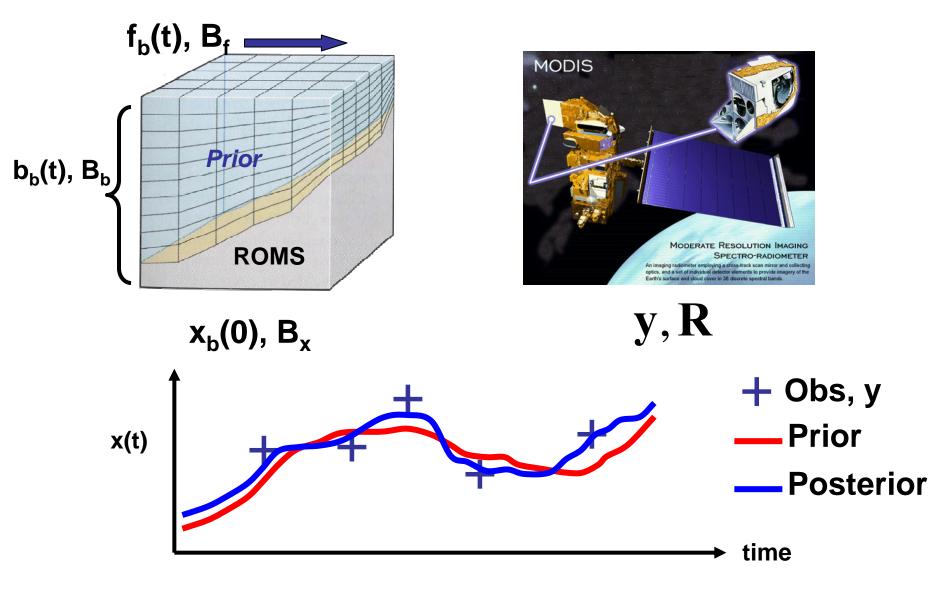
Lecture 3: Dual 4D-Var

Outline

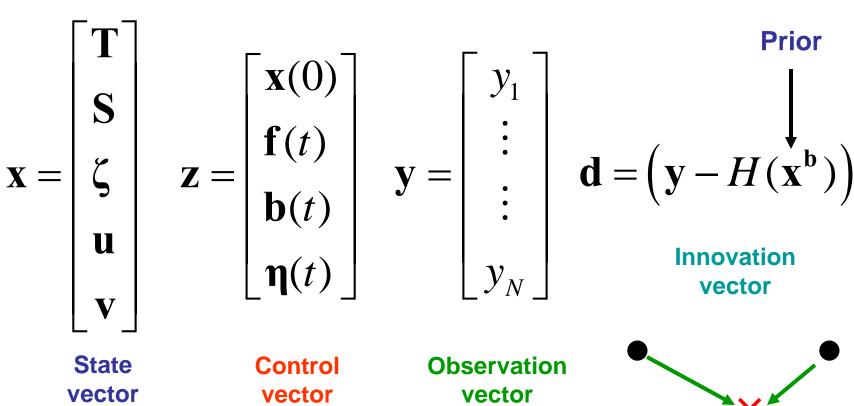
- 4D-Var recap
- Dual 4D-Var (4D-PSAS & R4D-Var)
- The ROMS 4D-PSAS & R4D-Var algorithms
- Weak constraint 4D-Var

Data Assimilation: Recap



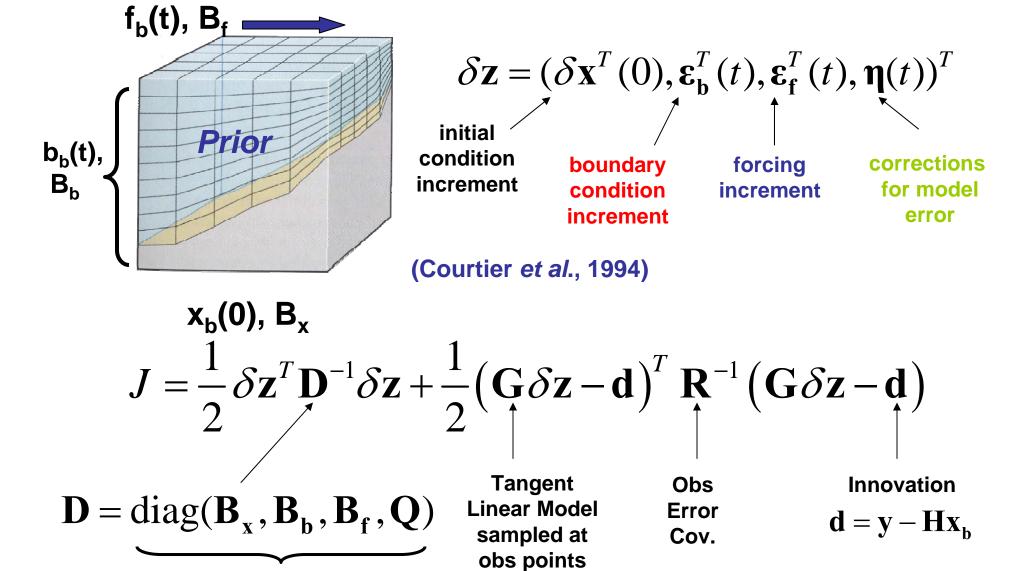
Model solutions depends on $x_b(0)$, $f_b(t)$, $b_b(t)$, $\eta(t)$

