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El Niño - Southern Oscillation

Figure: (left) El Niño conditions (right) La Niña conditions (from BOM)
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Figure: Niño 3.4 index: sea surface temperature (SST) between 120◦W-170◦W, ±5◦N.
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Figure: Niño 3.4 index: sea surface temperature (SST) between 120◦W-170◦W, ±5◦N.
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Changes in the Niño 3.4: The SST Budget

Figure: (top) SST and (bottom)
equatorial temperature in the Pacific
from a model.

∂SST

∂t
= Mean Advection

+ Lateral Eddy Mixing

+ Atmospheric Heating

+ Vertical Mixing and Upwelling

All of these terms are thought to
make important contributions
(Jochum and Murtugudde (2006),
Menkes et. al. (2006) [3, 6]).

At intraseasonal timescales:

Tropical Instability Waves
(TIWs)

Equatorial Kelvin Waves
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Tropical Instability Waves

Figure: ROMS simulations of the equatorial Pacific. 1/4◦ horizontal resolution, 50
vertical levels, CORE-NYF [4] climatological forcing, KPP [5] vertical mixing.
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Equatorial Kelvin Waves

Figure: Evolution of equatorial zonal wind stress, 20◦C isotherm depth and SST during
the 1997-1998 El Nino.
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Interactions between Kelvin Waves and TIWs: Observations

Figure: (a) AVISO SSH anomalies between ±2◦. Black (gray) contours show positive
(negative) perturbation SSH. (b) TRMM SST anomalies between 1◦N and 2◦N. (c) SST
variance (red) and SSH anomalies 140◦W and 120◦W.
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Research Question and Modelling Approach

Question: How do Kelvin waves influence TIW kinetic energy (TIWKE)?

Approach:

1 Remove seasonal cycle using July-December averaged CORE-NYF forcing
=⇒ Statistically-steady TIW field.

2 Insert Kelvin wave pulses using momentum nudging

3 Examine changes in the TIWKE budget.

Forcing
Region

Kelvin Wave Propagation

TIW Region

Figure: EKE from the last year of the control simulation.
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The TIWKE budget

The TIWKE, or EKE,

K =
1

2
ρ0

(
u′u′ + v ′v ′

)
,

is governed by,

∂K
∂t

= −∇ ·
(
KU + u′P ′ +

1

2
ρ0u′(u′u′ + v ′v ′)

)
+ ρ0w ′b′

+ ρ0u′h · F ′H − ρ0u′u′ · ∇U − ρ0u′v ′ · ∇V . (1)

The RHS terms are mean advection, pressure fluxes, TIW advection, PE
conversion, friction and shear production.

The most important shear production term is,

LSP = −ρ0u′v ′
∂U

∂y
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The TIWKE budget in the control simulation

Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms
between 150◦W and 110◦W.
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The TIWKE budget in the control simulation

Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms
between 150◦W and 110◦W.

TIWKE is produced by LSP and PE conversion and removed via friction
and pressure flux radiation.
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Kelvin wave forcing

Downwelling and upwelling Kelvin wave pulses forced using momentum nudging in
Western Pacific. 10-member ensemble used to separate TIWs

Figure: (a-d) Time-longitude plots of equatorial 20◦C isotherm depth anomalies. (e-f)
Time-longitude plot of the TIWKE integrated over the top 244m and between 7◦S and
10◦N. Also shown are 0.01m contours of SSH anomalies.
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Kelvin wave forcing

Downwelling and upwelling Kelvin wave pulses forced using momentum nudging in
Western Pacific. 10-member ensemble used to separate TIWs
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Figure: (a-d) Time-longitude plots of equatorial 20◦C isotherm depth anomalies. (e-f)
Time-longitude plot of the TIWKE integrated over the top 244m and between 7◦S and
10◦N. Also shown are 0.01m contours of SSH anomalies.
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Downwelling Kelvin wave: Changes in the TIWKE budget

Figure: TIWKE and budget between 150◦W, 110◦W, 7◦S, 10◦N and above 244m for the
downwelling Kelvin wave. (a) Eddy energy below 244m and SSH. (b) TIWKE. (c)
TIWKE budget
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Kelvin wave induced changes in the zonal currents

Changes in LSP = −ρ0u′v ′
∂U
∂y are the main driver of changes in TIWKE.

Suggests that Kelvin wave alterations in ∂U
∂y are critical.
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Kelvin wave induced changes in the zonal currents

Changes in LSP = −ρ0u′v ′
∂U
∂y are the main driver of changes in TIWKE.

Suggests that Kelvin wave alterations in ∂U
∂y are critical.

Figure: Control (a) U and (d) ∂U
∂y

. Changes due to downwelling (b,e) and upwelling (c,f)
Kelvin waves.

However, changes in ∂U
∂y alone only explain a portion of the changes in LSP.
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Decomposition of changes in LSP

LSP = −ρ0u′v ′
∂U

∂y
= −K u′v ′

1
2

(
u′u′ + v ′v ′

) ∂U
∂y

Decompose changes in LSP into changes in TIWKE, changes in the correlation
between u′ and v ′ and changes in ∂U

∂y .
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Changes in the upper ocean heat budget

∂T

∂t
= ∇ ·

(
UT + v ′T ′

)
+ Other terms

Contribution of Kelvin Wave Advection

Contribution of TIW Meridional Heat Flux 

Upper 183m Temperature

Figure: Heat content (expressed as an average temperature) and mean and eddy heat
flux convergences above −183m between 150◦W and 110◦W, ±3.75◦
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Summary

Downwelling (upwelling) Kelvin waves induce decay (growth) of up to ±40%
in the TIWKE

Lateral shear production, u′v ′ ∂U∂y is the main driver due to a positive
feedback with the TIWKE

The main negative feedback is energy radiation via waves

Changes in TIW heat fluxes limit the Kelvin wave heat content anomaly
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TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?

