Bathymetry smoothing in ROMS: A new approach

Mathieu Dutour Sikirić

lvica Janeković

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Milivoj Kuzmić

Institute Rudjer Bosković, Zagreb

I Problem set up

II Solution approaches

III Comparison of selected methods

(ロ)、(型)、(E)、(E)、 E、 の(の)

I. Problem set up

Sigma coordinate systems

 One way to deal with varying bathymetry: use σ-coordinates (Phillips 1957)

- On every cell e of bathymetry h(e), choose a number N of vertical levels h(e, k) for 1 ≤ k ≤ N with h(e, 0) = h(e) and h(e, N) = 0.
- The differentiation rule of functions in σ-coordinate is

$$\left. \frac{\partial f}{\partial x} \right|_{z} = \left. \frac{\partial f}{\partial x} \right|_{\sigma} + \left. \frac{\partial h}{\partial x} \frac{\partial f}{\partial \sigma} \right|_{\sigma}$$

- This creates a problem for horizontal derivatives, which become a difference of two terms. The wrong computation of the horizontal pressure gradient creates artificial currents.
- Smagorinsky 1967, Janjić 1977, Mesinger 1982, Haney 1991

The roughness factors

▶ If *e* and *e*′ are two adjacent wet cells, then

$$rx_0(h, e, e') = \frac{|h(e) - h(e')|}{h(e) + h(e')}$$

The maximum over all such pairs is $rx_0(h)$, i.e. the Beckman & Haidvogel number.

If the vertical levels of the bathymetries are h(e, k) for 1 ≤ k ≤ N then

$$rx_1(h, e, e', k) = \frac{|h(e, k) - h(e', k) + h(e, k-1) - h(e', k-1)|}{h(e, k) + h(e', k) - h(e, k-1) - h(e', k-1)}$$

The maximum over k and pairs e, e' of adjacent wet cells is $rx_1(h)$. This number is named hydrostatic instability number or

This number is named hydrostatic instability number or Haney number.

Hydrostatic stability

- ▶ Denote by C_k(e) the parallelepiped of water between depth h(e, k − 1) and depth h(e, k).
- ► Hydrostatic stability means that if e and e' are any two adjacent cells, then C_k(e) and C_k(e') share a level.

- ► To impose that C_k(e) and C_k(e') share a level is equivalent to rx₁(h, e, e', k) ≤ 1 (Rousseau and Pham 1971, Mesinger 1982, Haney 1991).
- This requirement is very strong and almost impossible to fulfill.

Vertical parametrization in ROMS

The ROMS vertical parametrization depends on three parameters hc, θ_s, θ_b

$$h(e,k) = s_w(k)hc + (h(e) - hc)C_w(k).$$

hc is the thermocline parameter and it is lower than the minimal depth of the model.

• The vertical parametrization function depends on θ_s and θ_b and is $s_w(k) = \frac{N-k}{N}$.

$$C_w(k) = (1 - \theta_b) \frac{\sinh \theta_s s_w(k)}{\sinh \theta_s} + \theta_b \left\{ \frac{1}{2} + \frac{\tanh \theta_s (s_w(k) - \frac{1}{2})}{2 \tanh \frac{\theta_s}{2}} \right\}$$

This formula is relatively arbitrary (Song 1994) and another one may work just as well.

• If hc = 0 then we have $h(e, k) = h(e)C_w(k)$ and we get

$$rx_{1}(h) = \max_{1 \le k \le N} \frac{C_{w}(k) + C_{w}(k-1)}{C_{w}(k) - C_{w}(k-1)} rx_{0}(h)$$

What are the right parameters?

There is no general agreement on this question

- The parameters θ_s , θ_b have to be chosen to represent correctly the vertical structure.
- The factor which matters for the horizontal pressure gradient is the Haney number rx₁(h).
- It is extremely difficult to achieve $rx_1(h) \leq 1$.
- In Mellor-Ezer-Oey 1994 it is argued that the HPG error is not very important and disappears after running the model for some time.
- Kliem-Pietrzak, 1999 contests this for the Skagerrak region.
- Sasha Shchepetkin, 2008 says that $rx_1(h) \le 3$ is "safe", $rx_1(h) \simeq 5$ is "common" and $rx_1(h) \ge 8$ is "insane".
- Kate Hedstrom, 2008 reported no problem with $rx_1(h) \simeq 16$.
- We experienced blow ups with grids with $rx_1(h) \ge 10$.

Possible ways to deal with the problem

If the bathymetry is too steep then this causes instabilities and inaccuracies. Some possible ways to deal with it:

- Use a high order pressure gradient scheme (Chu & Fan, 1997, 1998, 2003) (computational price)
- Adjust the vertical stratification, i.e. s_w, C_w and in case of ROMS θ_s, θ_b.
- ► Decrease the number *N* of vertical levels (less realistic)
- Make the horizontal grid finer (computational price).
- Smooth the bathymetry (less realistic).
- ► Use a *z* or generalized coordinate system (change of model).

We consider the smoothing methods to reduce the magnitude of the problem.

II. Solution approaches

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The goal

• The grid is build in the following way:

- Build an initial grid using coastline informations.
- Choose the parameters θ_s , θ_b and hc.
- Interpolate the initial bathymetry h^{obs} from existing data set (NOAA, Gshhs, Gebco, etc.)
- Determine the smoothed bathymetry *h*.
- Requirements:
 - $rx_0(h)$ and $rx_1(h)$ low.
 - The "distance" between h and h^{obs} small.
 - h should have the same physical characteristics as h^{obs}.
- For a given r and h^{obs} , we will present methods to get h with $rx_0(h) \leq r$.
- The analysis for rx_1 works similarly.