Notation & Nomenclature: Recap



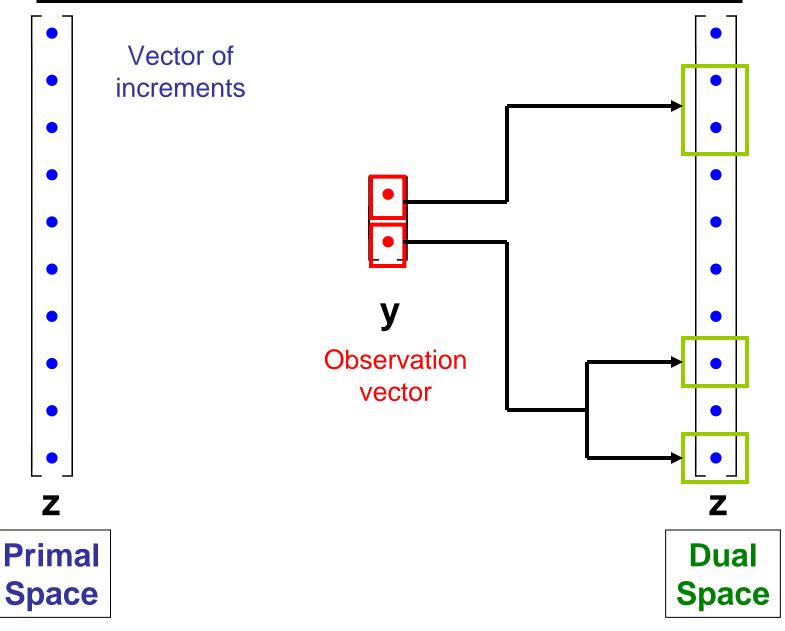
• H
Observation operator

Incremental Formulation: Recap



Prior (background) error covariance

Primal vs Dual Formulation: Recap



The Solution: Recap

Analysis:
$$Z_a = Z_b + Kd$$

Gain (dual form):

$$\mathbf{K} = \mathbf{D}\mathbf{G}^{\mathrm{T}}(\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1}$$

Gain (primal form):

$$\mathbf{K} = (\mathbf{D}^{-1} + \mathbf{G}^T \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{R}^{-1}$$

Two Spaces: Recap

Gain (dual):

$$\mathbf{K} = \mathbf{DG}^{\mathrm{T}} (\mathbf{GDG}^{\mathrm{T}} + \mathbf{R})^{-1}$$

$$N_{\mathrm{obs}} \times N_{\mathrm{obs}}$$

Gain (primal):

$$\mathbf{K} = (\mathbf{D}^{-1} + \mathbf{G}^T \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{R}^{-1}$$

$$N_{\text{model}} \times N_{\text{model}}$$

$$N_{\rm obs} \ll N_{\rm model}$$

Two Spaces: Recap

G maps from model space to observation space

G^T maps from observation space to model space

Primal Formulation: Recap

Analysis: $\mathbf{z}_{\mathbf{a}} = \mathbf{z}_{\mathbf{b}} + \mathbf{K}\mathbf{d}$

Goal of 4D-Var is to identify:

$$\delta \mathbf{z} = \mathbf{K} \mathbf{d} = (\mathbf{D}^{-1} + \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d}$$

