
1

Version Control with Svn,
Git and git-svn

Kate Hedstrom

ARSC, UAF

2

Version Control Software

•  System for managing source files
– For groups of people working on

the same code
– When you need to get back last

week’s version
•  In the past, I have used RCS, CVS,

and SVN, each better than the last
•  Git is the newest widely used open

source version control system

3

Getting Started With SVN

•  Tell it where the archive is with a
URL:

•  For a new archive:

•  From an existing archive:

 % svn checkout URL!

file:///local/path!
 or!
http://host/path!

% svnadmin create /local/path!

Local Files

•  After a checkout, svn will keep a
private copy of each file under
the .svn directory

•  You will also have the “sandbox”
files, for you to use and edit

•  “svn diff” will show differences
between them

•  Can only point to one repository

5

Main svn commands

•  import - bring sources into a repository
•  checkout - get sources out of the

repository
•  commit - check in changes
•  update - get changes from repository
•  status - find out which files would change

on commit
•  diff - find out what you changed
•  help

6

Read-only svn Commands

•  Checkout – get sources out of the
repository

•  update – get changes from repository
•  status – find out which files you have

changed
•  diff – find out what you changed
•  info – find URL of the repository
•  log – see the history
•  help

7

Revision Numbers

•  Svn uses a database to store the
files on the server

•  The whole project has one revision
number to describe that snapshot

•  Can see the numbers with “svn log”
•  Every commit creates a new

revision number

8

Updates
•  An update when two people have

changed things can involve:
– No conflict because changes are in

different places
– Conflict because two different changes to

the same region in the code
•  If there is a conflict this must be

resolved by human intervention

•  One option is to revert (undo)

9

Conflicts

•  If there is a conflict, svn will
provide you with four files:

– The original file (filename.mine)
– The older file from the trunk (filename.r41)
– The newer file from the trunk (filename.r45)
– A merge attempt (filename)

•  The merge failures will look
something like:

10

 Clean code before!
 <<<<<<< .mine!
 My code!
 =======!
 New code!
 >>>>>>> .r45!
 Clean code after!
•  Once you’ve cleaned up the mess, tell svn

you’re ready:!
 svn resolved filename!
•  This will cause svn to delete the extra files

and allow a commit to take place
•  You can instead toss your changes with:
 svn revert filename!

11

Learn more

•  Version Control with Subversion, by
Collins-Sussman et al., 2004, O’Reilly

•  Online at http:svnbook.red-bean.com/

•  svn help

Onward to Git
•  Git was designed by Linus

Torvalds for managing the Linux
kernel and therefore has these
goals:
–  Fast
–  Support many users
–  Distributed

Distributed?

•  Every checkout gives you a copy of
the whole repository

•  Can compare branches, history

while offline

•  Can check in your changes to your

local repository

•  Sharing updates with others is

optional

Why change from svn?

•  For our needs as ROMS users and
developers, git solves some
problems:
– Save our own changes
– Apply patches from the repo one at a time –

especially for those waiting months between
updates

– “git format-patch” and “git am” smoother
than “diff” and “patch” in the face of conflicts

14

15

Getting Started With Git

•  Set up who you are:
% git config –-global user.name “you”!
% git config –-global user.email \
“you@home”!

•  Get colorful (if you want):
% git config –-global color.ui “auto”!

•  Without “--global” applies to current

directory only

Start a New Repository

•  In the directory with your code:
– git init
– git add .
– git commit -m “initial message”

•  You now have a .git directory with a

database of your files

•  Revision numbers are SHA1 numbers,

same for the same content

From a Repository

•  From a git url:
– git clone <url>

•  Could be another local directory:

– git clone dir1 dir2

•  From an svn url:
– git svn clone <url>

•  Default is to suck down the entire

history into the database

18

Main git commands

•  add – add sources to next commit
•  commit – check in changes locally
•  checkout – change branches
•  push – send your changes to a remote

site
•  pull/fetch – get changes from remote site
•  status – find out which files would

change on commit
•  diff – find out what's different between

index and current sandbox
•  help

19

Example

•  Change/add some local files
– git add newfile
– git commit

•  “git add” adds files to the commit
list for the next commit

•  Can selectively add only some of
your changes to make logical
commits
– git commit -a #commits all changes

% ls /my/src/cpp!
cpp.h cpp.c Makefile ...!
% cd /my/src/cpp!
% git init!
Tell git which files to track!
% git add .!
% git commit!
[make some changes]!
% git commit -a!

