turbulent kinetic energy.
1.0000E-12 gls_Pmin GLS minimum value of dissipation.
5.4770E-01 gls_cmu0 GLS stability coefficient.
5.5500E-01 gls_c1 GLS shear production coefficient.
8.3300E-01 gls_c2 GLS dissipation coefficient.
-6.0000E-01 gls_c3m GLS stable buoyancy production coefficient.
1.0000E+00 gls_c3p GLS unstable buoyancy production coefficient.
2.0000E+00 gls_sigk GLS constant Schmidt number for TKE.
2.0000E+00 gls_sigp GLS constant Schmidt number for PSI.
1400.000 charnok_alpha Charnok factor for Zos calculation.
0.500 zos_hsig_alpha Factor for Zos calculation using Hsig(Awave).
0.250 sz_alpha Factor for Wave dissipation surface tke flux .
100.000 crgban_cw Factor for Craig/Banner surface tke flux.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
3.0000E-03 rdrg2 Quadratic bottom drag coefficient.
3.0000E-03 Zob Bottom roughness (m).
2.0000E-02 Zos Surface roughness (m).
1.0000E-01 Dcrit Minimum depth for wetting and drying (m).
1 Vtransform S-coordinate transformation equation.
1 Vstretching S-coordinate stretching function.
1.0000E-01 theta_s S-coordinate surface control parameter.
8.0000E-01 theta_b S-coordinate bottom control parameter.
0.100 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.
1024.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
0.000 dstart Time-stamp assigned to model initialization (days).
0.000 tide_start Reference time origin for tidal forcing (days).
0.00 time_ref Reference time for units attribute (yyyymmdd.dd)
0.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp
0.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.
0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.
0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.
0.0000E+00 obcfac Factor between passive and active
open boundary conditions.
F VolCons(1) NLM western edge boundary volume conservation.
F VolCons(2) NLM southern edge boundary volume conservation.
F VolCons(3) NLM eastern edge boundary volume conservation.
F VolCons(4) NLM northern edge boundary volume conservation.
10.000 T0 Background potential temperature (C) constant.
35.000 S0 Background salinity (PSU) constant.
1024.000 R0 Background density (kg/m3) used in linear Equation
of State.
1.7000E-04 Tcoef Thermal expansion coefficient (1/Celsius).
7.6000E-04 Scoef Saline contraction coefficient (1/PSU).
-1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).
F LuvSrc Turning OFF momentum point Sources/Sinks.
F LwSrc Turning OFF volume influx point Sources/Sinks.
F LtracerSrc(01) Turning OFF point Sources/Sinks on tracer 01: temp
F LsshCLM Turning OFF processing of SSH climatology.
F Lm2CLM Turning OFF processing of 2D momentum climatology.
F Lm3CLM Turning OFF processing of 3D momentum climatology.
F LtracerCLM(01) Turning OFF processing of climatology tracer 01: temp
F LnudgeM2CLM Turning OFF nudging of 2D momentum climatology.
F LnudgeM3CLM Turning OFF nudging of 3D momentum climatology.
F LnudgeTCLM(01) Turning OFF nudging of climatology tracer 01: temp
T Hout(idBath) Write out time-dependent bathymetry.
T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idOvel) Write out omega vertical velocity.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idUsms) Write out surface U-momentum stress.
T Hout(idVsms) Write out surface V-momentum stress.
T Hout(idUbms) Write out bottom U-momentum stress.
T Hout(idVbms) Write out bottom V-momentum stress.
T Hout(idW2xx) Write out 2D radiation stress, Sxx.
T Hout(idW2xy) Write out 2D radiation stress, Sxy.
T Hout(idW2yy) Write out 2D radiation stress, Syy.
T Hout(idU2rs) Write out total 2D u-radiation stress.
T Hout(idV2rs) Write out total 2D v-radiation stress.
T Hout(idU2Sd) Write out 2D u-momentum stokes velocity.
T Hout(idV2Sd) Write out 2D v-momentum stokes velocity.
T Hout(idW3xx) Write out 3D radiation stress, Sxx.
T Hout(idW3xy) Write out 3D radiation stress, Sxy.
T Hout(idW3yy) Write out 3D radiation stress, Syy.
T Hout(idW3zx) Write out 3D radiation stress, Szx.
T Hout(idW3zy) Write out 3D radiation stress, Szy.
T Hout(idU3rs) Write out total 3D u-radiation stress.
T Hout(idV3rs) Write out total 3D v-radiation stress.
T Hout(idU3Sd) Write out 3D u-momentum stokes velocity.
T Hout(idV3Sd) Write out 3D v-momentum stokes velocity.
T Hout(idWamp) Write out wave height.
T Hout(idWlen) Write out wavelength.
T Hout(idWdir) Write out wave direction.
T Hout(idWptp) Write out wave surface period.
T Hout(idWpbt) Write out wave bottom period.
T Hout(idWdis) Write out wave dissipation.
T Hout(idBott) Write out bottom property 01: grain_diameter
T Hout(idBott) Write out bottom property 02: grain_density
T Hout(idBott) Write out bottom property 03: settling_vel
T Hout(idBott) Write out bottom property 04: erosion_stress
T Hout(idBott) Write out bottom property 05: ripple_length
T Hout(idBott) Write out bottom property 06: ripple_height
T Hout(idBott) Write out bottom property 07: bed_wave_amp
T Hout(idBott) Write out bottom property 09: Zo_app
T Hout(idBott) Write out bottom property 10: Zo_Nik
T Hout(idBott) Write out bottom property 11: Zo_bio
T Hout(idBott) Write out bottom property 15: active_layer_thickness
T Hout(idTsur) Write out surface net heat flux.
T Hout(idDano) Write out density anomaly.
T Hout(idVvis) Write out vertical viscosity: AKv.
T Hout(idTdif) Write out vertical diffusion: AKt(itemp).