Solve the equivalent linear system:

$$(\mathbf{D}^{-1} + \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G}) \delta \mathbf{z} = \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d}$$

by minimizing:

$$J = \frac{1}{2} \delta \mathbf{z}^{T} (\mathbf{D}^{-1} + \mathbf{G}^{T} \mathbf{R}^{-1} \mathbf{G}) \delta \mathbf{z} - \delta \mathbf{z}^{T} \mathbf{G}^{T} \mathbf{R}^{-1} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} \mathbf{R}^{-1} \mathbf{d}$$
$$= \frac{1}{2} \delta \mathbf{z}^{T} \mathbf{D}^{-1} \delta \mathbf{z} + \frac{1}{2} (\mathbf{G} \delta \mathbf{z} - \mathbf{d})^{T} \mathbf{R}^{-1} (\mathbf{G} \delta \mathbf{z} - \mathbf{d})$$

Dual Formulation

Analysis: $\mathbf{Z}_{\mathbf{a}} = \mathbf{Z}_{\mathbf{b}} + \mathbf{K}\mathbf{d}$

Goal of 4D-Var is to identify:

$$\delta \mathbf{z} = \mathbf{K} \mathbf{d} = \mathbf{D} \mathbf{G}^{\mathrm{T}} (\mathbf{G} \mathbf{D} \mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1} \mathbf{d}$$

Solve the equivalent linear system:

$$(\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{w} = \mathbf{d}; \quad \delta \mathbf{z} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{w}$$

by minimizing:

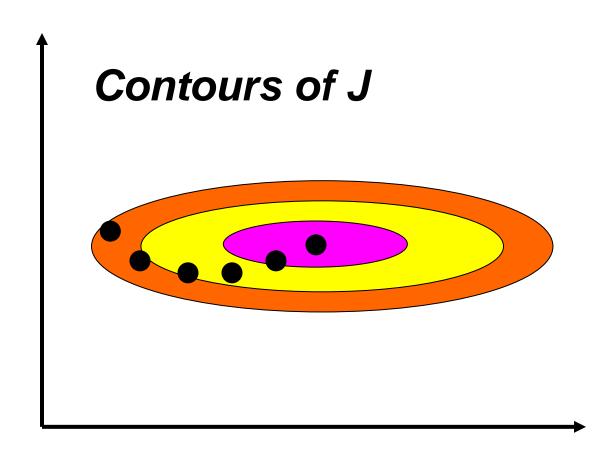
There is no physical significance attached to w

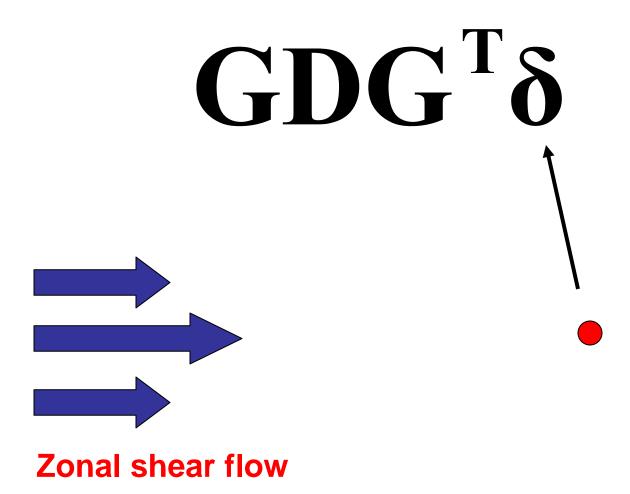
$$I(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}(\mathbf{G}\mathbf{D}\mathbf{G}^{T} + \mathbf{R})\mathbf{w} - \mathbf{w}^{T}\mathbf{d}$$

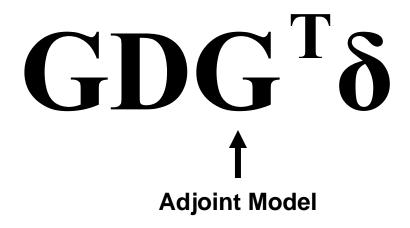
then compute:

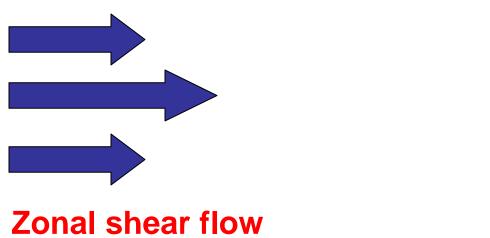
$$\delta \mathbf{z} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{w}$$

