
\qquad
\qquad

Outline
- Posterior/analysis error estimates
- Consistency checks, hypothesis tests,
degrees of freedom \& information content
- Array modes
- Clipped analyses

\qquad
\qquad
\qquad
\qquad

- Array modes
\qquad
\qquad
\qquad

Posterior error covariance:

$$
\begin{aligned}
\mathbf{E}^{\mathrm{a}} & =\left\langle\left(\mathbf{z}_{\mathbf{a}}-\mathbf{z}_{\mathbf{t}}\right)\left(\mathbf{z}_{\mathbf{a}}-\mathbf{z}_{\mathbf{t}}\right)^{\mathrm{T}}\right\rangle \\
& =\left\langle\left(\mathbf{z}_{\mathbf{b}}+\delta \mathbf{z}_{\mathbf{a}}-\mathbf{z}_{\mathbf{t}}\right)\left(\mathbf{z}_{\mathbf{b}}+\delta \mathbf{z}_{\mathbf{a}}-\mathbf{z}_{\mathbf{t}}\right)^{\mathrm{T}}\right\rangle \\
& =(\mathbf{I}-\mathbf{K G}) \mathbf{D}(\mathbf{I}-\mathbf{K G})^{\mathrm{T}}+\mathbf{K R} \mathbf{K}^{\mathrm{T}}
\end{aligned}
$$

(Caveat: E^{a} correct only if D and R are correct) \qquad
But for dual Lanczos vector formulation:

$$
\mathbf{K} \approx \tilde{\mathbf{K}}_{k}=\mathbf{D G}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{V}_{k} \mathbf{T}_{k}^{-1} \mathbf{V}_{k}^{\mathrm{T}} \mathbf{R}^{-1 / 2}
$$

Lanczos vectors are orthonormal, and normal to subspace neglected by $\tilde{\mathbf{K}}_{k}$:

$$
\mathbf{E}^{\mathbf{a}} \approx \tilde{\mathbf{E}}^{\mathbf{a}}=(\mathbf{I}-\tilde{\mathbf{K}} \mathbf{G}) \mathbf{D}
$$

Posterior/Analysis Error Estimates

Approx. posterior error covariance:

$$
\begin{gathered}
\mathbf{E}^{\mathrm{a}} \approx \tilde{\mathbf{E}}^{\mathrm{a}}=(\mathbf{I}-\tilde{\mathbf{K}} \mathbf{G}) \mathbf{D} \\
\tilde{\mathbf{E}}^{\mathrm{a}}=(\underbrace{\mathbf{I}-\mathbf{D G}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{V}_{k} \mathbf{T}_{k}^{\mathrm{T}} \mathbf{V}_{k}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{G}}) \mathbf{D}
\end{gathered}
$$

Everything is available during inner-loops of 4D-PSAS and R4D-Var, at no extra cost

$$
\tilde{\mathbf{E}}^{\mathrm{a}} \sim N_{\text {model }} \times N_{\text {model }} \text { HUGE! }
$$

Diagonal elements - posterior variances

define POSTERIOR_ERROR_I
Cross-covariance information from EOFs of $\tilde{\mathbf{E}}^{\text {a }}$
define POSTERIOR_EOFS

Posterior/Analysis Error Estimates

For the primal formulation:

$$
\begin{gathered}
\mathbf{E}^{\mathrm{a}}=\left(\mathbf{D}^{-1}+\mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G}\right)^{-1} \\
\mathbf{E}^{\mathrm{a}} \approx \tilde{\mathbf{E}}^{\mathrm{a}}=\mathbf{D}^{1 / 2} \mathbf{V}_{k} \mathbf{T}_{k}^{-1} \mathbf{V}_{k}^{\mathrm{T}} \mathbf{D}^{1 / 2}
\end{gathered}
$$

Straightforward but not yet implemented in ROMS I4D-Var (due to large I/O requirements)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consistency checks,
hypothesis tests, degrees of
freedom \& information content

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Consistency Checks in Obs Space

Statistics of the innovation vectors following
Desroziers et al (2005):
$\mathbf{d}=\left(\mathbf{y}-H\left(\mathbf{x}_{\mathrm{b}}\right)\right)$
$\mathbf{d}_{\mathbf{a}}^{\mathbf{0}}=\left(\mathbf{y}-H\left(\mathbf{x}_{\mathbf{a}}\right)\right)$
$\mathbf{d}_{\mathrm{b}}^{\mathrm{a}}=\left(H\left(\mathbf{x}_{\mathrm{a}}\right)-H\left(\mathbf{x}_{\mathrm{b}}\right)\right)$
$\tilde{\sigma}_{b}^{2}=\left(\mathbf{d}_{\mathbf{b}}^{\mathbf{a}}\right)^{\mathrm{T}} \mathbf{d} / p$
$\tilde{\sigma}_{o}^{2}=\left(\mathbf{d}_{\mathbf{a}}^{\mathbf{0}}\right)^{\mathrm{T}} \mathbf{d} / p$