Output/Input Files:

Output Restart File: ocean_rst.nc
Output History File: ocean_his.nc
Physical parameters File:
Input Grid File: Data/test_head_curv_grd.nc
Input Nonlinear Initial File: Data/test_head_ini.nc
Input Forcing File 01: Data/test_head_frc.nc

Tile partition information for Grid 01: 0056x0026x0010 tiling: 001x001

tile Istr Iend Jstr Jend Npts

0 1 56 1 26 14560

Tile minimum and maximum fractional coordinates for Grid 01:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 0.50 56.50 0.50 26.50 RHO-points

0 1.00 56.00 0.50 26.50 U-points

0 0.50 56.50 1.00 26.00 V-points

Maximum halo size in XI and ETA directions:

HaloSizeI(1) = 201
HaloSizeJ(1) = 111
TileSide(1) = 61
TileSize(1) = 1891

Sediment Parameters, Grid: 01

Size Sd50 Csed Srho Wsed Erate poros
Class (mm) (kg/m3) (kg/m3) (mm/s) (kg/m2/s) (nondim)

1 2.5000E-01 0.0000E+00 2.6500E+03 3.0000E+01 5.0000E-04 9.0000E-01

tau_ce tau_cd nl_tnu2 nl_tnu4 Akt_bak Tnudg
(N/m2) (N/m2) (m2/s) (m4/s) (m2/s) (day)

1 1.9000E-01 6.0000E-02 0.0000E+00 0.0000E+00 5.0000E-06 0.0000E+00


1 1.0000E+01

New bed layer formed when deposition exceeds 0.1000E-01 (m).
Two first layers are combined when 2nd layer smaller than 0.0000E+00 (m).
Rate coefficient for bed load transport = 0.5000E-01

F LtracerSponge(02Turning OFF sponge on tracer 02: sand_01
F LtracerSrc(02) Turning OFF point sources/Sink on tracer 02: sand_01
F LtracerCLM(02) Turning OFF processing of climatology tracer 02: sand_01
F LnudgeTCLM(02) Turning OFF nudging of climatology tracer 02: sand_01
T Hout(idTvar) Write out sediment01: sand_01
T Hout(idfrac) Write out bed fraction, sediment 01: sandfrac_01
T Hout(idfrac) Write out mass, sediment 01: sandmass_01
T Hout(idUbld) Write out U-bedload, sediment 01: bedload_Usand_01
T Hout(idVbld) Write out V-bedload, sediment 01: bedload_Vsand_01
T Hout(idSbed) Write out BED property 01: bed_thickness
T Hout(idSbed) Write out BED property 02: bed_age
T Hout(idSbed) Write out BED property 03: bed_porosity

