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A convoluted story about how making code work comes long before

understanding of why it works, and understanding why it works leads to

rediscovery of old knowledge. Essentially a unified approach to mathematical

splitting of stiff operators, not just for barotropic-baroclinic modes, but overall

throughout the oceanic solver. A perturbational analysis helps to derive two-

or three-way splits involving several components of the model. Barotropic

mode, compressible EOS, implicit bottom drag can peacefully co-exist

without overwriting computational efforts of each other.
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Motivation

• Finalize the design of Boussinesq code: stiffened EOS, clean,

self-consistent Boussinesq approximation

• Justification?

• Reviewers:

• Is it about EOS? Then what EOS has to do with mode splitting?

• Other models go non-Boussinesq with ease. Why don’t you?



The sole purpose of Boussinesq approximation

in a numerical model is to facilitate splittings.

• What is splitting?

• What is Boussinesq approximation?



This presentation is organized as follows:

• Splitting overview

• Splitting example: Implicit bottom drag

• Boussinesq approximation and seawater compressibility

• EOS in Boussinesq ROMS

• Splitting again: Issues with barotropic-baroclinic mode

splitting for non-Boussinesq model with compressible EOS

• Looking back to Boussinesq model



Splitting, a.k.a. fractional stepping

• Classical update-operator splitting

∂tu = R(u) where R(u) = R1(u) +R2(u) but straightforward

un+1 = un + ∆t · R
(
un:n+1

)

is not practical because of complexity (implicitness), so instead

u′ = un + ∆t · R1(u
n:′) followed by un+1 = u′+ ∆t · R2(u

′:n+1)

un+1 = [1 + ∆t · R2(.)] · [1 + ∆t · R1(.)]u
n

[1 + ∆t · R2(.)] · [1 + ∆t · R1(.)] 6= [1 + ∆t · R1(.)] · [1 + ∆t · R2(.)]

resulting in O(∆t) operator splitting error... ...unless carefully designed

Examples? everywhere:
• Barotropic-baroclinic mode splitting, either split-explicit or implicit free surface

• Directional splitting: computationally efficient way to introduce cross terms to stabilise forward-
in-time upstread-biased advection

• Forward-backward time stepping ⇒ gain in accuracy

• Semi-implicit viscosity/diffusion

• Deferred (or lagged) explicit lateral viscous terms

• Biological models in ROMS use splitting by physical processes, partially implicit ⇒ stability +
non-negativity of concentrations

Difficulties:

• Both R1 and R2 are stiff (implicit, internally balanced large terms). Especially
inaccurate in near cancellation R1 ≈ −R2 situation (balance).

• long-standing dilemma of no-slip boundaries + pressure-Poisson projection method
for incompressible flows



Splitting is present from day one in ocean modeling...
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Implicit bottom drag dilemma

Implicit no-slip boundary condition is essentially a statement of balance bottom
stress −∆t · rD · un+1

k=1 instantaneously adjusts itself to keep uz→bottom = 0. Stress
computation must be included into implicit solver for vertical viscosity terms, however
this interferes with Barotropic Mode (BM) splitting:

• Bottom drag can be computed only from full 3D velocity, but not from the verti-
cally averaged velocities alone.

• Barotropic Mode must know the bottom drag term in advance as a part of
3D→2D forcing for consistency of splitting. This places computing vertical vis-
cosity before BM, however, later when BM corrects the vertical mean of 3D
velocities, it destroys the consistency of (no-slip like) bottom boundary condition.

• If BM receives bottom drag based on the most recent state of 3D velocity before
BM, but the implicit vertical viscosity terms along with (the final) bottom drag
are computed after BM is complete (hence accurately respecting the bottom
boundary condition), this changes the state of vertical integrals of 3D velocities,
interfering with BM in keeping the vertically integrated velocities in nearly non-
divergent state.

• Current ROMS practice is to split bottom drag term from the rest of vertical
viscosity computation. This limits the time step (or rD itself) by the explicit
stability constraint.



Ekman layer in shallow water: h = 10m,
u∗ = 6×10−2m/s (≈ 5m/s wind), f = 10−4,
Av = 2× 10−3m2/s, non-slip at z = −h

Top: Explicit, CFL-limited, bottom drag
before Barotropic Mode (BM) for both
r.h.s. 3D and for BM forcing (⇒ no split-
ting error); implicit step for vertical viscos-
ity after with bottom drag excluded (⇒
undisturbed coupling of 2D and 3D); need
rD < ∆zbottom/∆t3D for stability

Middle: Unlimited drag before BM applies
for BM forcing only; implicit vertical vis-
cosity after with drag included into implicit
solver (i.e., the drag is recomputed relative
to what BM got before ⇒ splitting error)

Bottom: Bottom drag is computed as a
part of implicit vertical viscosity step before
and for both 3D and BM forcing

In all cases BM has bottom drag term
which captures its tendency in fast time

∂tU = ... [ −rD · ubottom︸ ︷︷ ︸
drag from 3D mode

+rD · um=0]

︸ ︷︷ ︸
3D→BM forcing

−rD · u

so when ubottom is updated/corrected by
BM, so does the −rD · ubottom term com-
puted from it; above U = (h + ζ)u

0 0.02 0.04 0.06

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

u (m/s)

v 
(m

/s
)

 

 

theory
900s
600s
300s
100s
50s
20s

0 0.02 0.04 0.06
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

u (m/s)

z 
(m

)

−0.06−0.04−0.02 0
v (m/s)

0 0.02 0.04 0.06

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

u (m/s)

v 
(m

/s
)

 

 

theory
900s
600s
300s
100s
50s
20s

0 0.02 0.04 0.06
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

u (m/s)

z 
(m

)

−0.06−0.04−0.02 0
v (m/s)

0 0.02 0.04 0.06

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

u (m/s)

v 
(m

/s
)

 

 

theory
900s
600s
300s
100s
50s
20s

0 0.02 0.04 0.06
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

u (m/s)

z 
(m

)

−0.06−0.04−0.02 0
v (m/s)



• This is a stationary problem, but the results depend on ∆t(!)

• 3-way balance: (1) Coriolis vs. vertical viscosity (Ekman layer); (2) wind stress
vs. bottom drag; (3) barotropic mode keeps flow 2D non-divergent

• A one-dimensional – vertical column with co-located u, v – can be trivially solved
as tri-diagonal system. In ROMS this is prevented by C-grid staggering of u and
v, and barotropic splitting

• sub-step mutually perturb each other. This is countered by including cross-
tendency terms

• Requires substantial redesign of ROMS kernel

• somewhat encourages anti-modular code design

• Possible only in corrector-coupled and Generalized FB variants of ROMS kernels

• Incompatible (or at least hard to implement) in Rutgers kernel because of forward extrapolation of
r.h.s. terms for 3D momenta (AB3 stepping) and extrapolation of 3D→BM forcing terms which
is not compatible with having stiff terms there

• Incompatible with predictor-coupled kernel (currently used by AGRIF), because of extrapolation
of 3D→BM forcing, and because overall having BM too early the computing sequence (implicit
vertical viscosity step is done only after predictor step for tracers which is after BM)



Do we need implicit bottom drag?

