
Introduction to Linux
January 2011

Don Bahls
User Consultant (Group Leader)

bahls@arsc.edu
(907) 450-8674

Overview

•  The shell
•  Common Commands

•  File System Organization

•  Permissions

•  Environment Variables

•  I/O Redirection and Pipes

•  Shell Special Characters

Practice

•  Exercises are available at the
following link. You may want to
do these exercises after class:

–  http://people.arsc.edu/~bahls/classes/exer.tar.gz

The shell

•  A shell is a program which lets you
interact with a system.

•  It lets you:
–  run programs.
–  interact with files, directories and devices on the

system.
–  “see” what those programs are doing.
–  send signals to other programs running on the

system.
–  and more- like setting environment variables,

setting limits, etc…

Some common shells

•  sh - bourne shell
•  ksh - korn shell
•  bash - bourne-again shell
•  csh - C shell
•  tcsh - tenex C shell (a.k.a turbo C)

•  Basic functionality is similar.

What shell should you use?

•  tcsh and bash probably the easiest to
learn for beginners, however ksh is the
default at ARSC for historical reasons.

•  With tcsh and bash:
–  command history (i.e. previously run commands)

can be accessed using the up and down arrow
keys.

–  the tab key tells the shell to try to perform filename
completion.

–  there’s a lot more, but this will get you started.

How do you change
your shell?

•  On many systems the chsh
command will let you change
shells.

•  If that doesn’t work, talk to your
help desk or system manager.

Common Commands

File Related
ls

cd

mkdir
rmdir

rm

pwd

Access Related
chmod

chgrp

groups

Process Related
ps
kill

General Purpose
more/less
grep

Documentation
man
info

Advanced Topics
pushd, popd, alias,…
…time permitting…

Common Commands -
continued

•  We won’t cover all of these commands,
but by the end of this talk you’ll know
where to find more information on all of
them.

•  Almost all of the aforementioned
commands are separate executables
(however cd is a built-in shell command
in many shells).

•  NOTE: Most UNIX environments are
case sensitive, so “ps” is not the same
as “PS”,“Ps” or “pS”!

man - on-line manuals

•  man pages are available for most
system commands in UNIX

LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuSUX nor --sort.

 Mandatory arguments to long options are mandatory for short options
 too.

man - on-line manuals

•  View the man page for ls
man ls

•  The “-k” flag lets you search for a term
in all man pages.
man -k color

•  If there isn’t a man page, try using the
“-h” or “--help” options with the
command:
ls --help

man - on-line manuals

•  Let’s look at a real man page...
•  A few tips:

–  press the “spacebar” key to move to the next
page.

–  press the “enter” key to move to the next line.
–  press “/” to get into search mode.

•  Then type a string to search for.
•  The “n” key will find next occurrences of the string.

–  press “q” to quit

info - on-line manuals
•  May contain more in-depth

documentation. {e.g. info emacs}
•  A few tips: {Emacs-like navigation}

–  use “arrow” keys to navigate current page.
–  press the “enter” key to drill down into topics.
–  press “[]” keys to move forward/back pages.
–  press “t u” key to top of topic or move up the

topic.
–  press “p n” key to go to the previous or next topic.
–  press “/” to search and repeat search.

•  Then type a string to search for.
–  press “ctrl-C” to quit

pwd - print working directory

•  prints the directory the shell is in.

% pwd
/home/user

ls - list directory contents

•  The ls command shows
information about a file or
directory.

•  Basic Command

% ls
bin

% ls -l /usr/bin/g++
-rwxr-xr-x 4 root root 109768 May 19 2005 /usr/bin/g++

•  Long Listing

ls - list directory contents

•  Show long listing of all files
 % ls -la ~
total 72
drwxr-xr-x 3 user staff 4096 May 11 17:42 .
drwxr-xr-x 5 root root 4096 May 11 17:41 ..
-rw-r--r-- 1 user staff 24 May 11 17:41 .bash_logout
-rw-r--r-- 1 user staff 191 May 11 17:41 .bash_profile
-rw-r--r-- 1 user staff 124 May 11 17:41 .bashrc
drwxrwxr-x 2 user staff 4096 May 11 17:42 bin
-rw------- 1 user staff 67 May 11 17:41 .Xauthority

ls - list directory contents

•  Notice files beginning with “.” are
now included in the output now.

•  Also notice the special directories
– “.” the current working directory
– “..” the parent directory

•  Another special directory
– “~” refers your home directory

cd - change directory

•  cd lets you change the working
directory of the shell.

•  cd with no parameters returns you to
your home directory.

•  Examples
cd
cd /usr/bin
cd ..

•  Can you think of another way to get to
your home directory?

mkdir - make directory

• mkdir creates a new directory

% mkdir ../../new_dir
mkdir: cannot create directory `../../new_dir': Permission denied

•  sometimes commands fail.

