Lecture 3:
Dual 4D-Var
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* 4D-Var recap

Dual 4D-Var (4D-PSAS & R4D-Var)

The ROMS 4D-PSAS & R4D-Var algorithms
» Weak constraint 4D-Var

Data Assimilation: Recap
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Notation & Nomenclature: Recap
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Incremental Formulation: Recap
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Primal vs Dual Formulation: Recap
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The Solution: Recap

Analysis: Z, = Z, + Kd
Gain (dual form):

K=DG'(GDG' +R)*
Gain (primal form):

K=D'+G'R"'G)'G'R"

Two Spaces: Recap

Gain (dual):
K=DG'(GDG' +R)*
Nobs X Nobs
Gain (primal):

K=D"'+G'R"'G)'G'R"

N x N

model model

N, <N

obs model

Two Spaces: Recap

G maps from model space
to observation space

GT maps from observation space
to model space




Primal Formulation: Recap

Analysis: z, =z, +Kd
Goal of 4D-Var is to identify:
5z=Kd=(D'+G'R'G) G'Rd
Solve the equivalent linear system:
(D*+G'R'G)oz=G'R'd
by minimizing:
J= %&T (D'+G'R'G)6z-62'G'R'd + % d'R'd

= %&Tnﬂaz +%(G61 ~d)' R*(Géz—d)

Dual Formulation

Analysis:  z, =z, + Kd

Goal of 4D-Var is to identify:
5z=Kd=DG"(GDG" +R) d

Solve the equivalent linear system:

(GDG" +R)w=d; 6z=DG'w

by minimizing: There is no physical
significance attached to w

1(w) = %WT (GDG" +R)w-w'd

then compute:

5z=DG'w

Conjugate Gradient (CG) Methods

Contours of J
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Matrix-less Operations

There are no matrix multiplications!
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Zonal shear flow

Matrix-less Operations

There are no matrix multiplications!
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Matrix-less Operations

There are no matrix multiplications!
Adjoint Model
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Matrix-less Operations

There are no matrix multiplications!
Covariance
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Matrix-less Operations

There are no matrix multiplications!

Tangent Linear
Model
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Zonal shear flow

Matrix-less Operations

There are no matrix multiplications!
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Matrix-less Operations

There are no matrix multiplications!

GDG'5
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A covariance

Zonal shear flow




Matrix-less Operations

There are no matrix multiplications!

Tangent Linear
Model

!

Zonal shear flow

Physical-space Statistical Analysis System
(PSAS) — Da Silva et al. (1995)

50,0 Dual 4D-PSAS
Algorithm
obs space (define WADPSAS,

w4dpsas_ocean.h)

G'w  ADROMS forced by w

Run ADROMS

o] DG'w
" GDG™w

Shdene | 0l Jow = (GDGT +R)w—d

Algorithm

i
G'w,
o b or, —uRosa] xo




NLROMS, z,

Dual 4D-PSAS

Algorithm
A (define WADPSAS,

w4dpsas_ocean.h)

Inner-
loop

Run TLROMS

Conjugate
Gradient
Algorithm

Run ADROMS

> Outer-loop

NLROMS, z,

The method of representers (R4D-Var)
Bennett (2002)

The Dual of State-Space

ST(t)
SS(t)
ROMS state-vector increments: ox(t) =| 5¢(t)
Su(t)
Sv(t)

The set of all continuous, linear functionals of ox(t) is
called the dual of &

For example, y,,=Gdz belongs to the dual of &




The Dual of State-Space

Consider the assimilation window t=[0,T] for the
zonal shear flow...
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Zonal shear flow

The Dual of State-Space

Consider the assimilation window t=[0,T] for the
zonal shear flow with 3 observations.

5Z X Observations

I

Zonal shear flow

The Dual of State-Space

Consider the assimilation window t=[0,T] for the
zonal shear flow with 3 observations.

G 5Z X Observations
t

Tangent Linear
Model
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Zonal shear flow
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The Dual of State-Space

G 5Z X Observations
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The Dual of State-Space
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The Dual of State-Space
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The Dual of State-Space

G 5Z X Observations
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Zonal shear flow

The Dual of State-Space
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The Dual of State-Space
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The Dual of State-Space

G 5Z X Observations
t

Tangent Linear
Model
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Zonal shear flow Innovation

vector

The Dual of State-Space

The innovation vector belongs to the dual of &x(t).
5x(0)
Sx(t)

Let u=|ox(t,) for t=[0,T]

ox(T)
According to Riesz representation theorem:
m (o] T .. m o] T .. m 0 T...
Yi =Y =P Y, =Y, =pous Yy — Y =P

where p; are referred to as “representer functions.”

The Dual of State-Space

r;(0)
r(t)

Let p,=|r(t,)| fort=[0,T]

r (.T)

and R(t) Z(I'I (t))
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Representer Functions

0

Observation
location

!

