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MotivationsMotivations

• Merge datasets together

• Use ocean dynamics as constraints

• Evaluate model (and data) quality

• Estimate forcing and bdry conds
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OutlineOutline

1) Summary of Bayesian statistics, cost functions

2) Least-squares inversion formulas; over- and under-determined

3) Gradient methods for approximate inversion

4) Priors and Smoothing

5) Nonlinearity: unbounded sensitivity (no)

6) Not a speck of science!



Quotes out of contextQuotes out of context

•• Imitation (stealing) is the sincerest form of Imitation (stealing) is the sincerest form of 
flatteryflattery

•• Everything should be made as simple as Everything should be made as simple as 
possible, but no simpler  (A. Einstein)possible, but no simpler  (A. Einstein)

•• Foolish consistency is the hobgoblin of small Foolish consistency is the hobgoblin of small 
minds  (R.W. Emerson)minds  (R.W. Emerson)

•• Willem, a grown man like you, working on Willem, a grown man like you, working on 
linear problems!?  (J. Keller?)linear problems!?  (J. Keller?)



Notation Pitfalls/IssuesNotation Pitfalls/Issues

•• Several conflicting conventions; have to Several conflicting conventions; have to 
compromise.compromise.

•• Control theory (e.g. Control theory (e.g. WunschWunsch))
•• Geophysical inverse theory (e.g. Geophysical inverse theory (e.g. MenkeMenke))
•• BennettBennett
•• WeaverWeaver
•• Objective mapping (old)Objective mapping (old)
•• Sometimes leads to duplication; sorry!Sometimes leads to duplication; sorry!



Control Theory (matrices)Control Theory (matrices)

•• P = covariance of parameter uncertaintyP = covariance of parameter uncertainty
•• R = covariance of data uncertainty (error)R = covariance of data uncertainty (error)
•• Q = covariance of model error at each stepQ = covariance of model error at each step
•• A = transition matrix (Andy’s “R” propagator)A = transition matrix (Andy’s “R” propagator)
•• H = Sampling matrixH = Sampling matrix
•• x = unknown state vectorx = unknown state vector
•• y = datay = data



Geophysical Inverse Theory (matrices)Geophysical Inverse Theory (matrices)

•• P = covariance of parameter uncertaintyP = covariance of parameter uncertainty
•• R = covariance of data uncertainty (error)R = covariance of data uncertainty (error)
•• G = Sampling matrix  (G = H*A)G = Sampling matrix  (G = H*A)
•• m = unknown parametersm = unknown parameters
•• d = datad = data



Bennett (time and space continuous)Bennett (time and space continuous)

•• C = covariance of parameter uncertaintyC = covariance of parameter uncertainty
•• = covariance of data error  (used in the following)= covariance of data error  (used in the following)
•• R = R = representerrepresenter matrix (OA: “datamatrix (OA: “data--data covariance”)data covariance”)
•• P = R +        (stabilized P = R +        (stabilized representerrepresenter matrix)matrix)
•• r = r = representerrepresenter functionsfunctions
•• L = Sampling functionalL = Sampling functional
•• u = unknown parametersu = unknown parameters
•• d = datad = data
•• = = representerrepresenter coefficients (or “rotated data”)coefficients (or “rotated data”)β̂

εC

εC



Bayesian Estimation; MAPBayesian Estimation; MAP

Data 

Prior 

PPD
Combine data & prior
information to define
Posterior Probability 
Density (PPD)

PPD quantifies model
probability over M-D
parameter space

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



BayesBayes Theorem Theorem 

BayesBayes TheoremTheorem::

LikelihoodLikelihood:: data uncertainty distributiondata uncertainty distribution,, interpreted as interpreted as 
function of function of m m (for measured (for measured dd)).  .  Typically Typically 

PriorPrior: : existing knowledge of existing knowledge of mm

)]d,m(exp[)m|d( EP −∝

)m()m|d()d()d|m( PPPP =

Data misfit

PriorPPD Likelihood prior

T 1( | ) exp[ (  - G( )) (  - ( ))]P ε
−∝ −d m d m C d G me.g.:

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



A posteriori probability distribution: PPDA posteriori probability distribution: PPD

BayesBayes TheoremTheorem: : 

PPDPPD::

Log likelihoodLog likelihood

)m()]d,m(exp[)d|m( PEP −∝

'm)]d,'m([exp
)]d,m(exp[)d|m(
d

P
φ
φ

−
−=

∫
M

)m(log)d,m()d,m( e PE −=φ
(generalized misfit)

→ Interpret M-dimensional distribution?