% mkdir new_dir

•  you must have permissions to write
and remove files and directories
(more in the Permissions section)

rmdir - remove directory

• rmdir removes a directory.
•  The directory must be empty to be

removed
rmdir new_dir

rm - remove files or
directories

• rm removes a file or directory.
•  there’s no way to undo a rm!

•  be careful!

•  remove file
rm filename

•  recursively remove a directory.
rm -r new_dir

more - paging filter

• more lets you display files to
screen one page (i.e. screen full)
at a time.

% more ~/.bashrc
.bashrc

User specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

more - paging filter

•  more also lets you view output from
another program one page at a time.
ls -l /usr/bin | more

•  The “|” symbol is called a pipe. A pipe
lets you connect the output from one
program to the input of another
program (more in the I/O section).

•  You might prefer the less command
(available on many systems).

ps - process status

•  Every running process (i.e.
program) has an associated
process id.

% ps
 PID TTY TIME CMD
 2779 pts/1 00:00:00 bash
 2810 pts/1 00:00:00 ps

•  The default output for ps shows
only child processes of the shell.
Try “ps -elf” or “ps -aux” to get
all processes

% ./loop.sh &
[1] 3039
% ps
 PID TTY TIME CMD
 2779 pts/1 00:00:00 bash
 3039 pts/1 00:00:00 loop.sh
 3041 pts/1 00:00:00 sleep
 3042 pts/1 00:00:00 ps
% kill 3039
% ps
 PID TTY TIME CMD
 2779 pts/1 00:00:00 bash
 3055 pts/1 00:00:00 ps

The “&” puts the process in the
background.

kill - terminate a process

•  The kill command lets you send
a signal to a process id.

The process id for loop.sh is
3039.

The sleep process was started by
loop.sh and will be killed when
loop.sh is killed

The processes are gone

Kill process 3039.

Related Shell Operations

•  Pressing CTRL+C sends a signal to the
current running process, just like kill.

•  Pressing CTRL+Z sends a suspend signal.
“bg” and “fg” let you put suspended
process in the background and foreground.

% ./loop.sh

[1]+ Stopped ./loop.sh
% bg
[1]+ ./loop.sh &
%

CTRL+Z suspends the process.

bg puts the process in the
background so you can use the
shell again

kill - continued

•  Kill can send a number of different
signals. Sometimes processes
might not respond to a particular
signal. If all else fails, “kill
-9” (a.k.a. “kill -KILL”) should
work:

kill -9 3039

•  NOTE: you should only use
“kill -9” if other signals don’t
work!

File system Organization

•  The directory “/” is called the root
directory in UNIX. All other
directories are located under this
directory.

•  Some of these directories have
actual files in them, others
provide access to hardware
devices and other system
information.

Common Locations

•  /bin - executables
•  /usr - executables, include files, man

pages, libraries and more.
•  /etc - system settings files
•  /home, /Users, /u1, /u2 - home

directories can be in a lot of different
locations depends on the OS and the
admin who is running the machine.
(Your home directory is the directory
you enter when you log in).

Where’s my home directory?

% cd
% pwd
/home/user
% cd ~
% pwd
/home/user

Permissions

•  UNIX uses permissions to control
access to files and directories.
There are three categories of
permissions
– user permissions
– group permissions
– other permissions

Permissions - continued

•  Each permissions category has
three attributes.
–  read
– write
– execute

An Example

•  “root” owns this file, and can read,
write and execute.

•  the “root” group can read and execute
this file.

•  everyone else can read and execute
this file too.

% ls -l /usr/bin/g++
-rwxr-xr-x 4 root root 109768 May 19 2005 /usr/bin/g++

- (this is a regular file)
 rwx root (permissions and file owner)
 r-x root (group permissions and group)
 r-x (other permissions)

Another Example

•  “fred” owns this directory, and can
read, write and execute.

•  the “staff” group can read and execute
this directory.

•  no one else can access this directory.

% ls -l ~
drwxr-x--- 4 fred staff 109768 May 19 2005 bin

d (this is a directory)
 rwx fred (permissions and directory owner)
 r-x staff (group permissions and group)
 --- (other permissions)

Permissions Commands

•  The “groups” command shows
which groups you are in.

•  The “chmod” command lets you
change permissions.

% chmod g+rx ~/bin

% chmod 750 ~/bin

Add group read and execute permissions
to ~/bin (bin directory in ~)

Set user read, write, and execute
permissions. Also set group read and
execute permissions.

4 = Read
2 = Write
1 = Execute

 r w x
(u)ser permissions 4 + 2 + 1 = 7
(g)roup permissions 4 + 0 + 1 = 5
(o)ther permissions 0 + 0 + 0 = 0

Security

•  It’s a very bad idea to give world
(i.e. other) write permissions.
Anyone with access to the system
could change the file on you.