\qquad
\qquad
\qquad
\qquad
\qquad
Compare $\tilde{\sigma}_{o}$ with $\sigma_{o} \& \tilde{\sigma}_{b}$ with σ_{b}

Hypothesis Tests \&Degrees of Freedom

Recall that the optimal increments minimize:

$$
J=\frac{\frac{1}{2} \delta \mathbf{z}^{T} \mathbf{D}^{-1} \delta \mathbf{z}+\frac{1}{2}(\mathbf{G} \delta \mathbf{z}-\mathbf{d})^{T} \mathbf{R}^{-1}(\mathbf{G} \delta \mathbf{z}-\mathbf{d})}{J_{b}}
$$

Theoretical min: $J_{\text {min }}=N_{\text {obs }} / 2$
No. of dof in obs $\longrightarrow\left(J_{b}\right)_{\min }=\operatorname{Tr}(\mathbf{K G}) / 2$
No. of dof in prior $\longrightarrow\left(J_{o}\right)_{\min }=\left(N_{\text {obs }}-\operatorname{Tr}(\mathbf{K G})\right) / 2$
"dof" - degrees of freedom $\quad \begin{gathered}\text { (Bennett et al, 1993; } \\ \text { Cardinali et al, 2004; }\end{gathered}$

Degrees of Freedom \& Information Content

Degrees of freedom in the obs:

$$
\left(J_{b}\right)_{\min }=\operatorname{Tr}(\mathbf{K} \mathbf{G}) / 2
$$

But for $m=N_{o b s}$:

$$
\mathbf{K}=\mathbf{D G}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{V}_{m} \mathbf{T}_{m}^{-1} \mathbf{V}_{m}^{\mathrm{T}} \mathbf{R}^{-1 / 2}
$$

So:

$$
\begin{array}{r}
\left(J_{b}\right)_{\min }= \\
=\frac{1}{2}\left(N_{o b s}-\operatorname{Tr}\left(\mathbf{T}_{m}^{-1}\right)\right) \\
=\frac{1}{2}\left(N_{o b s}-\sum_{\substack{i=1}}^{N_{o b}} \lambda_{i}^{-1}\right) \\
\begin{array}{c}
\text { Eigenvalues } \\
\text { of } \mathrm{T}_{m}^{-1}
\end{array}
\end{array}
$$

Degrees of Freedom \& Information Content

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Array Modes

The eigenvalues λ_{i} of T_{m} are also the eigenvalues of $\left(\mathbf{R}^{1 / 2} \mathbf{G D G} \mathbf{G}^{\top} \mathbf{R}^{1 / 2}+I\right)$, the preconditioned "stabilized representer matrix." \qquad
Consider the eigenpairs: $\left(\lambda_{i}, \hat{\mathbf{w}}_{i}\right)$
Following Bennett (1985): \qquad
$\begin{array}{rlr}\delta \mathbf{x}_{\mathbf{a}}(t) & =\mathcal{R}(t) \mathbf{R}^{-1 / 2} \mathbf{W} \mathbf{\Lambda}^{-1} \mathbf{W}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{d} & \begin{array}{l}\text { Analysis state- } \\ \text { vector increment }\end{array} \\ & =\sum^{N_{\text {obs }}} \lambda^{-1}\left(\hat{\mathbf{w}}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{d}\right) \mathbf{\Psi}^{(t)} & \end{array}$ \qquad

$$
=\sum_{i=1}^{N_{i n}} \lambda_{i}^{-1}\left(\hat{\mathbf{w}}_{i}^{\mathbf{T}} \mathbf{R}^{-1 / 2} \mathbf{d}\right) \boldsymbol{\Psi}_{i}(t)
$$

$\boldsymbol{\Psi}_{i}(t)=\sum_{j=1}^{N_{j} w_{j i}} w_{j}^{\prime} \boldsymbol{r}_{j}(t) \quad$ "array modes"

$$
\mathbf{w}_{i}^{\prime}=\left(w_{j i}^{\prime}\right)=\mathbf{R}^{-1 / 2} \hat{\mathbf{w}}_{i}
$$

Array Modes

State-vector analysis increment:

$$
\delta \mathbf{x}_{\mathbf{a}}(t)=\sum_{i=1}^{N_{o b s}}{\lambda_{i}^{-1}}^{\left(\hat{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{d}\right) \mathbf{\Psi}_{i}(t), ~(t)}
$$