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



PPDPPD InterpretationInterpretation

MM--D PPDD PPD interpreted by properties defining parameterinterpreted by properties defining parameter
estimatesestimates,, uncertaintiesuncertainties,, interinter--relationshipsrelationships

}{ )d|m(m̂ MAP PmaxArg= MAPMaximum (“mode”)

'm)d|'m('mm̂ Mean dP∫= MeanMean  (1st moment)

Marginal
Distribution
Marginal
Distribution∫ −= m')d|m'()'()d|( dPmmmP iii δ

m')d|m'()ˆ')(ˆ'( dPmmmm jjiiij −−= ∫C Covariance
(2nd moment)

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



PPD Optimization / IntegrationPPD Optimization / Integration

MAP requires maximizing PPD MAP requires maximizing PPD →→ minimize                         minimize                         
ee..gg.. using global or (adaptive) hybrid inversion using global or (adaptive) hybrid inversion 

MarginalsMarginals,, covariancecovariance,, etcetc require integrating PPDrequire integrating PPD

For nonlinearFor nonlinear problemsproblems,, numerical integration  required via numerical integration  required via 
Importance SamplingImportance Sampling and and Markov Chain / Monte CarloMarkov Chain / Monte Carlo
methodsmethods

'm)d|'m()'m( dPfI ∫=

)m(φ

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



Analytical Forms for PDF: Cost FunctionsAnalytical Forms for PDF: Cost Functions

Given the form of the PDF, the MAP estimator becomes a Given the form of the PDF, the MAP estimator becomes a 
norm to be maximizednorm to be maximized

Example: Gaussian statistics:Example: Gaussian statistics: MAP

Mean

Marginal
Distribution

Covariance

Correlation

( | ) exp[ ( , )] ( )P E P∝ −m d m d m

T 1 T 1( , ) (  - ( )) ( - ( )) + εφ − −=m d d G m C d G m m P m

T 1( ) (  - ( )) ( - ( ))E ε
−=m,d d G m C d G m

T 1log ( )e P −=m m P m

Max(log likelihood) = minimum cost function



Aside: Quadratic normsAside: Quadratic norms

The quadratic product defines a parabolic surface The quadratic product defines a parabolic surface 
(manifold) in the shape of an (manifold) in the shape of an elipsoidelipsoid of rotationof rotation
DiagonalizingDiagonalizing the weighting matrix identifies principal axesthe weighting matrix identifies principal axes
Example: simple function (or functional if continuous)Example: simple function (or functional if continuous)

Mean
T 1( )f −=m m P m
T 1( ) ( )Tf −=m m UΛU m T T= =UU I U U

Decompose into eigenvectors

where

= Independent variables

T 1( ) ( ) ( ) ( )T Tf −=m U m Λ U m
' T=m U m

Or: orthonormalize: e.g. Cholesky factorization   (caution!)
1/ 2 T 1/ 2( ) ( ) ( )f − −=m P m P mT / 2 1/ 2( ) Tf − −=m m P P m



