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I. Problem set up



Sigma coordinate systems

I One way to deal with varying bathymetry: use σ-coordinates
(Phillips 1957)

I On every cell e of bathymetry h(e), choose a number N of
vertical levels h(e, k) for 1 ≤ k ≤ N with h(e, 0) = h(e) and
h(e,N) = 0.

I The differentiation rule of functions in σ-coordinate is
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I This creates a problem for horizontal derivatives, which
become a difference of two terms. The wrong computation of
the horizontal pressure gradient creates artificial currents.

I Smagorinsky 1967, Janjić 1977, Mesinger 1982, Haney 1991



The roughness factors

I If e and e ′ are two adjacent wet cells, then

rx0(h, e, e ′) =
|h(e)− h(e ′)|
h(e) + h(e ′)

The maximum over all such pairs is rx0(h), i.e. the Beckman
& Haidvogel number.

I If the vertical levels of the bathymetries are h(e, k) for
1 ≤ k ≤ N then

rx1(h, e, e ′, k) =
|h(e, k)− h(e ′, k) + h(e, k − 1)− h(e ′, k − 1)|
h(e, k) + h(e ′, k)− h(e, k − 1)− h(e ′, k − 1)

.

The maximum over k and pairs e, e ′ of adjacent wet cells is
rx1(h).
This number is named hydrostatic instability number or
Haney number.



Hydrostatic stability

I Denote by Ck(e) the parallelepiped of water between depth
h(e, k − 1) and depth h(e, k).

I Hydrostatic stability means that if e and e ′ are any two
adjacent cells, then Ck(e) and Ck(e ′) share a level.
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I To impose that Ck(e) and Ck(e ′) share a level is equivalent to
rx1(h, e, e ′, k) ≤ 1 (Rousseau and Pham 1971, Mesinger 1982,
Haney 1991).

I This requirement is very strong and almost impossible to
fulfill.



Vertical parametrization in ROMS

I The ROMS vertical parametrization depends on three
parameters hc , θs , θb

h(e, k) = sw (k)hc + (h(e)− hc)Cw (k).

hc is the thermocline parameter and it is lower than the
minimal depth of the model.

I The vertical parametrization function depends on θs and θb

and is sw (k) = N−k
N .

Cw (k) = (1−θb)
sinh θssw (k)

sinh θs
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This formula is relatively arbitrary (Song 1994) and another
one may work just as well.

I If hc = 0 then we have h(e, k) = h(e)Cw (k) and we get

rx1(h) = max
1≤k≤N

Cw (k) + Cw (k − 1)

Cw (k)− Cw (k − 1)
rx0(h)



What are the right parameters?

There is no general agreement on this question

I The parameters θs , θb have to be chosen to represent
correctly the vertical structure.

I The factor which matters for the horizontal pressure gradient
is the Haney number rx1(h).

I It is extremely difficult to achieve rx1(h) ≤ 1.

I In Mellor-Ezer-Oey 1994 it is argued that the HPG error is not
very important and disappears after running the model for
some time.

I Kliem-Pietrzak, 1999 contests this for the Skagerrak region.

I Sasha Shchepetkin, 2008 says that rx1(h) ≤ 3 is “safe”,
rx1(h) ' 5 is “common” and rx1(h) ≥ 8 is “insane”.

I Kate Hedstrom, 2008 reported no problem with rx1(h) ' 16.

I We experienced blow ups with grids with rx1(h) ≥ 10.



Possible ways to deal with the problem

If the bathymetry is too steep then this causes instabilities and
inaccuracies. Some possible ways to deal with it:

I Use a high order pressure gradient scheme (Chu & Fan, 1997,
1998, 2003) (computational price)

I Adjust the vertical stratification, i.e. sw , Cw and in case of
ROMS θs , θb.

I Decrease the number N of vertical levels (less realistic)

I Make the horizontal grid finer (computational price).

I Smooth the bathymetry (less realistic).

I Use a z- or generalized coordinate system (change of model).

We consider the smoothing methods to reduce the magnitude of
the problem.



II. Solution approaches



The goal

I The grid is build in the following way:
I Build an initial grid using coastline informations.
I Choose the parameters θs , θb and hc .
I Interpolate the initial bathymetry hobs from existing data set

(NOAA, Gshhs, Gebco, etc.)
I Determine the smoothed bathymetry h.

I Requirements:
I rx0(h) and rx1(h) low.
I The “distance” between h and hobs small.
I h should have the same physical characteristics as hobs .

I For a given r and hobs , we will present methods to get h with
rx0(h) ≤ r .

I The analysis for rx1 works similarly.



The Shapiro filter

I It is a filter designed to smooth out fast waves in finite
difference models (Shapiro 1975).

I It is applied to the bathymetry in the following way:

h←hobs

while rx0(h) > r do
h′← Shapiro filtering of h on x direction.
for e in wet cells do

if rxo(h, e) > r then
h(e)←h′(e)

end if
end for
Do the same in y direction

end do

I For some bathymetries the Shapiro filter converges to h with
rx0(h) > r and thus the program never ends.



