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El Nino - Southern Oscillation

EI Nifio - La Nifia

Figure: (left) El Nifio conditions (right) La Nifia conditions (from BOM)
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El Nino - Southern Oscillation

El Nifio

La Nifia
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Figure: Nifio 3.4 index: sea surface temperature (SST) between 120°W-170°W, £5°N.
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ges in the Niino 3.4: The SST Budget
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Figure: (top) SST and (bottom)
equatorial temperature in the Pacific

from a model.
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+ Vertical Mixing and Upwelling




Changes in the Niino 3.4: The SST Budget
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Figure: (top) SST and (bottom)
equatorial temperature in the Pacific
from a model.
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= Mean Advection

+ Lateral Eddy Mixing
+ Atmospheric Heating
+ Vertical Mixing and Upwelling

All of these terms are thought to
make important contributions
(Jochum and Murtugudde (2006),
Menkes et. al. (2006) [3, 6]).
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Changes in the Niino 3.4: The SST Budget

Latitude (°N)

P N

160 140 120 100 80
Atmospheric Heating

Equ e (°C)

Figure: (top) SST and (bottom)
equatorial temperature in the Pacific
from a model.

OSST
ot

= Mean Advection

+ Lateral Eddy Mixing
+ Atmospheric Heating
+ Vertical Mixing and Upwelling

All of these terms are thought to
make important contributions
(Jochum and Murtugudde (2006),
Menkes et. al. (2006) [3, 6]).

At intraseasonal timescales:

@ Tropical Instability Waves
(TIWs)

@ Equatorial Kelvin Waves
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Tropical Instability Waves
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Figure: ROMS simulations of the equatorial Pacific. 1/4° horizontal resolution, 50
vertical levels, CORE-NYF [4] climatological forcing, KPP [5] vertical mixing.
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Equatorial Kelvin Waves

Evolution of the 1997-98 ENSO (2°S-2°N Averages)
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Figure: Evolution of equatorial zonal wind stress, 20°C isotherm depth and SST during
the 1997-1998 EI Nino.
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Interactions between Kelvin Waves and TIWs: Observations

AVISO SSH Anomaly (m) TRMM SST Anomaly (°C)
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Figure: (a) AVISO SSH anomalies between +2°. Black (gray) contours show positive
(negative) perturbation SSH. (b) TRMM SST anomalies between 1°N and 2°N. (c) SST
variance (red) and SSH anomalies 140°W and 120°W.
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© Modulation of TIW amplitude by Kelvin Waves (Holmes and Thomas
(2016) JPO)
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Research Question and Modelling Approach

Question: How do Kelvin waves influence TIW kinetic energy (TIWKE)?
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Research Question and Modelling Approach

Question: How do Kelvin waves influence TIW kinetic energy (TIWKE)?

Approach:

© Remove seasonal cycle using July-December averaged CORE-NYF forcing
= Statistically-steady TIW field.
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Research Question and Modelling Approach

Question: How do Kelvin waves influence TIW kinetic energy (TIWKE)?
Approach:

@ Remove seasonal cycle using July-December averaged CORE-NYF forcing
= Statistically-steady TIW field.

@ Insert Kelvin wave pulses using momentum nudging
© Examine changes in the TIWKE budget.
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Figure: EKE from the last year of the control simulation.

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart

7/

23



The TIWKE budget

The TIWKE, or EKE,

K= %po (u’u’—|— v’v’) ,

is governed by,

oK — 1
y i -V (ICU +u'P+ ipou’(u’u’ + v’v’)) + pow’b’

+ pouy, - Ff, — pou'v’ - VU — pou'v' -V V. (1)
The RHS terms are mean advection, pressure fluxes, TIW advection, PE
conversion, friction and shear production.
The most important shear production term is,

LSP = —pourv 2!
Ay
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The TIWKE budget in the

control simulation
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Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms

between 150°W and 110°W.
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TIWKE budget in the control simulation
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Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms
between 150°W and 110°W.