ReRe--parameterizationparameterization

Sampling along parameter axes inefficient for correlated Sampling along parameter axes inefficient for correlated 
parameters parameters →→ rotate to principal component parameter rotate to principal component parameter 
spacespace by by diagonalizingdiagonalizing covariance covariance 

m2

m1

m2 m1

‘
‘

m mT T′= ⇒ =P UΛU U

Stan Stan DossoDosso; U. Victoria BC CA; U. Victoria BC CA



Least Squares MinimizationLeast Squares Minimization

( ) ( )T 1
0 1 0 1

1J= ( (t )) (t ) ( (t )) (t )
2 ε

−− −G x d C G x d

•• Cost functionCost function

Observation term o(J )
( ) ( )T 1

b 0 0 b 0
1 ( ) ( ) ( ) ( )
2 ot t t t−+ − −x x P x x

Background term b(J )

•• Assume Gaussian Assume Gaussian PDFsPDFs for x, r   (can be dangerous!!)for x, r   (can be dangerous!!)

1 0 1(t )= ( (t ))  (t )+d G x r

•• Minimize difference between model solution and observations and Minimize difference between model solution and observations and 
size of control (“background”) in a leastsize of control (“background”) in a least--squares sense.squares sense.



If the model is linear, then 1 1 0 1( ) ( ) ( )t t t= +d G x r

b 0( ) 0t =xFor simplicity, define x as a CORRECTION, so

The cost function is
1

1 1 0 1 1 0 0 0
1( ( ) ( )) ( ( ) ( )) ( ) ( )T TJ t t t t t tε

−−= − − +d G x d x xC G x P

R is the covariance of data error, P is the covariance of model error

The gradient of J with respect to initial x is:

1
1 1

1
1 0 0

0

( ( ) ( )) ( )
( )

TJ t t t
t ε

−−∂
= − +

∂
G d G x P x

x
C

0

0
( )
J
t

∂
=

∂x
At the minimum (solution)



TimeTime--dependence using a modeldependence using a model

Assume a linearized model:

( 1) ( ) ( ) ( ) ( ) ( )n n n n n n+ = ⋅ + ⋅ +x A x L u q

is the model state vector at time

is the linearized transition matrix

is the forcing and boundary condition control parameters

transforms           to model forcing and boundary conditions

represents the model errors

( )nx

( )nL

( )nu

( )nA

( )nu

( )nq

nt



Data at time      are available through a sampling matrix       :n ( )nH

In other words, the residuals are:

Using the model, data timestep 1 samples the state vector:

Or, using the dynamics, it samples the initial conditions and forcing:

( ) ( ) ( ) ( )n n n n= ⋅ +y H x r

( ) ( ) ( ) ( )n n n n= − ⋅r y H x

(1) (1) (1) (1)= ⋅ +y H x r

(1) (1) ( (0) (0) (0) (0) (0) (1))A x L u q r= ⋅ ⋅ + ⋅ + +y H

This can be continued forward in time to step 2, etc.



Perturbations to the data at an arbitrary time     depend
on perturbations to the initial conditions according to the matrix:

n

1( ) ( ) ( 1) ( 2) (1) (0) (0) (0)n n n n G= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅ ≡ ⋅y H A A A A x xK

Adjust the free parameters to make the model match the observations.
Ignoring forcing, the objective function to be minimized is:

1 1( ) ( ) (0) (0)T TJ n nε
− −= ⋅ ⋅ + ⋅ ⋅r r x P xC

which minimizes weighted residual variance and weighted variance
of the modifications to the initial conditions.

• is the covariance of uncertainty in the model initial state,
• is the covariance of uncertainty in the residuals,

P
R

(0)x
( )nr



So, the cost function is:
11

1 1( ( ) (0)) ( ( ) (0)) (0) (0)T TJ n nε
− −= − ⋅ ⋅ ⋅ − ⋅ + ⋅ ⋅y G x y G x x P xC

The gradient is:

1
1 1

1 ( ( ) (0)) (0)
(0)

TJ nε
− −∂

= ⋅ − ⋅ + ⋅
∂

CG y G x P x
x

Rewriting the first term on the RHS using the model:
1

1[ ( ) ( 1) (1) (0)] ( ( ) (0))Tn n nε
−= ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅H A A A y G xCK

1
1(0) (1) ( 1) ( ) ( ( ) (0))T T T Tn n nε

−= ⋅ ⋅ ⋅ − ⋅ ⋅ − ⋅A A A H y G xCK

which is the adjoint model integrated backward in time, starting
from the backprojection (adjoint) of the observation(s). 



