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Antarctic ice shelves

Rignot, JPL

An ice shelf is a thick (up to 2800 m!), floating platform of ice that forms where

a glacier or ice sheet flows down to a coastline and onto the ocean



Motivation

“The corresponding increased ice sheet mass loss has
often followed thinning, reduction or loss of ice shelves
...” p 7.

“Dynamical processes... ...could increase the
vulnerability of the ice sheets to warming, increasing
future sea level rise. Understanding of these processes
is limited and there is no consensus on their magnitude.”
p 17.

IPCC, 2007: Summary for Policy Makers



Sea level rise
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The collapse of ice shelves can cause sea levels to rise
through 2 main effects:



1. Directly: Ice shelf melt
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Melt of all Antarctic ice shelves: 35−52 mm of sea level
rise. A small effect. Unstable.



2. Indirectly: Buttressing effect
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The rate that the ice sheet drains into the ocean can
increase which can also cause sea level to rise.



Freshening Antarctic Bottom Water

Rintoul (2007) GRL



The ice-shelf/ocean system
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Marine ice is formed by seawater that freezes directly onto the base of the ice shelf and
by the precipitation of frazil ice crystals.





Jade icebergs

Phil Tucak (Aurora Australis, Voyage 1, 2006)



Developing an ice shelf-ocean model

Mechanical modifications: Adjustment of the surface
pressure to account for the floating ice shelf (Already
part of ROMS). Depth ranges from 300-2500m below
mean sea level

Thermodynamic modifications:
Direct basal ice-ocean interaction
Frazil ice dynamics

Modified equation of state for larger range of θ (Jackett
and McDougall 2006)



Ice-shelf
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ρiSbm = ργS(Sb − S)

Tf = −5.73 × 10−2Sb + 8.32 × 10−2 + 7.61 × 10−4zice



Frazil ice modelling

Following implementation of sediment (Warner et al.
2005) solving advection-diffusion equation:
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Frazil tracers are included in ROMS using hijacked
sediment code. Modifications:

Buoyant rising (Morse and Richards (2008)

S = Primary and Secondary Nucleation, Precipitation,
Melting/Freezing

Modified equation of state to consider ice density



Frazil ice modelling
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Following plume models of Holland and
others (2007)
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Calculate heat and freshwater (salt) fluxes
into the ocean due to melt/freeze.



Amery Ice Shelf Ocean Model
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Time stepping: 600 seconds on baroclinic and 20
seconds on barotropic

Run time 1 week on 16 cpus (Computationally
intensive)

60 % longer using 5 frazil size classes

Geometry: Galton-Fenzi and others (2008)



Grid

171x83 Horizontal grid cells. 16 Vertical layers. Polar
grid ∼ 2 to 5 km



Forcing

Following Dinniman and others (2007) JGR:
Imposed sea ice from Tamura (2007). Heat and salt
fluxes computed from thermodynamic calculation of
ice freezing or melting, but ice is not accumulated or
transported
Daily wind stress and wind speed from NCEP2
reanalysis, which compares well with available AWS
observations

Tidal forcing – TPXO6.2

Lateral boundaries forcing with climatology from ECCO2
global model.

Compare model with and without frazil ice dynamics



Glaciological Mass Balance Estimates

Component Gt ice year−1 Study

Glacier Inflow rate, G 88.9 ± 8.9 Wen and others (2008)

Net Accumulation, A 11.3 ± 0.7 Arthern (2006)

11.7 ± 1.0 Vaughan (2001)

Calving rate, C 41.5 ± 5.2 from Fricker and others (2002)

44.6 ± 9.3 from Young and Hyland (2002)

Net melt rate, G + A− C 57.4 ± 14.1

Modelling Net Melt rate 72.8 (0.9 + 5.8) With Frazil

79.2 (1.7) Without Frazil

14.2 Williams et al (2002)

17.65 Hellmur (2004)

7.5 POM, Hunter et al (2004)



Total column frazil concentration (g/L)
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Model Melt/Freeze (m/year)



Marine Ice Thickness Map

Produced from difference between hydrostatic estimate of ice
thickness from elevation and ice radar.

Fricker et al (2001)



Marine Ice Thickness
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Fricker and others (2001)

Borehole observation

Model with Frazil

Model without Frazil



Conclusions

Frazil ice forms in a supercooled water layer adjacent to the ice

shelf base

The supercooled water is formed when buoyant water that is

created by basal melting begins to rise

Frazil ice processes improves the simulated pattern of marine

ice accretion

Net mass budgets show improvement over previous modelling

studies

Simulations with Frazil show a range of total mass loss of ∼73

Gt year−1 which are on the same order as observations.



Future work

Evolving ice shelf base (zice)

Wetting/drying

Coupled to:
Dynamic sea-ice model (e.g. Paul Budgel/Kate
Hedstrom)
Ice sheet model (e.g. Las Alamos Ice Sheet Model).
Coupled climate model (e.g. ACCESS: CAWCR,
CSIRO)

As part of Community Ice-Shelf Ocean Model effort



Comunity Ice-Shelf Ocean Model
Goal: Develop a fully coupled ice-sheet/ocean model to investigate links

between climate change, ice-shelf melting and bottom-water formation and
sea level rise.

Some potential collaborators:

Ben Galton-Fenzi, John Hunter, Nathan Bindoff, Frank Colberg, Roland

Warner (UTas, ACE CRC, Tasmania)

Mike Dinniman and John Klinck (ODU, Virginia)

Simon Marsland, Siobhan O’Farrell (CSIRO, Australia)

Rachael Mueller, Laurie Padman, Susan Howard (ESR, U.S.A)

Robin Robertson (ADFA, Australia)

Andrea Bergamasco, Ariana Trevisiol, Sandro Carniel (OGS, Italy)

Mike Williams, Natalie Robinson (NIWA, New Zealand)

Lars Smedsrud (Bjerknes Centre for Climate Research, Norway)

Daniel Feltham (CPOM, U.K.)

Dave Holland (New York Uni., U.S.A)



Community Ice Shelf Ocean Model

Already dedicated support from:
Australian Research Collaboration Service provides
support and maintenance http://www.arcs.org.au.
Both National and Tasmanian Partnership for
Advanced Computing
Old Dominion University, Norfolk, US
Earth and Space Research, Seattle, US
Southern Ocean Physical Oceanography and
Cryosphere Linkages (SOPHOCLES)

What about sea-ice? A much bigger list of users!
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