• Unlike “toy problem”, turbulent drag coefficients are space- and velocity- depen-
dent and not known a priori. The discretized model needs

∆z1 ·
un+1

1 − un
1

∆t
= A3/2 ·

un+1
2 − un+1

1

∆z3/2

− rD · un?
1 rD =?

where u1 ≡ uk=1 is understood in finite-volume sense u1 =
1

∆z1

bottom+∆z1∫

bottom

u
(
z′

)
dz′

• from physics: STRESS = F (u), F =?

• duality of u∗: it controls both bottom stress and vertical viscosity profile

STRESS = u2
∗ , and A = A(z) = κu∗ · (z0 + z) z → 0

roughness length z0 = statistically averaged scale of unresolved of topography

• constant-stress boundary layer A(z) · ∂zu = STRESS = const = u2
∗

κu∗ (z0 + z) ∂zu = u2
∗ hence u(z) =

u∗
κ

ln

(
1 +

z

z0

)

u1 =
u∗
κ

[(
z0

∆z1

+ 1

)
ln

(
1 +

∆z1

z0

)
− 1

]
hence u∗ = κ · u1/[...]

−rD · u1 = −κ2 |u1| ·
[(

z0

∆z1
+ 1

)
ln

(
1 +

∆z1

z0

)
− 1

]−2

· u1



rD = κ2 |u1|
/[(

z0

∆z1

+ 1

)
ln

(
1 +

∆z1

z0

)
− 1

]2

well-resolved asymptotic limit for ∆z1/z0 ≪ 1 is rD ∼ 4κ2 |u1| ·
z2
0

∆z2
1

however in this case u(z) =
u∗
κ

ln

(
1 +

z

z0

)
∼ u∗

κ
· z

z0
hence u1 =

u∗
κ
· ∆z1

2z0

resulting rD ∼ κ2u∗ ·
2z0

∆z1
=

Abottom

∆z1/2
in line with no-slip with laminar viscosity

unresolved ∆z1/z0 ≫ 1 limit rD ∼ κ2 |u1|
/

ln2

(
∆z1

z0

)
known as ”log-layer”

• overall there is nothing unexpected

• smooth transition between resolved and unresolved

• avoids introduction of ad hoc “reference height” za, e.g., Soulsby (1995) for-
mula STRESS = [κ/ln (za/z0)]

2 · u2
∣∣
z=za

where u
∣∣
z=za

is hard (or impossible)

to estimate from discrete variables

• in practice this differs by a factor of 2 from published formulas, e.g., Blaas (2007),
with za = ∆z1/2, due to finite-volume vs. finite-difference interpretation of discrete
model variables

• near-bottom vertical grid-box height ∆z1 is an inherent control parameter of rD,
making it impossible to specify “physical” quadratic drag coefficient, rD = CD · |u|



How large is
∆t · rD

∆z1
?

∆t · rD

∆z1
=

∆t · |u1|
∆x︸ ︷︷ ︸

advective

Courant number

·κ2 · ∆x

∆z1

/[(
z0

∆z1
+ 1

)
ln

(
1 +

∆z1

z0

)
− 1

]2

︸ ︷︷ ︸
purely geometric criterion

in unresolved case
∆x

∆z1
·
[
κ

/
ln

(
∆z1

z0

)]2

Typical high-resolution ROMS practice hmin ∼ 25m, N = 30...50, hence ∆z ∼ 1m,
∆x = 1km, and z0 = 0.01m, κ = 0.4 estimates the above as 7.5.

• ∼ 50...100 in Bering Sea in our ∆x = 12.5km Pacific simulation, even more
in a coarser 1/5-degree

It is mitigated by the bottom-most velocity Courant number ∼ 0.1 but, still exceeds
the limit of what explicit treatment can handle

• sigma-models are the most affected, but they are the ones which are mostly used
when bottom drag matters

• vertical grid refinement toward the bottom makes this condition stiffer



Boussinesq Approximation



Boussinesq approximation: Overview

Boussinesq, J. V., Théorie Analytique de
la Chaleur. Vol. II, Gauthier-Villars,
Paris, 1903

”The variations of density can be ignored
except where they are multiplied by the
acceleration of gravity in equation of mo-
tion for the vertical component of velocity
vector.”

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

du

dt
= − 1

ρ0

· ∂π

∂x
;

dv

dt
= − 1

ρ0

· ∂π

∂y

dw

dt
= − 1

ρ0
· ∂π

∂z
+ Γ0Θ

dΘ

dt
= −K

Cp

[
∂2Θ

∂x2
+

∂2Θ

∂y2
+

∂2Θ

∂z2

]

Γ0 = α0g

α0g(Θ−Θ0)/ρ0 = buoyancy

π =pseudo-pressure (Lagrange multiplier)

Oberbeck, A. 1879: Ueber die Wärmeleitung

der Flssigkeiten bei Bercksichtigung der

Strm̈ungen infolge von Temperaturdifferenzen.

Annalen der Physik 243, 271–292

Oberbeck, A. 1888: On the phenom-
ena of motion in the atmosphere (first
comm). The Mechanics of the Earth’s Atmo-

sphere, transl. by Cleveland Abbe. publ. Smith-

sonian Inst., Washington, 1891. pp. 176-187

2-component

∇ · u = 0

du

dt
= − 1

ρ0

· ∇π − g
ρ

ρ0

dT

dt
= −kT∇2T + QT(x, t)

dS

dt
= −kS∇2T + QS(x, t)

ρ = ρ0 [1− α0(T − T0) + β0(S − S0)]

• The approximation involves EOS as
well (exclude pressure, linearize)



Boussinesq approximation: Classical

Spiegel & Veronis, 1960:

(1) the fluctuation of density which ap-
pear with the advent of motion result
principally from from thermal (as oppo-
site to pressure) effects;

(2) in the equations for the rate of change
of momentum and mass, density varia-
tions may be neglected except when they
coupled to the gravitational acceleration
in the buoyancy force;

Mihaljan, 1962

(3) calculate the substantial temperature
change from the diffusion of heat only;
[neglect heating/cooling by compression, as well

as by viscous dissipation of mechanical energy]

Spiegel E. A. & G. Veronis, 1960: On
the Boussinesq approximation for a com-
pressible fluid. Astrophys. J., 131, 442-447.

Mihaljan, J. M., 1962: A rigorous expo-
sition of the Boussinesq approximations
applicable to a thin layer of fluid. Astro-

phys. J., 136, 1126-1133.

non-dimensional control parameters:

ǫ1 ≡ α0Θ

ǫ2 ≡
k2
0

C0L2Θ

σ = ν0/k0 Prandtl number

R =
gα0ΘL3

ν0k0

Rayleigh number

Boussinesq equations are derived as
leading-order asymptotic expansion of
Navier–Stokes with respect to ǫ1, ǫ2



Zeytonian, (2003, 100-year anniversary of Boussinesq approximation):
Formal asymptotic limit of Navier–Stokes equations if

c → ∞ → incompressible
ρ′ = ρ− ρ0 → 0

g → ∞
however

gρ′/ρ0 remains finite

small parameters

ǫ1 =
gh

c2
ǫ2 =

ρ′

ρ0

• Note: c→∞ and g →∞ also leads to rigid-lid, since psurf = gζ remains finite

Batchelor, G. K., 1967;

McDougall, Greatbatch, & Lu, 2002;

Losch, Adcroft, & Campin, 2004;



Boussinesq approximation: Consequences

• inertial and gravitational masses are no longer equivalent

• some say: in the absence of external forces Boussinesq models conserve volume,
while non-Boussinesq mass. More accurately: if EOS is linear Boussinesq model
conserves both volume and mass, it is the nonlinearity of EOS which brings the
distinction.