The solution is the value that sets the gradient to zero  

1
1 1 1 0 0

1 ˆ ˆ( ( ) ( )) ( ) 0T t t tε
− −− + =G d G x P xC

Collecting terms:
1

1 1 0 1
1

1
1 ˆ( ) ( ) ( )T Tt tε ε
− −−+ =C CG G P x G d

“Hessian matrix”

Formal solution (do the matrix inverse)
1 11

0 1 1 1 1
1ˆ ( ) ( ) ( )T Tt tε ε

− −− −= +x G G P dCGC
Above is model space inverse (overdetermined)
Below is data space inverse (underdetermined)

1
0 1 1 1 1ˆ ( ) ( ) ( )T Tt tε

−= +x P G G P dCG (OA)
“Rotated data”Model-data

Covariance Representer Coeffs



Doing the inverse gives error estimates

1
0 0 0 0 0

ˆ ( ) ( )T Tt ε
−= − +P P P H H CP H H P

Above is model space inverse (overdetermined)
Below is data space inverse (underdetermined)

1 1
1

1
0 1

ˆ ( ) ( )Tt ε
−− −= +CP G G P

“Hessian matrix”

So the Hessian matrix is the inverse of the 
MAP estimate uncertainty covariance matrix

0
ˆ ( )t →P Pε → ∞CCheck: as



•• UnderUnder--determined:determined:

•• OverOver--determined:

[ ] [ ]
1

2
1 1 1 1

N

m
m

d

m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L
M

Linear Inverse ProblemsLinear Inverse Problems

d = Hm

[ ]
1

2
1

1
1

1N

d
d

m

d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

M M
determined:



PseudoPseudo--inversesinverses

•• UnderUnder--determined problem:determined problem:

•• OverOver--determined problem:

( ) [ ]
1

12
1

ˆ
ˆ

ˆ

T T

N

m
m

P H H P H R d

m

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ = +
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

determined problem: [ ] ( )
1

1 21 1 1
1ˆ T T

N

d
d

m H R H P H R

d

−− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

Model parameter
uncertainty covariance

P
=

Sampling Matrix

H
=

Noise covariance

R
=

Known data

nd
=

ˆ

Estimate of
unkown parameter(s)

nm
=



( ) [ ]
1

12
1

ˆ
ˆ

ˆ

T T

N

m
m

P H H P H R d

m

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ = +
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

P I=[ ]1 1 1H = L

2

2
2

2

R I

σ
σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

O

[ ] [ ]

1
1

2 2
1

ˆ 1 1
ˆ 1 1

1 1 1

ˆ 1 1N

m
m

I I I d

m

σ

−
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∴ = +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

L
M M M

( ) [ ]12
1

1
1

1

N dσ
−

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

UnderUnder--determined problemdetermined problem



[ ] ( )
1

1 21 1 1
1ˆ T T

N

d
d

m H R H P H R

d

−− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

OverOver--determined problemdetermined problem

1
1

1

H

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

2

2
2

2

R I

σ
σ

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

O
P I=

[ ] [ ] [ ]

1
1

2
1 2 2

1
1

ˆ 1 1 1 1 1 1

1 N

d
dI Im I

d
σ σ

−
⎛ ⎞ ⎡ ⎤⎡ ⎤
⎜ ⎟ ⎢ ⎥⎢ ⎥
⎜ ⎟ ⎢ ⎥⎢ ⎥∴ = +⎜ ⎟ ⎢ ⎥⎢ ⎥
⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

L L
MM

[ ] ( ) [ ]
1 1

1
12 22

2 2

11 1 1 1 1 1 1

N N

d d
d dN N

d d

σ
σ σ

−
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎛ ⎞ ⎢ ⎥ ⎢ ⎥= + = +⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