•  Some dot files/directories contain
sensitive information. Be careful
who you give access to.

Environment Variables

•  Environment variables store short
strings of information that can be
read by child processes.

•  Some important variables:
–  PATH: Where the shell looks for executables. This

lets you enter “ls” instead of “/usr/bin/ls”.
–  HOME: Set to the path of your home directory.

ARSC Specific
Environment Variables

•  SCRATCH: Temporary directory with fast local
disk.

•  WORKDIR: Temporary directory with fast shared
disk (or local disk).

•  ARCHIVE_HOME: Long term storage
•  Example Use:

–  ls $WORKDIR
–  mkdir $SCRATCH/mydir
–  cd $ARCHIVE_HOME

•  Your shell will expand environment varibles.
–  For Example:

$ARCHIVE_HOME expands to /archive/u1/uaf/username

Environment Variables -
Continued

•  The “env” command show all of
the environment variable that are
set.

•  You can also show an individual
environment variable using the
“echo” command:
% echo $PATH
/bin:/usr/bin:/usr/local/bin

PATH

•  The order of directories in the
PATH is important. The shell
searches for executables in the
order they are found in the PATH
environment variable.

•  The current directory (i.e. “.”) is
typically not in the PATH for
security purposes.

“.”

•  To run an executable in the current
directory, you need to include the “.”

•  To run “myprog” in the current
directory:

./myprog

or include the full path to the executable:

 /home/user/myprog
•  If you decide to add “.” to your path, put

it at the end.

Setting an Environment
Variable

•  Appending a directory to the PATH
–  csh / tcsh syntax

setenv PATH ${PATH}:${HOME}/bin

–  ksh / bash syntax
export PATH=$PATH:$HOME/bin

•  Setting an environment variable
–  csh / tcsh syntax

setenv FRED “hello”

–  ksh / bash syntax
export FRED=“hello”

I/O Redirection and Pipes

•  UNIX programs have three forms
of standard I/O
– stdin: input, normally from the keyboard
– stdout: output, normally to the screen
– stderr: error output, normally to the screen

•  However I/O can be redirected.

Redirecting I/O

•  Redirecting stdout to a new file
ls > ls.out

•  Redirecting stdout appending to a file
ls >> ls.out

•  Sending a file to stdin
./myprog < input

•  Stderr redirection depends on the shell
we won’t cover it here.

Using Pipes

•  With pipes, programs using stdin
and stdout can be tied together
so that the input from one
command comes from the output
of another.
more myfile | wc -l
cat people | sort -u | wc -l

Shell Special Characters

•  Some characters are interpreted
in special ways by the shell.
– “*” matches anything

ls /usr/bin/g*

– “?” matches a single character
ls /usr/bin/g??

– “&” puts a process in the background so
you can continue to use the terminal.
ls -l /usr/bin > ls.output &

Shell Special Characters

•  Some other special characters
that we’ve already seen.
“>” stdout redirection
“<” stdin redirection

Fortran and Linux

•  From http://gcc.gnu.org/wiki/:
 Above all.... Google on "fortran 95 tutorial"
and you'll find every style and language
under the sun!

•  The same goes for “unix/linux
tutorial”

48	

Parting words

•  Don’t forget about the man and info
commands!

•  Remember to search online

•  Get The Exercises:
curl http://people.arsc.edu/~bahls/classes/exer.tar.gz >

exer.tar.gz!
tar –zxf exer.tar.gz!
cd exer!
more Exercises !

Appendix A - Command
Reference

•  Kerberos Commands
kshell
kinit

krlogin

krcp

kftp

•  Openssh
ssh

sftp

scp

•  Compilers/Interpretors
gcc / cc
c99
g++ / c++ / CC
gfortran / f95 / pgf90
python
perl
ruby
ld

Appendix A
•  Utilities

awk
cat
cut
diff
find
head
gawk
grep
gunzip
gzip
ld
ldd
less
egrep

sed
sort
tail
tar
uniq
wc
which

•  Text Editors
emacs
gedit
nano / pico
nedit
vi
vim / gvim

Appendix B - Shell Reference

• tcsh dot files are all located in the
home directory of the user.
– The .login is read on login.
– The .tcshrc (or .cshrc) is read when

each new shell is spawned.
– The .logout is read on logout.

Appendix B

• bash dot files are all located in the
home directory of the user.
– The .bash_login or .bash_profile

or .profile is read on login.
– The .bashrc is read when each new shell

is spawned.
– The .bash_logout is read on logout.

Appendix C

Directory navigation
pushd – put current

directory on the stack and
change to new directory

popd – pop last directory off
the stack and change to it

dirs – show directory stack