• Kinetic Energy (KE) is per unit volume, not per unit mass, KE+PE is conserved
as long as EOS is linear (up until Young, 2010)

• angular momentum balance is per unit volume

• pressure is no longer related with state variables via EOS ⇒ elimination of acoustic
waves

• elastic (compression) energy is excluded from energy balance

• pressure becomes Lagrange multiplier (as in incompressible flows just to keep it
non-divergent)

• we owe our ability to split pressure P = Pfree surface + Pbaroclinic + Qnon−hydrostatic to
Boussinesq approximation

• reversal of responses to external heating/cooling: non-Boussinesq model increases
volume, Boussinesq decreases mass in response to surface heating, Greatbatch,
1994; Mellor & Ezer, 1995; Huang & Jin, 2002; Griffies, 2004(book)

• No steric effect



Boussinesq vs. non-Boussinesq: response to heating from surface

from Huang & Jin, 2002, 2-layer fluid
• non-Boussinesq

immediate bulging of free surface

⇒ outward pressure-gradient force in upper

layer; none in lower;

⇒ outward motion in upper layer,

geostrophic adjustment;

⇒ decrease of pressure in both layers

⇒ inward motion in lower layer, geostrophic

adjustment;

⇒ lifting thermocline

• Boussinesq

immediate decrease of mass in upper layer;

⇒ inward pressure-gradient in lower layer;

none in upper

⇒ inward motion in lower layer, geostrophic

adjustment;

⇒ lifting thermocline and free surface;

⇒ outward pressure-gradient force in upper

layer;

⇒ outward motion in upper layer,

geostrophic adjustment

• The net outcome is similar in both cases: baroclinic flow, – cyclonic in upper-,
anti-cyclonic in lower layer; net angular momentum conservation



Boussinesq vs. non-Boussinesq: response to heating from surface

from Mellor & Ezer, 1995

non-Boussinesq Boussinesq non-Boussinesq - Boussinesq

Field shown: tangential velocity component; contour interval 1cm for 2 left panels;
0.1 for difference. Max value 7cm/sec near surface; 3.5 near bottom.

The barotropic flow is cyclonic for Boussinesq case, anticyclonic (very weak) for
non-Boussinesq

• The smallness of the difference, and ultimately the accuracy of Boussinesq model
response relies on stiffness of the barotropic mode



Boussinesq approximation: softening incompressibility assumption

Atmospheric:
ρ→ ρ0 in inertial terms is too crude, however
EOS of ideal gas ⇒ simple

• anelastic: Ogura & Phillips, 1962

∇ · (ρu) = 0

where ρ = ρ(z)

w

ρ
· dρ

dz
+∇ · u = 0

• Durran, 1989: Improving anelastic approxi-
mation. J. Atmos. Sci., 46, 1453-1461

1

ρ∗
· Dρ∗

Dt
+∇ · u = 0

where ρ∗ = ρ
Θ

Θ
= ρ

T

T

(
p

p

)R/Cp

• Ingersoll, 2005

• energetic consistency?

• modified Boussinesq

Durran, D. R., & A. Arakawa, 2007: Gen-
eralizing the Boussinesq approximation to
stratified compressible flow. Comptes Ren-

dus Mecanique 335, 655-664

Oceanic: inertial ρ→ ρ0 acceptable, but...

• complete exclusion pressure from EOS ⇒
loss of thermobaric effect ⇒ not acceptable

• T →Θ (heating due to compression)

• ∼40 years of using full (UNESCO-type since
198x) seawater EOS in Boussinesq models

Millero, Chen, Bradshaw, & Schleighter, 1980: A
new high-pressure equation of state for seawater.
Deep. Sea Res., 27A , 255-264.

Fofonoff & Millard, 1983: Algorithms for com-
putation of fundamental properties of seawater.
Unesco Tech. Papers in Marine Sci., 44, 53 pp.

• seawater EOS is kept outside Boussinesq vs.
non-Boussinesq consideration

• KE+PE conservation for nonlinear EOS?

• using dynamic vs. reference (−ρ0gz) pres-
sure in EOS ⇒ unsettled

• free surface and barotropic-baroclinic mode
splitting: existing splitting algorithms are
not compatible with compressible EOS



Boussinesq approximation: timeline in ocean modeling

• Garrett & McDougall, 1992: criticize Boussinesq approximation for ∇ · u = 0 using

statistical, subgrid-scale parameterization arguments

• Davis, 1994: negate the above

• Dewar, Hsueh, McDougall, & Yuan, 1998: sensitivity to using full dynamic vs. reference

pressure (−ρ0gz, basically depth) in EOS. Advocated full pressure regardless of whether the

model is Boussinesq or not;

• Dukowicz, 2001: noted that Dewar et. al. 1998 error is self-canceling in a non-Boussinesq

model, and is artifact of using full EOS with full pressure in Boussinesq. Proposed remedy by

modifying EOS in Boussinesq model – “stiffening” of EOS;

• McDougall, Greatbatch, & Lu., 2002: acknowledged that Davis, 1994 is correct, Garrett
& McDougall, 1992 is wrong. Proposed an alternative form of non-Boussinesq Eqs. written in
terms of renormalized velocity ũ = ρu/ρ0 and a Boussinesq-like approximation derived from it.
Advance the idea of re-interpreting output from Boussinesq model as non-Boussinesq. Rejected
Dukowicz, 2001 approach as unnecessary and “entrenchment of Boussinesq conundrum”

∂

∂t

(
ρ

ρ0

)
+ ∇ · ũ = 0

∂

∂t

(
ρ

ρ0

C
ρ
)

+ ∇ ·
(
ũC

ρ)
= ∇ ·

(
K∇C

ρ)

∂ũ

∂t
+∇ ·

(
ρ0

ρ
ũũ

)
+ 2Ω× ũ =

− 1

ρ0

∇p − kg
ρ

ρ0

+∇ ·
(

A∇ρ0

ρ
ũ

)





→

∇ · ũ ≈ 0

∂C
ρ

∂t
+ ∇ ·

(
ũC

ρ) ≈ ∇ ·
(
K∇C

ρ)

∂ũ

∂t
+ ∇ ·

(
ũũ

)
+ 2Ω× ũ ≈

− 1

ρ0

∇p− kg
ρ

ρ0

+∇ ·
(
A∇ũ

)

[Note: (i) steady, geostrophic hydrostatic Eqs. are fully non-Boussinesq; (ii) desturbs mutual

scaling between advection and Coriolis terms ⇒ interferes with PV theorem]



...if Joseph Valentin Boussinesq (1842–1929) and Anton Oberbeck (1846–1900)
were live long enough, they would start with

ρEOS(P, S,Θ) = ρ•0+
P

c20
+

P 2

c2
+ ... + β0S − α0 (Θ−Θ0)− γ0P (Θ−Θ0)︸ ︷︷ ︸

thermobaric

− δ0 (Θ−Θ0)
2 − ν0S (Θ−Θ0)

2

︸ ︷︷ ︸
cabbeling

+ ǫ0 · S3/2 + ...

into

buoyancy = −gρ•′

ρ•0
= A0 (Θ−Θ0) [1 + Γ0P −D0 (Θ−Θ0) + ...]

