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Examples of two way nesting applications
OPA Model

Jouanno et al, Ocean Modelling,
2008

Chanut et al, JPO, 2008



Examples of two way nesting applications
OPA Model

Biastoch et al, Nature, 2008
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The grid hierarchy and its time integration
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P: interpolation
R: restriction
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Time stepping issues: solution of a linear system
Let’s suppose we have to solve:

Av = B, ∆q = sin(x)

a) Acvc = Bc on ΩH

b)

{
Af vf = Bf on ωh

vf|γh
= Pvc

Naive approach
One way

-0.4 -0.2 0 0.2 0.4
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Coarse Grid
Fine Grid

Coarse and fine grid errors:
Naive approach



Time stepping issues: solution of a linear system
Let’s suppose we have to solve:

Av = B, ∆q = sin(x)

a) Acvc =

{
RBf in ωH

Bc in ΩH\ωH
, b)

{
Af vf = Bf on ωh

vf|γh
= Pvc

Update of the right hand side



Time stepping issues: solution of a linear system
Let’s suppose we have to solve:

Av = B, ∆q = sin(x)

 Ac 0
0 Af

Acγ Af γ

( vc |ΩH\ωH

vf

)

=


Bc in ΩH\ωH

Bf on ωh

Bγ in γh

Multiresolution system
on a composite grid
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Time stepping issues: split/explicit free surface

Barotropic time steps:

t t+∆tc t+2∆tc

Filtering :

U(t + ∆tc) =

∫ t+2∆tc

t

g(ξ − t)u(ξ)dξ

Z t+2∆tc

t
g(ξ − t)dξ = 1,

Z t+2∆tc

t
ξg(ξ − t)dξ = t + ∆tc

One Way approach: coupling at the baroclinic level



Time stepping issues: split/explicit free surface

How to perform the coupling at the barotropic level ?

t
Gc

Gf

t+∆tc t+2∆tc

t t+∆tct+∆tc/2

t+3∆tc/2

?

Exchange between intermediate filtered quantities:

U(t + α∆tc) =

∫ t+2α∆tc

t

1

α
g

(
ξ − t

α

)
u(ξ)dξ

t t+∆tc

t t+∆tc/2
t+∆tc

Gc

Gf



Time stepping issues: split/explicit free surface

How to perform the coupling at the barotropic level ?
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Update schemes

I Maximize the transfer of information for scales well resolved
on the coarse grid

I Filter out the small scales



Update schemes
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Update schemes: Baroclinic Vortex
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The conservation problem

I Maintain conservation

I Quantify artificial loss



The conservation problem
Let us consider a one dimensional domain and q, a solution of the
following equation written in conservative form

∂q

∂t
+
∂g(q)

∂x
= 0, g(q) = u0 q

ic if

qc,n+1
ic

= qc,n
ic
− ∆tc

∆xc

(
gn

ic − gn
ic−1

)
Coarse grid

q
f ,n+1/2
if

= qf ,n
if
− ∆tf

∆xf

(
gn

if
− gn

if−1

)
qf ,n+1

if
= q

f ,n+1/2
if

− ∆tf
∆xf

(
g

n+1/2
if

− g
n+1/2
if−1

)
Fine grid



The conservation problem
Let us consider a one dimensional domain and q, a solution of the
following equation written in conservative form

∂q

∂t
+
∂g(q)

∂x
= 0, g(q) = u0 q

ic if

Composite grid approach:

Qn =
ic∑
−∞

∆xcq
c,n
i +

+∞∑
if

∆xf q
f ,n
i

(
6=

+∞∑
−∞

∆xcq
c,n
i

)

Qn+1 = Qn −
[
∆tc gn

ic −∆tf
(
gn

if−1 + g
n+1/2
if−1

)]
6= Qn

Artificial loss of conservation



The conservation problem
Let us consider a one dimensional domain and q, a solution of the
following equation written in conservative form

∂q

∂t
+
∂g(q)

∂x
= 0, g(q) = u0 q

ic if

Flux correction:

qc,n+1,?
ic

= qc,n+1
ic

+
1

∆xc

[
∆tc gn

ic −∆tf
(
gn

if−1 + g
n+1/2
if−1

)]



The conservation problem
Let us consider a one dimensional domain and q, a solution of the
following equation written in conservative form

∂q

∂t
+
∂g(q)

∂x
= 0, g(q) = u0 q

ic if

Stability issues: g computed with centered schemes

qc,n+1,?
ic

= qc,n+1
ic

+
1

∆xc

[
∆tc gn

ic −∆tf
(
gn

if−1 + g
n+1/2
if−1

)]
︸ ︷︷ ︸

∆tc
“

1
9 ∆xcu0

∂2q

∂x2

”
First order accurate



The conservation problem
Let us consider a one dimensional domain and q, a solution of the
following equation written in conservative form

∂q

∂t
+
∂g(q)

∂x
= 0, g(q) = u0 q

ic if

Stability issues: g computed with 3rd order upwind schemes
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= qc,n+1
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+
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Sponge layer

I Maintain a strong consistency between high and coarse
resolution solutions in the area where solutions interact (i.e.
near the common interface)

I Prevent waves reflection

∂qf

∂t
= . . .+ (−1)n+1(∆)n [µx ,∂ω(qf − Pqc)]

= . . .+ (−1)n+1(∆)n

µx ,∂ω (I − PR)︸ ︷︷ ︸
filter

qf )

 (1)
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Roms Agrif: summary

Intergrid 
Transfert

Interpolation Update

Conservation

Kurihara Flux correction

Average Shapiro Full Weightingconservative non conservative

WENO

Noise Control

Sponge

Full field Difference

Relaxation

Blending Damping

Overspecification

Explicit Implicit

coupling at the 
baroclinic level

coupling at the 
barotropic level

mesh separation internal values

→ integration in Roms Agrif 2.0



Applications

Test cases similar to Penven et al, 2006, Ocean Modelling

I Baroclinic vortex

I USWC15km-5km
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Applications
Baroclinic Vortex

Free surface on the high resolution domain after 70 days: One-way
(left), Two-way (right)
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Applications
Baroclinic Vortex
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Applications
USWC15-5
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