Largest eigenvalue λ_{1} associated with $\Psi_{1}(\mathrm{t})$, nominally contributes least to analysis increment. \qquad
Thus $\Psi_{1}(t)$ represents the most stable component of $\delta \mathbf{x}_{\text {a }}$ with respect to changes in d . \qquad
Array modes can be readily computed after dual 4D-Var:

$$
\begin{gathered}
\boldsymbol{\Psi}_{j}(t)=\mathcal{M}_{\mathbf{b}}\left(t, t_{0}\right) \mathbf{D G}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \hat{\mathbf{w}}_{j} \\
\text { (define ARRAY_MODES) }
\end{gathered}
$$

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clipped Analyses

Following Bennett (1985)
$\delta \mathbf{x}_{\mathbf{a}}(t)=\sum_{i=1}^{M} \lambda_{i}^{-1}\left(\hat{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{d}\right) \boldsymbol{\Psi}_{i}(t)$
Truncate ("clip") the summation, discarding array modes Ψ_{i} for $i>M$
M is based on a criteria that reflects information content (i.e. $\lambda_{t}<\alpha \lambda_{1}$ for $i>M$).
α chosen so Ψ_{i} have scales < model resolution for $i>M$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clipping using Indirect Representer

 AlgorithmClipped analyses can be computed AFTER running R4D-Var or 4D-PSAS by exploiting the indirect representer algorithm according to:

$$
\delta \mathbf{x}_{\mathbf{a}}(t)=\mathcal{M}_{\mathbf{b}}\left(t, t_{0}\right) \mathbf{D G}^{\mathrm{T}} \sum_{i=1}^{M} \lambda_{i}^{-1}\left(\hat{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{R}^{-1 / 2} \mathbf{d}\right) \hat{\mathbf{w}}_{i}
$$

\qquad
\qquad
where $\mathcal{M}_{\mathrm{b}}\left(t, t_{0}\right)$ is TLROMS linearized about the prior/background. \qquad
(Moore et al, 2010b) \qquad
\qquad
Discard Ψ_{t} for which
$\lambda_{i}<0.01 \lambda_{1}$
$M=255$

```
Example:
Example:
CCS, 30km
CCS, 30km
R4D-Var
R4D-Var
3-7 March, 2003
3-7 March, 2003
1 outer-loop
1 outer-loop
800 inner-loops
800 inner-loops
Clipped using
Clipped using
" 1% rule" of
" 1% rule" of
Bennett & McIntosh
Bennett & McIntosh
    (1985)
    (1985)
Discard }\mp@subsup{\Psi}{t}{}\mathrm{ for which
Discard }\mp@subsup{\Psi}{t}{}\mathrm{ for which
    \lambda
    \lambda
    M=255
    M=255


\section*{Issues, Things to do, \& Coming Soon}
- Posterior error estimates available for 4D-PSAS \& R4D-Var - available soon for I4D-Var
- Posterior error estimates are likely over estimates due to span of observation or model space by Lanczos vectors - (4D-Var) \({ }^{\top}\) provides more reliable estimates (Lecture 5)
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ Summary } \\
- Posterior error estimates available via the utility \\
afforded by the Lanczos algorithm. \\
- Posterior errors tend to be overestimates since \(m \ll N_{\text {obs }}\) \\
- Consistency checks and hypothesis tests are useful \\
indicators of validity of prior hypotheses and info \\
content. \\
- Array modes provide info about possible data \\
redundancy. \\
- Clipping can remove unphysical features from analyses. \\
\hline
\end{tabular}

\section*{References}
- Bennett, A.F., 1985: Array design by inverse methods. Prog. Oceanog., 15, 129-156.
- Bennett, A.F. and P.C. McIntosh, 1982: Open ocean modelling as an inverse problem: tidal theory. J. Phys. Oceanogr., 12, 1004-1018
- Bennett, A.F., L. Leslie, C. Hagelberg and P. Powers, 1993: Tropical cyclone prediction using a barotropic model initialized by a generalized inverse method. Mon. Wea. Rev., 121, 1714-1729
- Cardinali, C., S. Pezzulli and E. Andersson, 2004: Influence-matrix diagnostic of a data assimilation system. Q. J. R. Meteorol. Soc., 130, 2767-2786.
- Desroziers, G., L. Berre, B. Chapnik and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385-3396.
- Desroziers, G., L. Berre, V. Chabot and B. Chapnik, 2009: A posteriori diagnostics in an ensemble of perturbed analyses. Mon Wea. Rev., 137, 3420-3436.

\section*{References}
- Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, J. Zavala-Garay and A.T. Weaver, 2010a: The Regional Ocean Modeling System (ROMS) 4-dimensional data assimilation systems: Part I - System overview. Ocean Modelling, Submitted.
- Moore, A.M., H.G. Arango, G. Broquet, C.. Edwards, M. Veneziani, B.S. Powell, D. Foley, J. Doyle, D. Costa and P. Robinson, 2010b: The Regional Ocean Modeling System (ROMS) 4-dimensional data assimilation systems: Part II - Performance and application to the California Current System. Ocean Modelling, Submitted
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