−B0 (S − S0)
[
1 + E0S

1/2 + ...
]



Boussinesq approximation: oceanographic

Young, 2010: “seawater Boussinesq approximation”

(1) The exact density ρ(x, t) in the inertial terms of the momentum equations is
replaced by constant reference density ρ0,

(2) The mass conservation equation is approximated by ∇ · u, and

(3) the full EOS relates the buoyancy of seawater to temperature, salinity, and an
approximate pressure P0 = ρ0g0Z where Z = Z(x) is the geopotential height
(i.e., the gravitational-centrifugal potential divided by the standard gravity at mean
sea level, g0).

• regains KE+PE energetic consistency

• contradics Dewar et. al. (1998) recommendations



EOS Compressibility effects in Boussinesq model

Example of internal inconsistency of Boussinesq model with compressible EOS: As-
sume spatially uniform Θ, S = const, perturbed free surface, and hydrostatic balance,

ρ = ρ(P ) = ρ

∣∣∣∣∣
P=0

+ P/c2, ∂zP = −gρ, along with P

∣∣∣∣∣
z=ζ

= 0

which remaps P ↔ z as

ρ = ρ

∣∣∣∣∣
z=ζ

exp

{
g
ζ − z

c2

}
≈ ρ

∣∣∣∣∣
z=ζ

+ gρ0
ζ − z

c2

[c is speed of sound, 1/c2 = ∂ρ/∂P , and for simplicity we assume smallness g|z|/c2 ≪ 1 which is not

principal] The acceleration created PGF due to perturbation in free surface is then

− 1

ρ0

∇xP = −
g ρ|z=ζ

ρ0

· ∇x

ζ∫

z

exp

{
g
ζ − z′

c2

}
dz′ ≈ −g

[
ρ|z=ζ

ρ0

+
g(ζ − z)

c2

]
∇xζ

increases with depth.

non-Boussinesq answer: acceleration is −g∇xζ independent from depth; this is
an exact result, even if g|z|/c2 is not small, and even in the case when ρ = ρ(P ) is
nonlinear. Both ρ and ∇xP contain multiplier

r(z) = exp

{
g
ζ − z

c2

}

which cancels out when computing acceleration −(1/ρ)∇xP
Boussinesq approximation retains r(z) in one place but neglects it in the
other, resulting in spurious vertical shear in PGF acceleration.



How does this affect ROMS?

• in computation of pressure gradient force: if EOS of JM95 (UNESCO-type) is
used, the resultant r.h.s. for 3D momenta fully contains spurious vertical shear

• when computing

ρ =
1

D

ζ∫

−h

ρ dz and ρ∗ =
2

D2

ζ∫

−h






ζ∫

z

ρ dz′




 dz , D = h + ζ

for the use in barotropic-mode pressure gradient, the resultant ρ and ρ∗ are related
as it would be for a stratified water column, when in fact, physically there is no
stratification [e.g., ρ = ρ(P ) case];

• EOS is computed in slow time, but contains traces of free surface signal, which is
kept unchanged during fast-time stepping ⇒ contribution to mode splitting error.
The contribution is small, but free-surface field available to EOS is comes from
previous time step, it results in effectively Forward Euler stepping for these terms.
This kind of instability was first observed in POM and reported by Robinson,
Padman, & Levine, 2001: A correction to the baroclinic pressure gradient term
in the Princeton ocean model. J. Atmos. Ocean. Technol., 18, pp. 1068-1075
[although they did not classify it as mode-splitting instability]. Their proposed remedy is to
suppress compressibility effects in EOS altogether.

• Griffies advocates abandoning Boussinesq approximation, incl. the use of in situ pressure inside
EOS. Although this eliminates spurious shear, it does not fix mode splitting (one must somehow
exclude influence of free surface in EOS, which contradicts the idea of in situ pressure; or redesign
barotropic mode; implicit stepping for free-surface is immune to this because it is too dissipative).
Something remains to be done about adiabatic differencing (discussed below)



Three are 4 reasons why a Boussinesq ocean model needs EOS:

• computation of pressure gradient force;

• evaluation of stability of stratification as well as stability of external thermody-
namic forcing (buoyancy flux) needed for mixing and planetary boundary layer
parameterization;

• computation of slopes of neutral surfaces need by horizontal (along isopycnals)
diffusion

• computing of ρ (vertically averaged density) and ρ∗ (normalized vertically aver-
aged pressure),which participate in barotropic–baroclinic mode splitting.

the role of EOS is to translate gradients of Θ, S into gradients of density

in situ density is not needed



PGF in sigma-coordinates needs

Jx,s(ρ, z) = −α · Jx,s(Θ, z) + β · Jx,s(S, z)

where α = α(Θ, S, P ) = − ∂ρ

∂Θ

∣∣∣∣
S,P=const

β = β(Θ, S, P ) =
∂ρ

∂S

∣∣∣∣
Θ,P=const

alternatively, if

ρ = ρ(0)
1 + ρ′1(Θ, S) +

n∑

m=1

(
q(0)
m + q′m(Θ, S)

)
· |z|m

then ρ(0)
1 , q(0)

m -terms are all out:

Jx,s(ρ, z) = Jx,s(ρ
′
1, z) +

n∑

m=1

Jx,s(q
′
m, z) · |z|m

adiabatic differencing

∆ρ′(ad)
i+1

2
,j,k

= ρ′1i+1,j,k − ρ′1i,j,k +

n∑

m=1

(
q′mi+1,j,k − q′mi,j,k

) ∣∣∣∣
zi+1,j,k + zi,j,k

2

∣∣∣∣
m

the two adjacent adiabatic differences are averaged using harmonic mean, and (if
needed) the compressible part is computed and added separately,

di,j,k ≡
∂ρ

∂ξ

∣∣∣∣
i,j,k

=
1

∆ξ
·
2∆ρ

′(ad)
i+1

2
,j,k
·∆ρ

′(ad)
i−1

2
,j,k

∆ρ
′(ad)
i+1

2
,j,k

+ ∆ρ
′(ad)
i−1

2
,j,k

+
(
q′1i,j,k + 2q′2i,j,kzi,j,k + ....

) ∂z

∂ξ

∣∣∣∣
i,j,k

,

the above guarantees monotonic stratification of cubic polynomial interpolant
for density critical for PGF static stability; simple differencing does not



Boussinesq approximation and stiffening of EOS

Dukowicz, 2001 idea [also Sun, Bleck, Rooth, Dukowicz, Chassignet, & Killworth, 1999]:
most variation of in situ density occur due to changes in pressure, and a much
smaller fraction due to changes in Θ, S, hence

ρ = r(P ) · ρ•(Θ, S, P )

where r(P ) is a universal function (does not depend on local Θ, S) which can be
chosen to ”absorb” most of variation of density due to pressure.