The Shapiro filter

- It is a filter designed to smooth out fast waves in finite difference models (Shapiro 1975).
- It is applied to the bathymetry in the following way: h←h^{obs}

```
while rx_0(h) > r do

h' \leftarrow Shapiro filtering of h on x direction.

for e in wet cells do

if rx_0(h, e) > r then

h(e) \leftarrow h'(e)

end if

end for
```

Do the same in y direction

end do

For some bathymetries the Shapiro filter converges to h with $rx_0(h) > r$ and thus the program never ends.

Laplacian filter

It works in the following way:

- start with $h = h^{obs}$.
- If rx₀(h, e) > r we do:

$$h(e) \leftarrow h(e) + \frac{1}{2N(e)} \sum_{e' \in N(e)} \{h(e') - h(e)\}$$

with N(e) the set of wet cells adjacent to the wet cell e.

• Iterate until $rx_0(h) \leq r$.

- This filter is more stable than Shapiro filter, but there is a still a problem of having the program end.
- Shapiro filter and Laplacian filter are very frequently used but they are not very good methods.

The Martinho & Batteen scheme

- Whenever the the roughness is not correct the chose solution (Martinho & Batteen 2006) is to increase the bathymetry.
 - Start with $h = h^{obs}$

► If

$$\frac{h(e)-h(e')}{h(e)+h(e')} > r \quad \text{then} \quad h(e') \leftarrow \frac{1-r}{1+r}h(e)$$

- All pairs (e, e') are considered iteratively until the slope factor is correct. The result is independent of the order of operations.
- They also proposed to preserve the volume by replacing the bathymetry h obtained by their method by

$$h \leftarrow h \frac{\text{vol } h^{obs}}{\text{vol } h}$$

 Note: the strategy of reducing the bathymetry does not work efficiently.

The Mellor-Ezer-Oey scheme

- (Mellor 1994) If we want to preserve volume, then another scheme is possible.
 - If we have

$$\frac{h(e)-h(e')}{h(e)+h(e')} > r$$

then we write

$$h(e) \leftarrow h(e) - \delta$$
 and $h(e') \leftarrow h(e') + \delta$

with δ adjusted so that $\frac{h(e)-h(e')}{h(e)+h(e')} = r$.

All pairs (e, e') of adjacent wet cells are considered iteratively until the bathymetry is correct.

 A priori, the final bathymetry depends from the order of the operations.

Linear programming methods

► The inequality rx₀(h, e, e') ≤ r corresponds to two linear inequalities:

$$-r(h(e)+h(e')) \leq h(e)-h(e') \leq r(h(e)+h(e'))$$

• We introduce some auxiliary variable $\delta(e)$ with

 $|h(e) - h^{obs}(e)| \leq \delta(e)$ i.e. $\pm (h(e) - h^{obs}(e)) \leq \delta(e)$

And we minimize

$$\sum_{e} \delta(e)$$
 that is $\sum_{e} |h(e) - h^{obs}(e)|.$

- There are many possible variants, which are still in the linear programming paradigm:
 - Preserve the total volume of the basin.
 - Have a different objective function.
 - Impose only positive/negative corrections at some points.
 - ► Impose maximum amplitude condition.

Definition

► A linear program is the problem of maximizing a linear function f(x) over a set P defined by linear inequalities (polyhedral).

$$\mathcal{P} = \{x \in \mathbb{R}^d \text{ such that } f_i(x) \ge b_i\}$$

with f_i linear and $b_i \in \mathbb{R}$.

- The solution of linear programs is attained at vertices of \mathcal{P} .
- There are two classes of solution methods:

III. Comparison of selected methods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Adriatic Sea

The bathymetry is highly varying and the coastline is diverse.

・ロト ・ 四ト ・ モト ・ モト

3

 \blacktriangleright We chose three grids 160 \times 60, 127 \times 368, 271 \times 751

Regions of hydrostatic stability

The regions of hydrostatic consistency $(rx_1(h, e) \le 1 \text{ in light blue})$, hydrostatic inconsistency $(1 \le rx_1(h, e) \le 5 \text{ in dark blue})$ and hydrostatic instability $(rx_1(h, e) \ge 5 \text{ in red})$

Average amplitude of bathymetry modification

The average amplitude of bathymetry modification (m) in terms for bathymetry smoothing methods

Average variation of bathymetry

The average variation of the bathymetry (m) from wet cell to wet cell for bathymetry smoothing methods in terms of $rx_0(h)$

Average amplitude of bathymetry modification

The average amplitude of bathymetry modification (m) in term of rx_0 for volume preserving smoothing methods

Average variation of the bathymetry

The average variation of the bathymetry (m) from wet cell to wet cell for bathymetry smoothing methods preserving volume in terms of rx_0

Stability of solutions

What happens if one perturb by an infinitesimal quantity the observed bathymetry and/or the roughness factor?

- Heuristic methods are continuous.
- Shapiro filter and Laplacian filter methods are not continuous.
- Linear programming methods are not continuous since there are possible hoppings from one vertex to an adjacent one.

In practice during 0.01 increments to rx_0 ,

 Shapiro/Laplacian filter are 10 times more discontinuous than heuristic method.

polyhedral method are 2 times more discontinuous.

Conclusions

- Shapiro and Laplacian filter should be avoided since they create large perturbation of the bathymetry.
- Heuristic methods like Martinho-Batteen, Mellor-Ezer-Oey work very well.
- If rx₀(h) ≤ 0.2 is needed, then linear programming might be what you need.
- All programs for optimizing over rx₀ or rx₁ are available from http://drobilica.irb.hr/~mathieu/Bathymetry/index.html

THANK YOU

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