Laplacian filter

I It works in the following way:
I start with h = hobs .
I If rx0(h, e) > r we do:

h(e)←h(e) +
1

2N(e)

∑
e′∈N(e)

{h(e′)− h(e)}

with N(e) the set of wet cells adjacent to the wet cell e.
I Iterate until rx0(h) ≤ r .

I This filter is more stable than Shapiro filter, but there is a still
a problem of having the program end.

I Shapiro filter and Laplacian filter are very frequently used but
they are not very good methods.



The Martinho & Batteen scheme

I Whenever the the roughness is not correct the chose solution
(Martinho & Batteen 2006) is to increase the bathymetry.

I Start with h = hobs

I If
h(e)− h(e′)

h(e) + h(e′)
> r then h(e′)←1− r

1 + r
h(e)

I All pairs (e, e′) are considered iteratively until the slope factor
is correct. The result is independent of the order of operations.

I They also proposed to preserve the volume by replacing the
bathymetry h obtained by their method by

h←h
vol hobs

vol h

I Note: the strategy of reducing the bathymetry does not work
efficiently.



The Mellor-Ezer-Oey scheme

I (Mellor 1994) If we want to preserve volume, then another
scheme is possible.

I If we have
h(e)− h(e′)

h(e) + h(e′)
> r

then we write

h(e)←h(e)− δ and h(e′)←h(e′) + δ

with δ adjusted so that h(e)−h(e′)
h(e)+h(e′) = r .

I All pairs (e, e′) of adjacent wet cells are considered iteratively
until the bathymetry is correct.

I A priori, the final bathymetry depends from the order of the
operations.



Linear programming methods

I The inequality rx0(h, e, e ′) ≤ r corresponds to two linear
inequalities:

−r(h(e) + h(e ′)) ≤ h(e)− h(e ′) ≤ r(h(e) + h(e ′))

I We introduce some auxiliary variable δ(e) with

|h(e)− hobs(e)| ≤ δ(e) i.e. ± (h(e)− hobs(e)) ≤ δ(e)

I And we minimize∑
e

δ(e) that is
∑

e

|h(e)− hobs(e)|.

I There are many possible variants, which are still in the linear
programming paradigm:

I Preserve the total volume of the basin.
I Have a different objective function.
I Impose only positive/negative corrections at some points.
I Impose maximum amplitude condition.



Definition

I A linear program is the problem of maximizing a linear
function f (x) over a set P defined by linear inequalities
(polyhedral).

P = {x ∈ Rd such that fi (x) ≥ bi}

with fi linear and bi ∈ R.

I The solution of linear programs is attained at vertices of P.

I There are two classes of solution methods:

optimal solution vertex

Simplex method

optimal solution vertex

Interior point method



III. Comparison
of selected methods
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I The bathymetry is highly varying and the coastline is diverse.

I We chose three grids 160× 60, 127× 368, 271× 751



Regions of hydrostatic stability

  

60× 160

  

127× 368

  

271× 751

The regions of hydrostatic consistency (rx1(h, e) ≤ 1 in light blue),
hydrostatic inconsistency (1 ≤ rx1(h, e) ≤ 5 in dark blue) and
hydrostatic instability (rx1(h, e) ≥ 5 in red)



Average amplitude of bathymetry modification

60× 160 127× 368

The average amplitude of bathymetry modification (m) in terms
for bathymetry smoothing methods



Average variation of bathymetry

60× 160 127× 368

The average variation of the bathymetry (m) from wet cell to wet
cell for bathymetry smoothing methods in terms of rx0(h)



Average amplitude of bathymetry modification

60× 160 127× 368

The average amplitude of bathymetry modification (m) in term of
rx0 for volume preserving smoothing methods



Average variation of the bathymetry

60× 160 127× 368

The average variation of the bathymetry (m) from wet cell to wet
cell for bathymetry smoothing methods preserving volume in terms
of rx0



Stability of solutions

What happens if one perturb by an infinitesimal quantity the
observed bathymetry and/or the roughness factor?

I Heuristic methods are continuous.

I Shapiro filter and Laplacian filter methods are not continuous.

I Linear programming methods are not continuous since there
are possible hoppings from one vertex to an adjacent one.

In practice during 0.01 increments to rx0,

I Shapiro/Laplacian filter are 10 times more discontinuous than
heuristic method.

I polyhedral method are 2 times more discontinuous.



Conclusions

I Shapiro and Laplacian filter should be avoided since they
create large perturbation of the bathymetry.

I Heuristic methods like Martinho-Batteen, Mellor-Ezer-Oey
work very well.

I If rx0(h) ≤ 0.2 is needed, then linear programming might be
what you need.

I All programs for optimizing over rx0 or rx1 are available from

http://drobilica.irb.hr/∼mathieu/Bathymetry/index.html

http://drobilica.irb.hr/~mathieu/Bathymetry/index.html
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