• ρ•(Θ, S, P) fully retains thermobaric and cabbeling effects.

• variation of Θ and S decrease with depth (survey of Levitus data)

• allows a self-consistent (⇒ more accurate) remapping r(P)→ r(z) and ρ•(Θ, S, P)→ ρ•(Θ, S, z)
as an alternative to bulk pressure P = gρ0|z| inside EOS

• substitution of r(P) ·ρ•(Θ, S, P) into non-Boussinesq equations shows tendency of r(P) to cancel
out (exactly or approximately) in all terms which depend on density: e.g., it removes spurious
barotropic shear; r(z) commutes with density Jacobian operator,

Jx,s

(
r(z) · ρ•, z

)
= r(z) · Jx,s

(
ρ•, z

)
,

and BVF computed using a Boussinesq-like rule

N2 = − q

ρ•0

[
∂ρ•

∂Θ

∣∣∣
S,z=const

∂Θ

∂z
+

∂ρ•

∂S

∣∣∣
Θ,z=const

∂S

∂z

]

is closer to its non-Boussinesq counterpart than in the case of standard Boussinesq approxima-
tion [ρ•0 is a constant similar to Boussinesq reference density, but representing ρ• instead of in

situ density]



from Dukowicz, 2001:



Practical ”stiffened” EOS for ROMS

From EOS of Jackett & McDougall, 1995,

ρ(Θ, S, z) =
ρ1(Θ, S)

1− 0.1 · z /[K00 + K0(Θ, S) + K1(Θ, S) · z + K2(T, S) · z2]

chose

r(z) =
1

1− 0.1z/Kref(z)
with Kref(z) = K00 + Kref

0 + Kref
1 z + Kref

2 z2

Kref
0 = K0

(
Θref , Sref

)
, Kref

1 = K1

(
Θref, Sref

)
, Kref

2 = K2

(
Θref , Sref

)
.

Select representative abyssal values Θref = 3.5, S = 34.5, then Kref
0 = 2924.921,

Kref
1 = 0.34846939, Kref

2 = 0.145612× 10−5, and ρ1

(
Θref , Sref

)
= 1027.43879.

The ”stiffened” EOS

ρ•′(Θ, S, z) = [ρ•0 + ρ′1(Θ, S)] · 1− 0.1z/Kref(z)

1− 0.1z/K(Θ, S, z)
− ρ•0

ρ•′ is perturbation of ρ• relatively to a constant reference value ρ•0, for which ρ•0 =

ρ1

(
Θref, Sref

)
is the natural choice. Cancelling large terms,

ρ•′(Θ, S, z) = ρ′1(Θ, S) + 0.1z · ρ•0 + ρ′1(Θ, S)

K00 + Kref
0 + Kref

1 z + Kref
2 z2

×

×
Kref

0 −K0(Θ, S) +
(
Kref

1 −K1(Θ, S)
)
· z +

(
Kref

2 −K2(Θ, S)
)
· z2

K00 + K0(Θ, S) + (K1(Θ, S)− 0.1) z + K2(Θ, S)z2

= ρ′1(Θ, S) + q̂′(Θ, S, z) · z
so far without any approximation.



Property ρ•′
(
Θref, Sref , z

)
≡ 0, and, similarly, q̂′

(
Θref , Sref, z

)
≡ 0 regardless of z

ensures that variation of ρ•′ is expected to be small, and decrease with depth
because variation of Θ and S also decrease.

Already close to the desired form, but q̂′(Θ, S, z) still explicitly depends on z, although
the dependency is weak in comparison with the original JM95. Taylor expansion for
powers of z yields

ρ•′(Θ, S, z) = ρ′1(Θ, S) + q′1(Θ, S) · z
where

q′1(Θ, S) = 0.1 ·
[
ρ0 + ρ′1(Θ, S)

]
· Kref

0 −K0(Θ, S)[(
K00 + K0(Θ, S)

)
·
(
K00 + Kref

0

)]

with q′1 does not depend on z.

This involves an approximation – discards all coefficients associated with K1 and
K2 terms (hence 14 out of 26 in the original JM95 bulk secant modulus). Naturally,
this raises concern about the accuracy.

The final version is,

ρ•′(Θ, S, z) = ρ′1(Θ, S) + q′1(Θ, S) · z (1− γz)

with γ = 1.72× 10−5 for Θref and Sref from above, γ is just a constant.



”Stiffened” EOS in ROMS: Properties .
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• errors are relative to Jackett & McDougall (1995) and non-Boussinesq
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• zero-error alignment with available data

• accuracy for α/β is more demanding than for α and β separately



”Stiffened” EOS in ROMS: Summary

• Follows Dukowicz, 2001, except in choosing constant Θ, S reference to construct
r(P )→ r(z), rather than globally averaged profile from Levitus. This is to facilitate
adiabatic differencing critical for PGF in ROMS (z-coordinate models do not care)

• fully retains thermobaric and cabbeling effects

• If Boussinesq approximation is applied, it must be applied to EOS as well

• in comparison with 2003 PGF study allows to align zero-error point on Θ, S plane
with the desired location. Approximately one order of magnitude more accurate.

• adiabatic derivatives normalized by stiffened reference density, e.g.,

N2 = − q

ρ•0

[
∂ρ•

∂Θ

∣∣∣∣
S,z=const

∂Θ

∂z
+

∂ρ•

∂S

∣∣∣∣
Θ,z=const

∂S

∂z

]

are close to that from non-Boussinesq model

• PGF scheme and KPP are updated to accommodate the change

• removes most (up to ∼ 90%) of Boussinesq approximation errors; replaces ρ0 =
const reference with ρ•0r(z), which closer to reality

• the reason why it works well is because r(z) in integrable, merely because r ∼
egz/c2 ∼ 1 + gz/c2, with gz/c2 << 1 so both density and pressure are multiplied by
approximately the same factor (exactly the same in barotropic case), resulting in
cancellation r(z) (approx. or exact), and preserving semantics of Boussinesq code

• Eliminates mode splitting error in computing ρ∗, ρ without increase of code com-
plexity (basically without any change in parts computing ρ∗, ρ): now these two are
purely baroclinic (no spurious stratification), and therefore assumption that they
are kept constant during fast-time stepping is fully justified



Barotropic-Baroclinic Mode Splitting



Boussinesq ROMS discrete time stepping

3D continuity

∆zn+1
k = ∆zn

k −∆t ·
[
∇⊥(∆zkuk) + wk+1/2 − wk−1/2

]n+1/2

grid-box heights

∆zk = ∆zk

(
∆z(0)

k , ζ
)

= ∆z(0)
k

(
1 +

〈ζ〉
h

)

free-surface

〈ζ〉n+1 = 〈ζ〉n −∆t · ∇⊥〈〈U〉〉n+1/2

where

N∑

k=1

∆zk = h + 〈ζ〉 ; 〈〈U〉〉n+1/2 ≡ 〈〈U, V 〉〉n+1/2 =

{
N∑

k=1

∆zkuk ,

N∑

k=1

∆zkvk

}n+1/2

tracers

∆zn+1
k qn+1

k = ∆zn
k qn

k −∆t ·
[
∇⊥ (qk∆zkuk) + qk+1/2wk+1/2 − qk−1/2wk−1/2

]n+1/2
,

• sequential algorithm:

r.h.s.3D → 〈ζ〉n+1, 〈〈U, V 〉〉n+1/2, 〈U, V 〉n+1 → ∆zk → u, vn+1 → U, V → W → qn+1

• conservation and constancy

• EOS stays entirely within the slow mode



. . . .
Rutgers

. . . .