L L
M M



Can avoid the inverse by solving for just the single vector:

model space (overdetermined)
1

1 1 0 1
1

1
1 ˆ( ) ( ) ( )T Tt tε ε
− −−+ =C CG G P x G d

data space (underdetermined) is more tricky:
1

0 1 1 1 1ˆ ( ) ( ) ( )T Tt tε
−= +x P G G P dCG

Can break it up into two pieces

0 1

1
1 1 1

1 1 1

ˆˆ ( )
ˆ ( ) ( )

ˆ( ) ( )

T

T

T

t

t

t

ε

ε

−

=

= +

+ =

x P G β

β G P G d

βC d

C

G P G
Instead of doing the formal inversion, solve

“Rotated data”
Representer Coeffs



Can’t solve if don’t have the matrix all at once.  Since G 
includes the TLM, and G-transpose includes the adjoint
model, need methods that operate with one row or column 
at a time.  “Row-action methods”  e.g., Conjugate-gradient.

Model space (overdetermined)
1

1 1 0 1
1

1
1 ˆ( ) ( ) ( )T Tt tε ε
− −−+ =C CG G P x G d

Newton’s method  (one-step) solution (requires Hessian inverse)

1 11
0 1 1 1 1

1ˆ ( ) ( ) ( )T Tt tε ε
− −− −= +x G G P dCGC

This can be viewed as a rotation and scaling of the gradient at x=0

1
1 1

1
1 0 0

0

( ( ) ( )) ( )
( )

TJ t t t
t ε

−−∂
= − +

∂
G d G x P x

x
C



Since can’t afford to do the inverse and go to the solution in 
one iteration, try to go down the gradient

1
1 1

1
1 0 0

0

( ( ) ( )) ( )
( )

TJ t t t
t ε

−−∂
= − +

∂
G d G x P x

x
C

0 1 0 0 0
0

( ) ( )
( )
Jt t
t

∂
= +

∂
x x K

x

Make a series of guesses for x:

““4DVAR” or “4DVAR” or “AdjointAdjoint method”method”

Where K is a matrix that rotates and scales the descent 
direction.  Ideally, this would be the inverse of the 
Hessian, but various approximate techniques choose 
this differently.  The simplest way is to have it be a 
scalar, determined by a line search  in the down-
gradient direction.



Pre-conditioning is the use of matrices K that accelerate the 
descent.  Approximation of the Hessian matrix is an option, 
and can be built up during a set of iterations.  The control 
parameter covariance matrix, P, is a reasonable start

0 1 0 0 0
0

( ) ( )
( )
Jt t a
t

∂
= +

∂
x x P

x

Subsequent iterations take account of previous descent directions.
Many algorithms are available; ROMS uses a proprietary algorithm.



Cost Function MinimizationCost Function Minimization

•
J
(0)
∂

∂x

J

Minimize J by iterating
• Forward model run to evaluate J
• Adjoint model run to compute gradient of J



Cost Function Geometry: goodCost Function Geometry: good

Strong gradients can make for slow convergence
• Pre-conditioning should make the cost function more circular



Cost Function Geometry: badCost Function Geometry: bad



Line search: minimize J along gradientLine search: minimize J along gradient

J∇

2J ax bx c= + +

J

Jstart

Jmin

xx2x1

Control parameter



Success depends on linearitySuccess depends on linearity

J∇

J

Jstart

Jmin

xx1



data space (underdetermined)data space (underdetermined)
1

0 1 1 1 1ˆ ( ) ( ) ( )T Tt tε
−= +x P G G P dCG

Solve in two pieces, (repeat from before)

Need to solve the problem:

0 1

1
1 1 1

1 1 1

ˆˆ ( )
ˆ ( ) ( )

( ) ( )

T

T

T

t

t

t

ε

ε

−

=

= +

+ =

x P G β

β G P G d

G β dCP G

C

Can solve this using iteration as well; 

1 1( )T
ε+ ≡P G CG S (stabilized representer matrix)