TIWKE is produced by LSP and PE conversion and removed via friction
and pressure flux radiation.
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Kelvin wave forcing

Downwelling and upwelling Kelvin wave pulses forced using momentum nudging in
Western Pacific. 10-member ensemble used to separate TIWs
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Figure: (a-d) Time-longitude plots of equatorial 20°C isotherm depth anomalies. (e-f)
Time-longitude plot of the TIWKE integrated over the top 244m and between 7°S and
10°N. Also shown are 0.01m contours of SSH anomalies.
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Kelvin wave forcing

Downwelling and upwelling Kelvin wave pulses forced using momentum nudging in
Western Pacific. 10-member ensemble used to separate TIWs
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Figure: (a-d) Time-longitude plots of equatorial 20°C isotherm depth anomalies. (e-f)
Time-longitude plot of the TIWKE integrated over the top 244m and between 7°S and
10°N. Also shown are 0.01m contours of SSH anomalies.
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Kelvin wave forcing

Downwelling and upwelling Kelvin wave pulses forced using momentum nudging in
Western Pacific. 10-member ensemble used to separate TIWs

Downwelling Kelvin Wave Upnwelling Kelvin Wave

S
20°C Depth (m)

-10

BN 20

he[O) Ensemble]  [(d) SR - w lgo
o =
_ S g
£.100 ~ 10 =
] s 5 19

£ 50F.  Forcing Region i h = s -10

o

TIWKE (GJm™)

>

200 -180 -160  -140 120 100  -80-220 0 -180 160 140 120 100 -80 °
Longitude (°E) Longitude (°E)

Figure: (a-d) Time-longitude plots of equatorial 20°C isotherm depth anomalies. (e-f)
Time-longitude plot of the TIWKE integrated over the top 244m and between 7°S and
10°N. Also shown are 0.01m contours of SSH anomalies.
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Downwelling Kelvin wave: Changes in the TIWKE budget
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Figure: TIWKE and budget between 150°W, 110°W, 7°S, 10°N and above 244m for the

downwelling Kelvin wave. (a) Eddy energy below 244m and SSH. (b) TIWKE. (c)
TIWKE budget
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Downwelling Kelvin wave: Changes in the TIWKE budget

(@)

-0.01

SSH (m)

-0.02

-0.03

TIWKE (PJ)

Decay driving terms

i

(c)
——
mwm LsP,
s |~ — /\/
z
El _ TN Allother terms, S T .
H < - = ,
o \ W
£ Time Tendencyy, ¥ N
[ [ S v —
— Friction
- Pressure Fluxes
25 50 100 125 150

75
Time (days)

Figure: TIWKE and budget between 150°W, 110°W, 7°S, 10°N and above 244m for the
downwelling Kelvin wave. (a) Eddy energy below 244m and SSH. (b) TIWKE. (c)
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Downwelling Kelvin wave: Changes in the TIWKE budget
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Figure: TIWKE and budget between 150°W, 110°W, 7°S, 10°N and above 244m for the
downwelling Kelvin wave. (a) Eddy energy below 244m and SSH. (b) TIWKE. (c)
TIWKE budget
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Kelvin wave induced changes in the zonal currents

Changes in LSP = —pou'v’ gu are the main driver of changes in TIWKE.

Suggests that Kelvin wave alterations in % are critical.
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Kelvin wave induced changes in the zonal currents

Changes in LSP = —pou'v’ %U are the main driver of changes in TIWKE.

Suggests that Kelvin wave alterations in ‘3—“ are critical.
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Figure: Control (a) U and (d) %- Changes due to downwelling (b,e) and upwelling (c,f)
Kelvin waves.
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Kelvin wave induced changes in the zonal currents

Changes in LSP = —pou'v’ %U are the main driver of changes in TIWKE.