Non-hydrostatic code prototype

AGRIF/ old UCLA

. . . .

UCLA (current)



non-Boussinesq code time stepping

mass conservation

ρn+1
k ∆zn+1

k = ρn
k∆zn

k −∆t ·
[
∇⊥ (ρk∆zkuk) + ρk+1/2wk+1/2 − ρk−1/2wk−1/2

]n+1/2

grid-box heights ∆zk = ∆zk

(
∆z(0)

k , ζ
)

(unchanged)

barotropic (free surface)

ρn+1
(
h + ζn+1

)
= ρn (h + ζn)−∆t · ∇⊥〈〈ρU〉〉n+1/2

where ρ =
1

h + ζ
·

N∑

k=1

∆zkρk and

N∑

k=1

∆zk = h + ζ

〈〈ρU〉〉n+1/2 ≡ 〈〈ρU, ρV 〉〉n+1/2 =

{
N∑

k=1

ρk∆zkuk ,

N∑

k=1

ρk∆zkvk

}n+1/2

tracers q = {Θ, S}

ρn+1
k ∆zn+1

k qn+1
k = ρn

k∆zn
k qn

k −∆t ·
[
∇⊥ (qk · ρk∆zkuk) + qk+1/2 · ρk+1/2wk+1/2

− qk−1/2 · ρk−1/2wk−1/2

]n+1/2

ρk = ρEOS(Θk, Sk, Pk) where Pk = g

N∑

k′=k+1

ρk′∆zk′ +
1

2
gρk∆zk .

• cyclic dependency: need ρn+1
k to compute Θn+1

k , Sn+1
k , but ρn+1

k depends from
them via EOS

• non-splittable: ζn+1 needs ρ, which depends on Pk, which depends on ζ via ∆zk



Two ways to break cyclic dependency:

• Greatbatch, R.J., Y. Lu, & Y. Cai, 2001: forward extrapolation of density

ρ(e)n+1

k = 2ρn
k − ρn−1

k and ρ(e)n

k = 2ρn−1
k − ρn−2

k ,

⇒ tracer conservation properties no longer exist in the original meaning
∑

ρn+1∆zn+1qn+1 =
∑

ρn∆znqn ,

while ρn+1 are also related to qn+1 =
{
Θn+1, Sn+1

}
via EOS.

⇒ splitting instability of barotropic mode

Mellor & Ezer, 1995 used this approach

• de Szoeke & Samelson, 2002: showed duality (“isomorphism”) between hydro-

static z-coordinate Boussinesq and hydrostatic non-Boussinesq equations writ-
ten in pressure-coordinates. Argued that Boussinesq approximation is redundant
because nonhydrostatic alone removes acoustic waves, while Boussinesq offers
no further simplification;

⇒ commitment to hydrostatic modeling

⇒ isomorphism is incomplete: does not apply to barotropic mode; breaks cyclic
dependency, but does not help splittability

modern, preferred approach

splitting in existing non-Boussinesq codes either relies on ρ− ρ0 ≪ ρ0 combined
with heavy filtering; or use stiffened EOS: MICOM/HYCOM, HIM, Higdon (all).



Pressure-based-coordinate framework: ρk∆zk ≡ (1/g)∆pk ⇐ hydrostatic

∆pn+1
k = ∆pn

k −∆t ·
[
∇⊥ (∆pkuk) + ω̃k+1/2 − ω̃k−1/2

]n+1/2

where, somehow ∆pn,n+1
k = ∆pk

(
∆p(0)

k , pn,n+1
b

)
← vertical mapping

barotropic mode

pn+1
b = pn

b −∆t · ∇⊥〈〈pbu〉〉n+1/2

bottom pressure pb =

N∑

k=1

∆pk

〈〈pbu〉〉n+1/2 ≡ 〈〈pbu, pbv〉〉n+1/2 =

{
N∑

k=1

∆pkuk ,

N∑

k=1

∆pkvk

}n+1/2

tracers

∆pn+1
k qn+1

k = ∆pn
kqn

k −∆t ·
[
∇⊥ (qk∆pkuk) + qk+1/2ω̃k+1/2 − qk−1/2ω̃k−1/2

]n+1/2

• similar, “isomorphic” to Boussinesq, subject to replacement variables,

∆pk ↔ ∆zk

pb ↔ D = h + ζ
ω̃k+1/2 ↔ wk+1/2

• sequential?

• is it splittable?



• Sequential algorithm is possible for non-split system: ∆zk are not needed, except
for pressure-gradient terms

• the role of EOS is reversed: it is now needed to compute grid-box heights,

∆zk =
∆pk

g
· αEOS(Θk, Sk, Pk) and free surface ζ =

N∑

k=1

∆zk − h ,

while pressure increments ∆pk and EOS pressure Pk are assumed to be known as
long as pb is known,

∆pk = pb ·∆z
(0)
k /h where ∆z

(0)
k = ∆z(0)(x, y) = z

(0)
k+1/2

(x, y)− z
(0)
k−1/2

(x, y)

after which

Pk =
Pk+1/2 + Pk−1/2

2
and Pk−1/2 =

N∑

k′=k

∆pk′

• overall similar to Boussinesq

• splittable?

• Knowing “bottom pressure” pb is not enough to compute vertically-integrated
pressure gradient term for barotropic mode: free-surface ζ is required. pb and ζ
are linked via EOS (hence in 3D) and because EOS is pressure-dependent, it also
has “fast” dependencies

• EOS becomes part of splitting algoritm

• the last opportunity to chicken out? “Stiffen” EOS in now non-Boussinesq code



Vertically-integrated non-Boussinesq momentum and mass-conservation

∂t (ρDu) + g

[
∇⊥

(
ρ∗D2

2

)
− ρD∇⊥h

]

︸ ︷︷ ︸
= −F

= advection, Coriolis, dissipation, forcing

∂t (ρD) +∇⊥ (ρDu) = fresh-water flux

where u =
1

ρD

∫ ζ

−h

ρudz , ρ =
1

D

∫ ζ

−h

ρdz ,

D = h + ζ , ρ∗ =
2

D2

∫ ζ

−h

∫ ζ

z′
ρdz′dz

...............

...............
same, but in via bottom pressure, pb ≡ gρD,

∂t (pbu) + g

[
∇⊥

(
ρ∗
ρ
· pb(h + ζ)

2

)
− pb∇⊥h

]

︸ ︷︷ ︸
= −F

= ...

∂tpb +∇⊥ (pbu) = ...