Motivation: TIWs gain energy from non-linear hydrodynamic instabilities, and
thus can vary stochastically. This produces rectified low-frequency variability.

Figure: Interannual SST variability driven by internal oceanic variability in a 1/4◦,
12-vertical levels ocean model (Jochum and Murtugudde (2004) [2])
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TIWs and ENSO

Question: How do TIWs influence the initiation and strength of ENSO events?

Approach: Couple ROMS to a simplified atmospheric model. Aim to:

1 Allow oceanic-sourced variability

2 Allow simple coupled variability

3 Remove internal atmospheric variability.

Simple atmospheric model:

ABLM: Atmospheric boundary layer model for heat fluxes

STATS ENSO: Simple statistical relationship for wind stresses
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TIWs and ENSO: Atmospheric Boundary Layer Model (ABLM)

Better represents air-sea exchange by allowing air temperature and humidity
(Tair and Qair ) to react to changes in SST. Based on Seager et. al. (1995) [7]
and Deremble et. al. (2013) [1] (cheapAML).

∂Tair

∂t
= −∇ · (UTair − κ∇Tair )︸ ︷︷ ︸

adv-diff

+
1

ρaCph

(
F+ − F−

)
︸ ︷︷ ︸

diab

− 1

rT
(Tair − Tb)︸ ︷︷ ︸

rstr
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TIWs and ENSO: Statistical wind forcing

Wind speeds are the sum of the background CORENYF forcing plus a term
proportional to the ROMS Nino 3.4 SST anomaly (averaged over previous month)

U10(x , y , t) = UCORENYF
10 (x , y) + αSST ′N34(t)U∗10(x , y)

U∗10(x , y), V ∗10(x , y) determined from observational regression

Figure: ERA Interim (1982-2014) monthly anomalies of bulk forcing parameters
regressed onto NCEP OISST Nino 3.4

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 19 / 23



TIWs and ENSO: Statistical wind forcing

Wind speeds are the sum of the background CORENYF forcing plus a term
proportional to the ROMS Nino 3.4 SST anomaly (averaged over previous month)

U10(x , y , t) = UCORENYF
10 (x , y) + αSST ′N34(t)U∗10(x , y)

U∗10(x , y), V ∗10(x , y) determined from observational regression

Figure: ERA Interim (1982-2014) monthly anomalies of bulk forcing parameters
regressed onto NCEP OISST Nino 3.4

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 19 / 23



TIWs and ENSO: Planned experiments

Planned experiments:

Initiate upwelling and downwelling Kelvin waves at differing phases of internal
TIW variability. Examine spread in subsequent response of coupled system.
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TIWs and ENSO: Statistical model initial results

Figure: Nino 3.4 time series for different experiments

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 21 / 23



TIWs and ENSO: Statistical model initial results

Figure: Nino 3.4 time series for different experiments

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 21 / 23



TIWs and ENSO: Statistical model initial results

Figure: Nino 3.4 time series for different experiments

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 21 / 23



TIWs and ENSO: Statistical model initial results

Figure: Nino 3.4 time series for different experiments

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 21 / 23



TIWs and ENSO: Statistical model initial results

Figure: Nino 3.4 time series for different experiments

Ryan Holmes (ryan.holmes@unsw.edu.au) Kelvin Waves and TIWs ROMS Meeting 2016, Hobart 21 / 23



TIWs and ENSO: Summary

TIWs may influence interannual coupled variability in the Pacific because

1 they interact with Kelvin waves and

2 they drive low-frequency stochastic SST variability.

To investigate this, we plan to couple ROMS to a simple atmosphere that is
designed to

1 allow the imprint of TIW variability on SST through an atmospheric
boundary layer model and

2 permit simple coupled variability through a statistical relationship between
wind speed and SST.

The results may have implications for ENSO irregularity and it’s representation in
low-resolution CGCMs.

Thank you! Comments, questions, advice?
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The TIWKE budget in the control simulation
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Figure: Control simulation circulation
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Figure: Latitude-Depth plots of (d) TIWKE and (e-i) the main TIWKE budget terms
between 150◦W and 110◦W.
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Downwelling Kelvin wave: Changes in the TIWKE budget
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TIWKE budget
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Upwelling Kelvin wave: Changes in the TIWKE budget
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Decomposition of changes in LSP
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Figure: Decomposition of changes in LSP for the upwelling experiment.
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Kelvin wave induced changes in the TIWs Reynold’s stresses

Eddy Ellipses

Figure: Time series of properties averaged between 1◦N, 1.75◦N, 92m to 63m depth in
the downwelling experiment.
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Kelvin wave induced changes in the TIWs Reynold’s stresses
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Checkerboard patterns in SST

Figure: SST and latent heat flux from a single day for a spinup experiment with
constant January-June CORENYF forcing.
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