Lateral Boundary Conditions: NLM

Variable Grid West Edge South Edge East Edge North Edge
--------- ---- ---------- ---------- ---------- ----------

zeta 1 Clamped Closed Clamped Closed

ubar 1 Reduced Closed Reduced Closed

vbar 1 Reduced Closed Reduced Closed

u 1 Radiation Closed Radiation Closed

v 1 Radiation Closed Radiation Closed

temp 1 Gradient Closed Gradient Closed

sand_01 1 Gradient Closed Gradient Closed

tke 1 Gradient Closed Gradient Closed

Activated C-preprocessing Options:

TEST_HEAD Sediment Test Headland Case
ANA_BPFLUX Analytical bottom passive tracers fluxes.
ANA_BSFLUX Analytical kinematic bottom salinity flux.
ANA_BTFLUX Analytical kinematic bottom temperature flux.
ANA_FSOBC Analytical free-surface boundary conditions.
ANA_M2OBC Analytical 2D momentum boundary conditions.
ANA_SMFLUX Analytical kinematic surface momentum flux.
ANA_SPFLUX Analytical surface passive tracer fluxes.
ANA_SSFLUX Analytical kinematic surface salinity flux.
ANA_STFLUX Analytical kinematic surface temperature flux.
ASSUMED_SHAPE Using assumed-shape arrays.
BEDLOAD_MPM Activate bed load sediment transport Meyer-Peter-Mueller.
DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002).
DOUBLE_PRECISION Double precision arithmetic.
FSOBC_REDUCED Using free-surface data in reduced physics conditions
GLS_MIXING Generic Length-Scale turbulence closure.
LIMIT_BSTRESS Limit bottom stress to maintain bottom velocity direction.
KANTHA_CLAYSON Kantha and Clayson stability function formulation.
MASKING Land/Sea masking.
MCT_LIB Using Model Coupling Toolkit library.
MPI MPI distributed-memory configuration.
NEARSHORE_MELLOR05 Nearshore Radiation Stress Terms (Mellor 2005).
NONLINEAR Nonlinear Model.
!NONLIN_EOS Linear Equation of State for seawater.
N2S2_HORAVG Horizontal smoothing of buoyancy and shear.
POWER_LAW Power-law shape time-averaging barotropic filter.
PROFILE Time profiling activated .
K_GSCHEME Third-order upstream advection of TKE fields.
RI_SPLINES Parabolic Spline Reconstruction for Richardson Number.
!RST_SINGLE Double precision fields in restart NetCDF file.
SEDIMENT Cohesive and noncohesive sediments.
SED_MORPH Allow bottom model elevation to evolve.
SUSPLOAD Activate suspended sediment transport.
SOLVE3D Solving 3D Primitive Equations.
SPLINES_VDIFF Parabolic Spline Reconstruction for Vertical Diffusion.
SPLINES_VVISC Parabolic Spline Reconstruction for Vertical Viscosity.
SSH_TIDES Add tidal elevation to SSH climatology.
TS_MPDATA Recursive flux corrected MPDATA 3D advection of tracers.
UV_ADV Advection of momentum.
UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum.
UV_C4VADVECTION Fourth-order centered vertical advection of momentum.
UV_LOGDRAG Logarithmic bottom stress.
UV_TIDES Add tidal currents to 2D momentum climatologies.
VAR_RHO_2D Variable density barotropic mode.
WAVES_OCEAN Two-way wave-ocean models coupling.
WET_DRY Wetting and drying activated.

Process Information:

Node # 0 (pid= 0) is active.

INITIAL: Configuring and initializing forward nonlinear model ...

Vertical S-coordinate System, Grid 01:

level S-coord Cs-curve Z at hmin at hc half way at hmax

10 0.0000000 0.0000000 0.000 0.000 0.000 0.000
9 -0.1000000 -0.0998711 -0.184 -0.010 -1.091 -1.997
8 -0.2000000 -0.1998081 -0.368 -0.020 -2.182 -3.996
7 -0.3000000 -0.2997971 -0.552 -0.030 -3.274 -5.996
6 -0.4000000 -0.3998241 -0.736 -0.040 -4.366 -7.997
5 -0.5000000 -0.4998751 -0.920 -0.050 -5.459 -9.998
4 -0.6000000 -0.5999361 -1.104 -0.060 -6.551 -11.999
3 -0.7000000 -0.6999931 -1.288 -0.070 -7.644 -14.000
2 -0.8000000 -0.8000320 -1.472 -0.080 -8.736 -16.001
1 -0.9000000 -0.9000390 -1.656 -0.090 -9.828 -18.001
0 -1.0000000 -1.0000000 -1.840 -0.100 -10.920 -20.000