[both pb and ζ are present in F ]
...............
Splitting F = −g [...] = “fast” + “slow”

• need ζ = ζ(pb) in “fast” time, i.e., via 2D fields only
• ρ, ρ∗ slightly change – depend on pb, ζ – because of EOS compressibility
• there is stiff large-term cancellation inside F , especially on steep topography



c.f., SM2005 Boussinesq ROMS split:

• Boussinesq ⇒ ρ→ ρ0 everywhere except inside F

• ⇒ ζ becomes “fast” prognostic variable

∂t (ρ0D) +∇⊥ (ρ0Du) = ... → ∂tζ +∇⊥ (Du) = ...

• ρ, ρ∗ independent from ζ (incompressible)

• large terms in F are canceled by hand

∂t (ρ0Du) + gD

{
ρ∗∇⊥ζ +

D

2
∇⊥ρ∗+ (ρ∗ − ρ)∇⊥h

}
= ...

• all three issues go away



Design goals: What do we want from splitting? Basic knowledge...

Phase speed of external gravity wave in a constant-density layer is c0 =
√

gh

• external wave speed of a stratified layer is smaller,

c20 ≈ gh− c21

c1 is first baroclinic mode phase speed slowdown by as much as ∼ 0.5%

• external wave speed of a barotropic layer of compressible fluid of the same depth

c0 = c ·
√

1− e−gh/c2 ր
ց

√
gh , gh/c2 ≪ 1

c , gh/c2 ≫ 1 .

c is speed of sound; hydrostatic surface gravity + acoustic ⇒ Lamb wave

for ocean c0 =
√

gh ·
√

1− e−ǫ

ǫ
=

√
gh

(
1− ǫ

4
+ ...

)
, ǫ ≡ gh

c2
≪ 1 h = 5500

m, c = 1500 m/s, g = 9.81 m/s2, ⇒ ǫ = gh/c2 = 0.025≪ 1
slowdown by ∼ 0.6% This is a non-Boussinesq effect

• successful mode-splitting should capture both effects within the “fast” mode

• ROMS splitting ratios 30...70

Killworth, et. al, (1991) hinted gh− c21 as cause of numerical instability

Higdon & Bennett (1996) identified, but did not fix

Higdon & de Szoeke (1997) first attempt to fix it



Splitting non-Boussinesq: A “physicist’s” approach

• extract −gpb∇⊥ζ from F

F = −g

[
∇⊥

(
ρ∗
ρ
· pb(h + ζ)

2

)
− pb∇⊥h

]
= −gpb∇⊥ζ − g∇⊥

[(
ρ∗
ρ
− 1

)
· pb(h + ζ)

2

]

−1

2
g
[
pb∇⊥(h + ζ)− (h + ζ)∇⊥pb

]

• note that pb is dominated by bulk part which does not change in time,

ρ = ρ0 + ρ′ ρ′ ≪ ρ0

pb = ρ0gh + p′b p′b≪ ρ0gh

after which

F = −gpb∇⊥ζ − g∇⊥
[(

ρ∗
ρ
− 1

)
·
(

ρ0gh2

2
+

p′b + ρ0gζ

2
h +

p′bρ0gζ)

2

)]

−1

2
g

[
(p′b − ρ0gζ)∇⊥h− h∇⊥(p′b − ρ0gζ) + p′b∇⊥ζ − ζ∇⊥p′b

]
︸ ︷︷ ︸

=0, if ζ=p′b/(ρ0g)

• still need ζ via p′b in “fast” time, use ζ =
p′b

ρ0g
hence

∂t (pbu) + g
(
ρ0gh + p′b

)
∇⊥

p′b
ρ0g︸ ︷︷ ︸

“fast”

= − g∇⊥
[(

ρ∗
ρ
− 1

)
· p′bh

]

︸ ︷︷ ︸
“mixed”

− g∇⊥
[(

ρ∗
ρ
− 1

)
ρ0gh2

2

]

︸ ︷︷ ︸
baroclinic, “slow”

+...

∂tp
′
b +∇⊥

((
ρ0gh + p′b

)
u
)

= ...



Splitting non-Boussinesq: “physicist” continued

• why to extract −gpb∇⊥ζ ?

it resembles PGF term of compressible, barotropic layer of fluid

• accuracy of this split relies on the following smallnesses:
∣∣∣∣
ρ∗
ρ
− 1

∣∣∣∣≪ 1 ,

∣∣∣∣
ρ− ρ0

ρ
· ∇⊥h

∣∣∣∣≪ 1 ,
gh

c2
≪ 1

• c.f., “true” free surface

ζ = D − h =
pb

ρg
− h = h

(
ρ0

ρ
− 1

)

︸ ︷︷ ︸
bias

+
p′b
ρg

vs. ζ =
p′b

ρ0g

• influence of topography: splitting across large-terms which balance each other.
To date all theoretical analysis of mode splitting comes from linearized surface-
gravity – internal-wave normal-mode decomposition. All done in flat-bottom
context.

• ρ = ρEOS

(
...,“fast” p′b

)
dependency ignored

• This is ... basically ... Boussinesq, but more exposed to sigma errors.



Mode splitting using incremental variables: Boussinesq first

introduce δζ ≡ ζ − 〈ζ〉n, hence

ζ → ζ + δζ ≡ 〈ζ〉n + δζ
D → D + δζ ≡ h + 〈ζ〉n + δζ

insert into F and expose all terms containing δζ,

∂

∂t

(
ρ0(D + δζ)u

)
−F + g (D + δζ)∇⊥ (ρ∗δζ) + gρ∗δζ∇⊥ζ

−g
δζ2

2
∇⊥ρ∗+ g (ρ∗ − ρ) δζ∇⊥h = ...

∂

∂t
δζ +∇⊥

(
(D + δζ)u

)
= ...

where δζ and u are the only variables which are changing in “fast” time.
All others: F , D, ρ, ρ∗,... are computed by 3D and retain their n-th status.

works as follows




δζ = 0

u = 〈u〉n





︸ ︷︷ ︸
initial at stepn

→




〈δζ〉n+1

〈(D + δζ)u〉n+1

〈〈(D + δζ)u〉〉n+1/2





︸ ︷︷ ︸
fast-time stepping

→




〈ζ〉n+1 = 〈ζ〉n + 〈δζ〉n+1

Dn+1 = h + 〈ζ〉n+1

〈u〉n+1 =
〈(D + δζ)u〉n+1

D + 〈δζ〉n+1




︸ ︷︷ ︸
finalize at n+1

• simple, but equivalent to SM2005
• ”fast” terms are derived simply as perturbations. ...in fact, SM2005 is a detour
• no linearization for δζ, but can be: more accurate than linearization for ζ.