Suggests that Kelvin wave alterations in ‘3—“ are critical.
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Figure: Control (a) U and (d) %- Changes due to downwelling (b,e) and upwelling (c,f)
Kelvin waves.
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Kelvin wave induced changes in the zonal currents

Changes in LSP = —pou'v’ gu are the main driver of changes in TIWKE.
Suggests that Kelvin wave alterations in ‘3—“ are critical.
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Figure: Control (a) U and (d) %- Changes due to downwelling (b,e) and upwelling (c,f)
Kelvin waves.
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Kelvin wave induced changes in the zonal currents

’BU are the main driver of changes in TIWKE.

Suggests that Kelvin wave alteratlons in % are critical.

Changes in LSP = —pou'v
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Figure: Control (a) U and (d) B—U Changes due to downwelling (b,e) and upwelling (c,f)
Kelvin waves.

However, changes in g—g alone only explain a portion of the changes in LSP.
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Decomposition of changes in LSP

73U Iy,
A N L
dy 5 (u’u’ + v’v’) dy
Decompose changes in LSP into changes in TIWKE, changes in the correlation

between ¢’ and v/ and changes in 2V .
Oy
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Decomposition of changes in LSP
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Figure: Decomposition of changes in LSP for the upwelling experiment.
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Changes in the upper ocean heat budget
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Figure: Heat content (expressed as an average temperature) and mean and eddy heat
flux convergences above —183m between 150°W and 110°W, £3.75°
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o Downwelling (upwelling) Kelvin waves induce decay (growth) of up to +£40%
in the TIWKE
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o Downwelling (upwelling) Kelvin waves induce decay (growth) of up to +£40%
in the TIWKE
vl

@ Lateral shear production, u'v/ %7 is the main driver due to a positive
feedback with the TIWKE
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o Downwelling (upwelling) Kelvin waves induce decay (growth) of up to +£40%
in the TIWKE
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@ Lateral shear production, u'v/ %7 is the main driver due to a positive
feedback with the TIWKE

@ The main negative feedback is energy radiation via waves
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o Downwelling (upwelling) Kelvin waves induce decay (growth) of up to +£40%
in the TIWKE

@ Lateral shear production, u’v’%—g is the main driver due to a positive

feedback with the TIWKE
@ The main negative feedback is energy radiation via waves

@ Changes in TIW heat fluxes limit the Kelvin wave heat content anomaly

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart



9 Influence of TIWs on ENSO in a simple coupled model (work in
progress)
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TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?
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TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?

Motivation: TIWs gain energy from non-linear hydrodynamic instabilities, and
thus can vary stochastically. This produces rectified low-frequency variability.
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Figure 3. Standard deviation of interannual SST in the eastern basin SST (averaged from 3°S—3°N and from
Pacific Ocean. 160°W—90°W).

Figure: Interannual SST variability driven by internal oceanic variability in a 1/4°,
12-vertical levels ocean model (Jochum and Murtugudde (2004) [2])
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TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?

Approach: Couple ROMS to a simplified atmospheric model. Aim to:
© Allow oceanic-sourced variability
@ Allow simple coupled variability
© Remove internal atmospheric variability.

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart



TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?

Approach: Couple ROMS to a simplified atmospheric model. Aim to:
© Allow oceanic-sourced variability
@ Allow simple coupled variability
© Remove internal atmospheric variability.

Simple atmospheric model:
@ ABLM: Atmospheric boundary layer model for heat fluxes

@ STATS_ENSO: Simple statistical relationship for wind stresses
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TIWs and ENSO: Atmospheric Boundary Layer Model (ABLM)

Better represents air-sea exchange by allowing air temperature and humidity

(Tair and Q.jr) to react to changes in SST. Based on Seager et. al. (1995) [7]
and Deremble et. al. (2013) [1] (cheapAML).
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TIWs and ENSQO: Statistical wind forcing

Wind speeds are the sum of the background CORENYF forcing plus a term
proportional to the ROMS Nino 3.4 SST anomaly (averaged over previous month)