Time Splitting Weights for Grid 01: ndtfast = 20 nfast = 29

Primary Secondary Accumulated to Current Step

1-0.0009651193358779 0.0500000000000000-0.0009651193358779 0.0500000000000000
2-0.0013488780126037 0.0500482559667939-0.0023139973484816 0.1000482559667939
3-0.0011514592651645 0.0501156998674241-0.0034654566136461 0.1501639558342180
4-0.0003735756740661 0.0501732728306823-0.0038390322877122 0.2003372286649003
5 0.0009829200513762 0.0501919516143856-0.0028561122363360 0.2505291802792859
6 0.0029141799764308 0.0501428056118168 0.0000580677400948 0.3006719858911027
7 0.0054132615310267 0.0499970966129953 0.0054713292711215 0.3506690825040980
8 0.0084687837865132 0.0497264335364439 0.0139401130576347 0.4003955160405419
9 0.0120633394191050 0.0493029943471183 0.0260034524767397 0.4496985103876602
10 0.0161716623600090 0.0486998273761630 0.0421751148367487 0.4983983377638232
11 0.0207585511322367 0.0478912442581626 0.0629336659689854 0.5462895820219857
12 0.0257765478740990 0.0468533167015507 0.0887102138430844 0.5931428987235364
13 0.0311633730493853 0.0455644893078458 0.1198735868924698 0.6387073880313822
14 0.0368391158442262 0.0440063206553765 0.1567127027366960 0.6827137086867586
15 0.0427031802506397 0.0421643648631652 0.1994158829873357 0.7248780735499238
16 0.0486309868367616 0.0400292058506332 0.2480468698240973 0.7649072794005570
17 0.0544704302037592 0.0375976565087951 0.3025173000278565 0.8025049359093521
18 0.0600380921294286 0.0348741349986072 0.3625553921572851 0.8373790709079593
19 0.0651152103984763 0.0318722303921357 0.4276706025557614 0.8692513013000950
20 0.0694434033194840 0.0286164698722119 0.4971140058752453 0.8978677711723069
21 0.0727201499285570 0.0251442997062377 0.5698341558038024 0.9230120708785446
22 0.0745940258796570 0.0215082922098099 0.6444281816834594 0.9445203630883545
23 0.0746596950216180 0.0177785909158270 0.7190878767050775 0.9622989540041815
24 0.0724526566618460 0.0140456061647461 0.7915405333669234 0.9763445601689277
25 0.0674437485167025 0.0104229733316538 0.8589842818836260 0.9867675335005816
26 0.0590334053485720 0.0070507859058187 0.9180176872321980 0.9938183194064003
27 0.0465456732896125 0.0040991156383901 0.9645633605218105 0.9979174350447904
28 0.0292219798521905 0.0017718319739095 0.9937853403740009 0.9996892670186999
29 0.0062146596259991 0.0003107329813000 1.0000000000000000 0.9999999999999998

ndtfast, nfast = 20 29 nfast/ndtfast = 1.45000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.060707743385 0.530353871693 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.14200

Metrics information for Grid 01:

Minimum X-grid spacing, DXmin = 1.13252747E-01 km
Maximum X-grid spacing, DXmax = 2.08188350E+00 km
Minimum Y-grid spacing, DYmin = 1.00252718E-01 km
Maximum Y-grid spacing, DYmax = 1.64514065E+00 km
Minimum Z-grid spacing, DZmin = 1.83775741E-01 m
Maximum Z-grid spacing, DZmax = 2.00121356E+00 m

Minimum barotropic Courant Number = 1.29376506E-02
Maximum barotropic Courant Number = 1.03864092E-01
Maximum Coriolis Courant Number = 1.66318560E-05