( )TJ∂
= −

∂
S d Sβ

β
( ) ( )TJβ = − −d Sβ d Sβ



Indirect Indirect representerrepresenter method (method (EgbertEgbert))

1 1( ) ( ) ( )T T TJ
ε

∂
= − = + −

∂
S d Sβ G P G dC Sβ

β
Solve with gradient descent iteration

2 1 1 1 1 1 1 1( ) ( )T TJ
ε

∂
= + = + + −

∂
β β K β K G P G d SβC

β

Once have a solution, plug it in to get controls:

0 1

1 0 1 1

ˆˆ ( )

ˆˆ ˆ ( )

T

T

t

t

=

= =

x P G β

d G x G P G β

Make data estimate from estimated controls



Aside: Smoothing tricksAside: Smoothing tricks

The covariance, The covariance, PP, has off, has off--diagonal terms, and can be diagonal terms, and can be 
expensive and annoying to compute.expensive and annoying to compute.
DerberDerber and and RosatiRosati (1989) for P;   Bennett (2002) for inv(P)(1989) for P;   Bennett (2002) for inv(P)

T
2 2( ) ( ) ( )Tf a b≈ +m m m D m D m
Mean

T 1( )f −=m m P m

2Dwhere

If m is a 2-d field, and P is approximately Gaussian in x and y, 
can approximate the norm by

is the second derivative operator on m

P is smoothing, so inv(P) is roughening

( )f =m Pm

Correlation

P is smoothing.  If P is a Gaussian, it can be 
approximated by solving the diffusion 
problem with m as an initial condition.



Other topicsOther topics

Sensitivity and nonlinearitySensitivity and nonlinearity
ReRe--linearization: e.g. S4DVAR vs. IS4DVARlinearization: e.g. S4DVAR vs. IS4DVAR

Inner loops vs. outer loopsInner loops vs. outer loops
KalmanKalman filters: extended, ensemble, particle, etc.filters: extended, ensemble, particle, etc.
Data Data functionalsfunctionals for constraints (“bring the model to for constraints (“bring the model to 
the data”)  e.g.:the data”)  e.g.:

Constrain monthly spatial averages of the model to Constrain monthly spatial averages of the model to 
WOA atlas climatology (WOA atlas climatology (LevitusLevitus))
Constrain averages from the first month to match Constrain averages from the first month to match 
the same month in subsequent yearsthe same month in subsequent years

Correlation



KalmanKalman filter: partitioned inverse in timefilter: partitioned inverse in time
Only do inverse for data within a short time range, 
so inverse is feasible in data space, just sample:

1
0 0 0 0 0ˆ ( ) ( ) ( )T Tt tε

−= +x P H H P dCH
Also compute uncertainty of control parameter estimate:

1
0 0 0 0 0

ˆ ( ) ( )T Tt ε
−= − +P P P H H CP H H P

Propagate estimate and uncertainty forward to next time range:

1 1 0
ˆ( ) ( ) Tt t≡ = +P P AP A Q% %

Invert again with new data

1 0ˆ( ) ( )x t x t= A%

Note: includes model errors

1
1 1 1 1 1 1 1 1 1 1ˆ ( ) ( ) ( ) ( ( ) ( ))T Tt t t tε

−= + + −x x P H H P H d H xC% %% %
Kalman gain                      innovation



KalmanKalman filter: approximationsfilter: approximations
Not feasible to estimate or propagate the P matrix

1
0 0 0 0 0

ˆ ( ) ( )T Tt ε
−= − +P P P H H CP H H P

1 0
ˆ( ) ( ) Tt t= +P AP A Q%

Approximate approaches:

3DVAR: approximate P and don’t change it

Reduced State Space
Ensemble KF: sample P in a subspace
Other refinements: particle KF, etc.

1
1 1 1 1 1 1 1 1ˆ ( ) ( ) ( ) ( ( ) ( ))T Tt t t tε

−= + + −Cx x P H H PH d H x% %



Thank you!Thank you!

Whew!Whew!
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