Zonal shear flow

Representer Functions

GDG'5

Observation
location

I

Zonal shear flow

Representer Functions

T
GDG 5 = A representer

Green’s Function

—

A covariance
Zonal shear flow
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Representer Functions

The analysis increments can be written as the
weighted sum of the representers

%, (07, 0+ . wn (0=, (+R (Ow
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Zonal shear flow

Representer Functions

The analysis increments can be written as the
weighted sum of the representers

0%, (0 + 2w (0=x, (¥R (Ow
: R = (r(1)
) 5 (T)

Zonal shear flow

Indirect Representer Algorithm
(Egbert et al, 1994)
Analysis:  z, =z, + Kd

Goal of 4D-Var is to identify:
-1
0z=Kd=DG'(GDG' +R) d
Solve the equivalent linear system:

(GDG" +R)w =d; | 0z=DG'w=R(0)w |

by minimizing: The elements of w are the
weighting coefs for the ri(t)

1(w) = %WT (GDG" +R)w-w'd

then compute: TLROMS

|5z =DG'w=R(0)w; 5x(t)=M§z = ’R(t)w|
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NLROMS, 2,

Run ADROMS
Run TLROMS

Conjugate
Gradient
Algorithm

Run ADROMS

Indirect R4D-Var

Xyt .
o0 algorithm for a
obs space single outer-loop

G'w  ADROMS forced by w
DG'w

GDG'w

ol/ow =(GDG' +R)w —d
G'w,

Sz, —{TRous | a0

RPROMS=
finite-amp
TLROMS

Run TLROMS

Conjugate
Gradient
Algorithm

X0 Indirect R4D-Var
Algorithm
_RPROMS d (define WADVAR,
I::I wddvar_ocean.h)
obs space

G'W  ADROMS forced by w
DG'w

GDG'w

ol/ow = (GDG' +R)w—d
G'w,

52, —Hmemowsal] %0

Inner-
loop

NLROMS, z,

RPROMS

Indirect R4D-Var

Algorithm
\  (define WADVAR,
w4dvar_ocean.h)

Outer-loop

Conjugate
Gradient
Algorithm

RPROMS, z,
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Weak Constraint 4D-Var

Nonlinear ROMS (NLROMS):

x(t) =M (&t )(x(t ), f(t),b(t))
Nonlinear ROMS (NLROMS) with model error:
X(ti) =M (ti 1ti—1)(x(ti—1):f(ti)lb(ti)'g(ti )
Model error prior: 0

(no explicit time

Model error prior covariance: Q  correlationin Q, but there
is some in practice)

4D-Var control vector: z =

Correction for model
error

Weak Constraint 4D-Var

Tangent linear ROMS (TLROMS):
ox(t) =M(t,t,)ou(t,)

[ox(t) |
51
ab(t)

on(t) | 4 forcing for TLROMS

ou(t) =

Strong constraint: o1(t;) =0

Two Spaces
Gain (dual):
K=DG'(GDG' +R)*
Nobs X Nobs

Gain (primal):
K=(D"'+G'R"'G)'G'R"

N x N

model model

Ny <N

model
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Two Spaces

Strong constraint:
Nmodel = I\lx + Ntimes (Nf + Nb)
Weak constraint:

Nimoger = Ny + Nyee (N + Ny N, )

model X

Weak constraint is only practical in dual formulation
of 4D-Var since N, is unaffected:

K =DG'(GDG' +R)*
%{_J
Nobs x Nobs

Mechanics of Dual 4D-Var: Preconditioning

Analysis:  z, =z, + Kd
Goal of 4D-Var is to identify:
5z=Kd=DG"(GDG" +R) d
Solve the equivalent linear system:
(GDG" +R)w=d; 6z=DG'w
by minimizing:
I(w)= %WT (GDG™ +R)w-w'd

Preconditioning via the change of variable
v=R"’w

Mechanics of Dual 4D-Var: Lanczos vectors

Lanczos formulation of conjugate gradient algorithm
in observation space is used (congrad.F).

Dual formulation of gain matrix:
T T -
K =DG'(GDG" +R)
Dual formulation of practical gain matrix:
K, =DG'RYV,T,'V/R ™

Many practical diagnostic applications using this
formulation (Lectures 4 & 5).
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An Example: ROMS CCS
COAMPS ¥
forcing fb(t)’ By 0
{3500
ECCO ™
open
boundary bb(t): Bb e
conditions i
1800
Xb(o)v BX o
P EEEEE
Previous 30km, 10 km & 3 km grids, 30- 42 levels
assimilation Veneziani et al (2009)
cycle Broquet et al (2009)
Moore et al (2010)
T Observations (y)
i Lot =
“ "::',: 2 | cacoria
| = | GLOBEC
v\" & ‘
Eom e e
Ingleby and
Huddleston (2007)

4D-Var Configuration

« Case studies for a representative case
3-10 March, 2003.
« 1 outer-loop, 100 inner-loops
« 7 day assimilation window
* Prior D: x L,=50 km, L,=30m, ¢ from clim
f L. =300km, LQ=1OOkm, o from COAMPS
b L,=100 km, L,=30m, o from clim
« Super observations formed
* Obs error R (diagonal):
SSH2cm
SST04C
hydrographic 0.1 C, 0.01psu
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4D-Var Performance

7
=6
=
=1
2
=5
...............
10 20 230 40 50 &0 70 80 S0 100
Iteration
3-10 March, 2003 ——  Primal, strong
(10km, 42 levels) ——  Dual, strong
— Dual, weak
------------- Jmin

Issues, Things to do, & Coming Soon

* Slow convergence of dual 4D-Var compared to primal
formulation:
-w has no physical significance, so 6z = DG'w
need not be physically realizable
- minimum residual method may be the answer
(El Akkraoui and Gauthier, 2010)

Summary

« Strong and weak constraint 4D-Var, dual
formulation:
define WADPSAS
Drivers/w4dpsas_ocean.h
define WADVAR
Drivers/w4dvar_ocean.h
« Matrix-less iterations to identify cost function
minimum using TLROMS and ADROMS
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