NLM: GET_STATE - Read state initial conditions, t = 0 00:00:00
(Grid 01, File: test_head_ini.nc, Rec=0001, Index=1)
- free-surface
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- vertically integrated u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- vertically integrated v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- u-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- v-momentum component
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- potential temperature
(Min = 1.00000000E+01 Max = 1.00000000E+01)
- suspended noncohesive sediment, size class 01
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- noncohesive sediment fraction, size class 01
(Min = 1.00000000E+00 Max = 1.00000000E+00)
- noncohesive sediment mass, size class 01
(Min = 7.95000000E+02 Max = 7.95000000E+02)
- sediment bed layer thickness
(Min = 3.00000000E+00 Max = 3.00000000E+00)
- sediment layer age
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- sediment layer porosity
(Min = 9.00000000E-01 Max = 9.00000000E-01)
- biodiffusivity at bottom of each layer
(Min = 0.00000000E+00 Max = 0.00000000E+00)
- sediment median grain diameter size
(Min = 3.01900000E-05 Max = 3.01900000E-05)
- sediment median grain density
(Min = 2.65000000E+03 Max = 2.65000000E+03)
- sediment median grain settling velocity
(Min = 5.48500000E-04 Max = 5.48500000E-04)
- sediment median critical erosion stress
(Min = 5.87111845E-05 Max = 5.87111845E-05)
GET_NGFLD - tidal period
(Min = 4.32000000E+04 Max = 4.32000000E+04)
GET_2DFLD - tidal elevation amplitude
(Min = 2.50000000E-01 Max = 7.13896844E-01)
GET_2DFLD - tidal elevation phase angle
(Min = 4.83153953E-02 Max = 4.71238898E+00)
GET_2DFLD - tidal current inclination angle
(Min = 0.00000000E+00 Max = 0.00000000E+00)
GET_2DFLD - tidal current phase angle
(Min = 0.00000000E+00 Max = 5.01397018E-01)
GET_2DFLD - maximum tidal current, ellipse major axis
(Min = 4.24443233E-01 Max = 5.00000000E-01)
GET_2DFLD - minimum tidal current, ellipse minor axis
(Min = 0.00000000E+00 Max = 0.00000000E+00)

Basin information for Grid 01:

Maximum grid stiffness ratios: rx0 = 2.357374E-01 (Beckmann and Haidvogel)
rx1 = 4.480829E+00 (Haney)

Initial basin volumes: TotVolume = 1.9528627308E+10 m3
MinVolume = 2.5704990210E+03 m3
MaxVolume = 5.2472233629E+06 m3
Max/Min = 2.0413247856E+03

After which it seems to stall – not giving me anything else. I’ve left it practically all day, and I can tell the oceanM.exe is running in Windows, but never get any further than this. Swaninit is called, PRINT is blank, and four .mat files (force, fric, depth, dissip) appear but are empty.

Any ideas would be very much appreciated,

Cheers, Tom

Posts: 813
Joined: Wed Dec 31, 2003 6:16 pm
Location: USGS, USA

Re: Headland Test Case

#2 Post by jcwarner » Tue Feb 02, 2016 3:02 pm

if you are interested to use the roms+swan coupling, then I suggest you use the COAWST modeling system. we are using that system for advancements in the model coupling. please send an email to jcwarner@usgs.gov and ask for that code.

Posts: 4
Joined: Thu Dec 31, 2015 1:05 pm
Location: Macquarie University

Re: Headland Test Case

#3 Post by tmortlock » Wed Feb 03, 2016 10:34 am

Hi John

Thanks, I have already done so and downloaded COAWST - I just thought I'd get familiar with ROMS before I started with COAWST. With regard to this particular problem, is this something you've come across before?

Many thanks, Tom

Posts: 813
Joined: Wed Dec 31, 2003 6:16 pm
Location: USGS, USA

Re: Headland Test Case

#4 Post by jcwarner » Wed Feb 03, 2016 1:50 pm

if you want to use roms+swan coupling, then please use the formulations and coupling schemes that are in coawst. roms is distributed with an older version of swan, and it has a coupling infrastructure. but over the years we have updated swan, added wrf, updated the coupling scheme, added regridding for sparse matrix interpolations, etc. all of these additions are in coawst. At one point we had a lot of tests cases but we limited those now. so look at the COAWST/Projects/Inlet_test/Coupled as an example of roms+swan coupling with sediment. that can get you started.


Posts: 4
Joined: Thu Dec 31, 2015 1:05 pm
Location: Macquarie University

Re: Headland Test Case

#5 Post by tmortlock » Thu Feb 04, 2016 4:15 am

Ok John, will do, thanks for advice.


Post Reply