Git example

Comments on Previous

•  Svn requires you to set up
branches, tags, trunk – no more

•  Svn requires you to delete the

starting directory and checkout

fresh – no more

•  Tracked files have to be explicitly

added

What about Branches?

•  See the branches:
– git branch

•  Make a new branch:
– git branch <new> # copy of current

•  Switch to that new branch:
– git checkout <new>

•  Both in one:
– git branch -b <new>

Seeing History

•  git log

•  gitk (gui)

•  git diff HEAD^

•  git log HEAD^^^ or HEAD~3

•  git diff b324a87 (SHA1)

•  git diff --cached (between index

and HEAD)

Index?

•  The index is a store of what would be

checked in on “commit”

•  Contains files that merged cleanly

•  “git diff” shows difference between

index and current sandbox

•  “git diff HEAD” shows difference

between last checked in and sandbox

Index as Staging Area

26

on midnight!
% git clone <URL> roms!
% cd roms!
[make some changes]!
% git commit -a!
% git push origin master!

on cygnus!
% git clone …!
% cd roms!
% git pull!
% make!

Coordination

•  Coordinate code on multiple systems

•  Coordinate between multiple
programmers

•  Can be single version or multiple
branches

27

Other git commands

•  delete – no longer need a file
•  move – rename a file or move to new

location
•  merge – merge changes from another

branch
•  cherry-pick – pick one update from

some other branch
•  remote – register a remote repo
•  rebase – reorder the history in your

local repo (scary stuff!)

Revision Numbers

•  git uses a database to store the
files locally

•  The branch has one revision
number to describe that snapshot –
it’s a SHA1 with 40 characters

•  Can see the numbers with “git log”
•  Every file and every tree of files

has a unique SHA1 number

29

•  Branch can differ by a few files or every
ROMS file

•  Branch creation is lightweight
•  Rebase can be used to put change 5 after 6

Branches

30

Updates

•  An update when two people have
changed things can involve:
– No conflict because changes are in

different places
– Conflict because two different changes to

the same region in the code
•  If there is a conflict this must be

resolved by human intervention

•  One option is to reset (undo)

31

Conflicts
•  If there is a conflict, git will let

you know

•  The merge failures will look
something like:
 Clean code before!
 <<<<<<< HEAD:<file>!
 My code!
 =======!
 New code!
 >>>>>>> branch:<file>!
 Clean code after!

32

•  Once you’ve cleaned up the mess, tell git

you’re ready:
 git add filename!
•  This will cause git to place the new

version into the index
•  You can instead toss your changes with:
 git checkout HEAD filename!

More Conflicts

•  Once all the files are clear (check with “git
status”) commit the index to the repo:

git commit!

Git Svn Handshaking

•  Not quite as robust as git alone

•  Based on Perl scripts in svn

distribution (not always installed)
git svn clone <url>
git svn clone -s -r 1043 <url>
git svn rebase # fetch from upstream
git svn dcommit # commit to upstream
git svn log

Git Drawbacks?

•  Best with one project per repository
(roms, plotting, matlab tools all

separate entities)

•  Yet another tool to learn

•  Git-svn doesn’t handle svn Externals

•  ROMS expects valid svn entries in
Id tags

•  More rope to hang yourself…

My Insane Repo Collection

•  Bare repository on cygnus (Linux
workstation)

•  Cloned to each supercomputer via ssh

•  Cloned to Enrique's system via ssh

•  git-svn only working on Mac laptop

•  Mac has my git-svn directory, plus clone
of cygnus repo, also NCAR CCSM-ROMS

and Hernan’s trunk, both via git-svn

My Branches

•  Copy of the svn code

•  Copy of the same code in the bare

cygnus repo

•  Copy of the fish branch

•  Any other thing I'm working on

temporarily, like CICE coupling

37

Learn more

•  Version Control with Git, by Jon

Loeliger, 2009, O’Reilly
•  Online at

http://git-scm.com/documentation -
there are even videos

•  git help
•  If you like these ideas, but prefer a

Python tool, check out Mercurial at:
http://mercurial.selenic.com/