Smallness of δζ/D is “smaller” than ζ/h



Splitting nonsplittable: non-Boussinesq with compressible EOS

incremental variables

ρD → ρD + δm
ζ → ζ + δζ hence D→ D + δζ
ρ → ρ + δρ
ρ∗ → ρ∗+ δρ∗

⇒ barotropic continuity

∂

∂t
δm +∇⊥

(
(ρD + δm)u

)
= ...

identifies δm as the natural fast-time prognostic variable

perturbing non-Boussinesq F

∇⊥
(

ρ∗D2

2

)
− ρD∇⊥h ≡ ∇⊥

(
ρ∗
ρ
· ρD ·D

2

)
− ρD∇⊥h →

→ ∇⊥
[(

ρ∗
ρ

+ δ

(
ρ∗
ρ

))
· (ρD + δm) · (D + δζ)

2

]
− (ρD + δm)∇⊥h

needs to compute responses δζ and δ(ρ∗/ρ) to changing δm.
Both involve EOS, but are needed in “fast” time ⇒ using 2D fields only.



The principal idea: at step n 3D-computed ζ and ρ are in hydrostatic equilibrium as
governed by compressible EOS. Once the barotropic mode departs from the state
n, the change in δm results in change of both δζ and δρ in such a way that the
equilibrium is maintained, hence δm causes proportional changes in δζ and δρ,

δρ =
1

2
ǫ · δm

D
, δζ =

1− 1

2
ǫ

1+
1

2
ǫ · δm

ρD

· δm
ρ
≈

(
1− 1

2
ǫ

)
· δm

ρ

where ǫ =
gD

c2
≪ 1 is “effective” 2D compressibility; c speed of sound; and quadrat-

ically small
1

2
ǫ · δm

ρD
is to keep

ρD + δm = (ρ + δρ)(D + δζ)

exactly



Assume “factored” (Dukowicz, 2001) form of EOS

ρ = r(P ) ·
[
ρ•0 + ρ•′(Θ, S, P )

]

where ρ•0 = const, ρ•′ ≪ ρ•0, and
(
∂ρ•′/∂P

)∣∣
Θ,S=const

≪ dr/dP , ⇒ most of pressure

effect is absorbed into r(P ).

Since ρ =
1

D

∫ ζ

−h

ρdz =
1

D

∫ ζ

−h

r
(
ρ•0 + ρ•′

)
dz = ρ•0 ·

1

D

∫ ζ

−h

r dz +
1

D

∫ ζ

−h

rρ•′dz introduce

ρ = r · ρ• = r
(
ρ•0 + ρ•′

)
where r =

1

D

∫ ζ

−h

r dz and ρ•′ =
1

rD

∫ ζ

−h

rρ•′dz

• Change in the total water-column depth causes proportional stretching of ρ•-profile
(ρ• is not affected).

• Conversely, r(P )-profile moves up-and-down with ζ without stretching (as it is a
function of pressure only)

δm = rbottρ
•
bottδζ ≈ rbottρ

•
0δζ

rbott and ρ•bott are bottom values of r and ρ•.

δm =

(
1− 1

2
ǫ

)
rρ• · δζ ≈

(
1− 1

2
ǫ

)
rρ•0 · δζ

⇒ estimate ǫ = 2(1− r/rbott)

• simplest case: uniform c ⇒ r is a linear function of pressure, r = 1 + ǫ/2

• more generally: account for the nonuniformity of c due to pressure dependency,
leaving aside only the temperature effect in the upper ocean



The ratio (ρ∗/ρ) is affected by both compressibility and baroclinicity

ρ∗ = r∗ρ•∗ = r∗
(
ρ•0 + ρ•′∗

)
, where





r∗ =
2

D2

∫ ζ

−h

∫ ζ

z

r dz′dz

ρ•′∗ =
2

r∗D2

∫ ζ

−h

∫ ζ

z

rρ•′ dz′dz

spatially uniform c ⇒ estimate r∗ = 1 + ǫ/3.

Combining the above,

ρ∗
ρ

=
r∗
r
· ρ
•
0 + ρ•′∗

ρ•0 + ρ•′
≈

(
1− 1

6
ǫ

)
·
(
1− ρ•′ − ρ•′∗

ρ•0

)
,

⇒ an estimate of how (ρ∗/ρ) responds to perturbations in δζ and δm,

ρ∗
ρ

=
r∗
r
· ρ
•
∗

ρ•
→ ρ•∗

ρ•

(
1− 1

6
ǫ− 1

6
ǫ · δζ

D

)
≈ ρ•∗

ρ•

(
1− 1

6
ǫ

)
− 1

6
ǫ · δm

ρD

we have neglected quadratically small terms O
(
ǫ2

)
and O

(
ǫ · ρ

•′ − ρ•′∗
ρ•0

)

• The baroclinicity ratio ρ•∗/ρ• < 1 is made of stiffened ρ•∗ and ρ•, not full.



Finally, the fully compressible non-Boussinesq split

∂

∂t

(
(ρD + δm)u

)
−F + gD∇⊥

[(
ρ•∗
ρ•
− 1

2
ǫ

)
δm

]
+ g

(
ρ•∗
ρ•
− 1

2
ǫ

)
δm∇⊥ζ

+g

(
ρ•∗
ρ•
− 1− 1

2
ǫ

)
δm∇⊥h

+g∇⊥
[(

ρ•∗
ρ•
− 5

6
ǫ

)
δm2

ρ
− 1

6
ǫ
δm3

ρ2D

]
= ...

∂

∂t
δm +∇⊥

(
(ρD + δm)u

)
= ...

pb evolves in slow time by adding increments g · δm computed (fast-time averaged)
by barotropic mode.

Before running barotropic mode from baroclinic step n to n+1 all necessary terms –
full vertically integrated PGF F ; free-surface ζ, stiffened baroclinic ratio ρ•∗/ρ•; effec-
tive 2D compressibility ǫ – are precomputed using full 3D algoritms with compressible
EOS. They are kept constant thereafter until the next baroclinic time step.

Then




δm = 0

u = 〈u〉n



→




〈δm〉n+1

〈(ρD + δm)u〉n+1

〈〈(ρD + δm)u〉〉n+1/2



→




〈pb〉n+1 = 〈pb〉n + g〈δm〉n+1

〈u〉n+1 =
〈(ρD + δm)u〉n+1

ρD + 〈δm〉n+1




• Note

(
ρ•∗
ρ•
− 1

2
ǫ

)
is not equal to non-stiffened

ρ∗
ρ



Summary for non-Boussinesq splitting

• complex, but possible

• “fast” terms capable to capture correct barotropic phase speed
accurately accounting for both
1. slow-down due to stratification (relatively to uniform density)
2. slow-down due to compressibility (relatively to incompressible

fluid of the same depth )

• Splitting accuracy comparable to Boussinesq ROMS, second-order

with respect to relevant small parameters

ρ•′

ρ•0
≈ 0.005 − 0.01 ǫ =

gh

c2
- 0.025

∆
(
c2

)

c2
≈ 0.04

ζ

h
≈ 2× 10−4 − 0.2



Conclusion

• Boussinesq approximation is still useful

• EOS stiffening removes internal contradictions within the Boussinesq model

• Confidence in accuracy of stiffened EOS

• SM2005 splitting must use stiffened EOS to work correctly

• Dukowicz’s (2001) idea of factoring EOS is useful even for non-Boussinesq mod-
eling

• Most complexity associated with non-Boussinesq mode splitting are due to bulk
compressibility terms. These are believed not to lead to physically impor-
tant/interesting phenomena

• Splittings can be are derived via perturbations