UlO(X7 Y, t) = UfOORENYF(X7 y) + aSSTI/V34(t) UikO(Xv y)
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TIWs and ENSQO: Statistical wind forcing

Wind speeds are the sum of the background CORENYF forcing plus a term
proportional to the ROMS Nino 3.4 SST anomaly (averaged over previous month)

UlO(X7 Y, t) = UfOORENYF(X7 y) + aSSTI/V34(t) UikO(Xv y)

Ufo(x,y), Vi5(x,y) determined from observational regression

20
10 &

10-m Zonal Wind Anomaly Pattern (ms ')
~

. . ~
: R .

240 220 2000 <180 - -S40 <1200 <100
Longitude (°E)
2-m Air Temperature Anomaly Pattern ("C)
~

10-m Meridional Wind Anomaly Pattern (ms ')
~

Latitude (*N)
Latitude (*N)

Latitude (*N}

R ) -1200 <100 80
Longitude (°E) Longitude ("E)

Figure: ERA Interim (1982-2014) monthly anomalies of bulk forcing parameters
regressed onto NCEP OISST Nino 3.4
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TIWs and ENSO: Planned experiments

Planned experiments:

Initiate upwelling and downwelling Kelvin waves at differing phases of internal
TIW variability. Examine spread in subsequent response of coupled system.
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TIWs and ENSO: Planned experiments

Planned experiments:

Initiate upwelling and downwelling Kelvin waves at differing phases of internal
TIW variability. Examine spread in subsequent response of coupled system.
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TIWs and ENSO: Planned experiments

Planned experiments:

Initiate upwelling and downwelling Kelvin waves at differing phases of internal
TIW variability. Examine spread in subsequent response of coupled system.
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TIWs and ENSO: Planned experiments

Planned experiments:
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TIWs and ENSOQO: Statistical model initial results

ROMS Spinup Nino 3.4
:

26.6 - -

Control
26.4 - —

Nino 3.4 Index (°C)

I I L L I I I
3200 3300 3400 3500 3600 3700 3800 3900 4000
Day

Figure: Nino 3.4 time series for different experiments
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TIWs and ENSO: Summary

TIWSs may influence interannual coupled variability in the Pacific because
© they interact with Kelvin waves and

@ they drive low-frequency stochastic SST variability.
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boundary layer model and

@ permit simple coupled variability through a statistical relationship between
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@ they drive low-frequency stochastic SST variability.

To investigate this, we plan to couple ROMS to a simple atmosphere that is
designed to

@ allow the imprint of TIW variability on SST through an atmospheric
boundary layer model and

@ permit simple coupled variability through a statistical relationship between
wind speed and SST.

The results may have implications for ENSO irregularity and it’s representation in
low-resolution CGCMs.

Thank you! Comments, questions, advice?
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The TIWKE budget in the control simulation
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Figure: Control simulation circulation
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The TIWKE budget in the control simulation
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Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms
between 150°W and 110°W.
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Downwelling Kelvin wave: Changes in the TIWKE budget
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Figure: TIWKE and budget between 150°W, 110°W, 7°S, 10°N and above 244m for the
downwelling Kelvin wave. (a) Eddy energy below 244m and SSH. (b) TIWKE. (c)
TIWKE budget

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, H



Upwelling Kelvin wave: Changes in the TIWKE budget
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Figure: TIWKE and budget between 150°W, 110°W, 7°S, 10°N and above 244m for the
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Decomposition of changes in LSP
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Figure: Decomposition of changes in LSP for the upwelling experiment.
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Kelvin wave induced changes in the TIWs Reynold’s stresses
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Figure: Time series of properties averaged between 1°N, 1.75°N, 92m to 63m depth in
the downwelling experiment.
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Kelvin wave induced changes in the TIWs Reynold’s stresses
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Checkerboard patterns in SST
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Figure: SST and latent heat flux from a single day for a spinup experiment with
constant January-June CORENYF forcing.
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