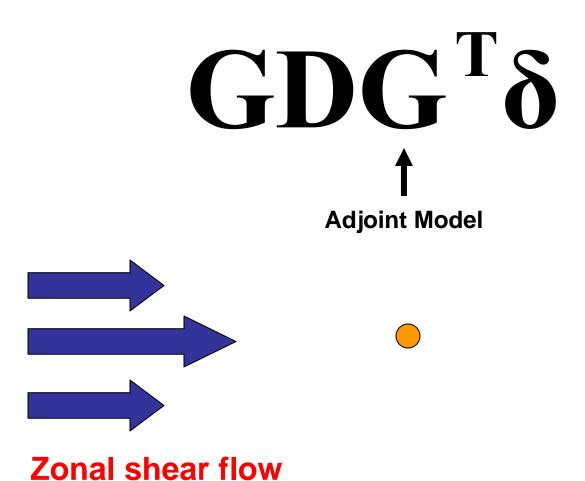
Conjugate Gradient (CG) Methods



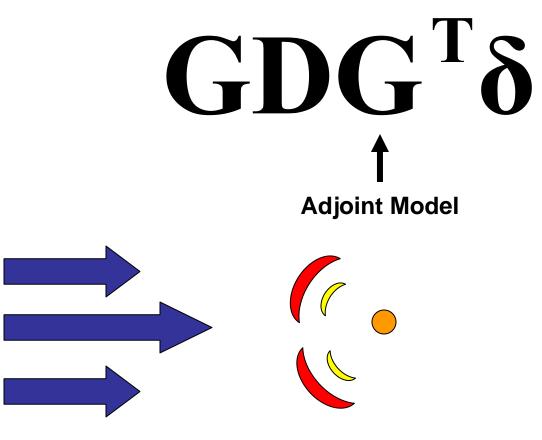






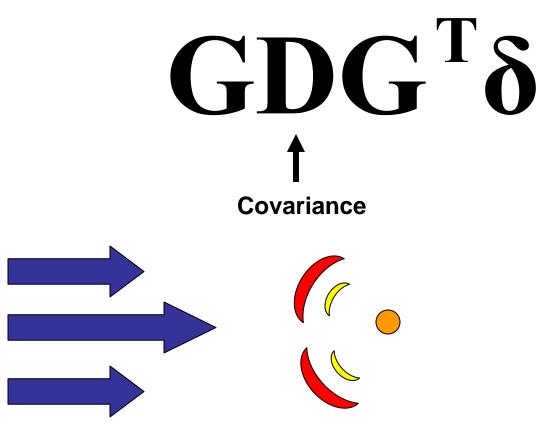


There are no matrix multiplications!

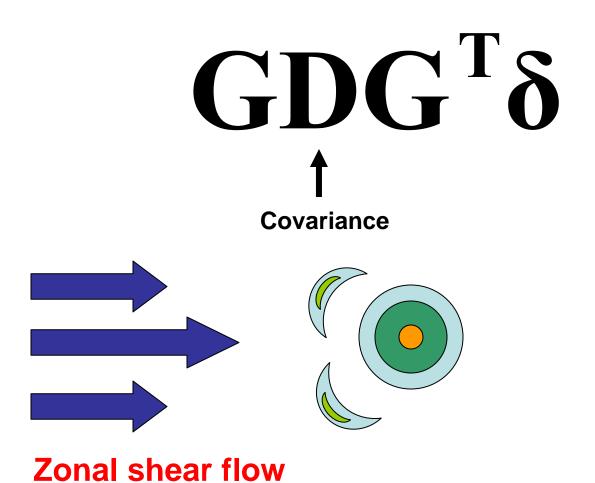


Zonal shear flow

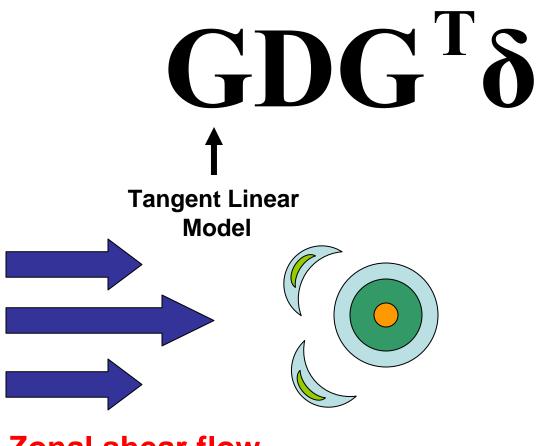
There are no matrix multiplications!



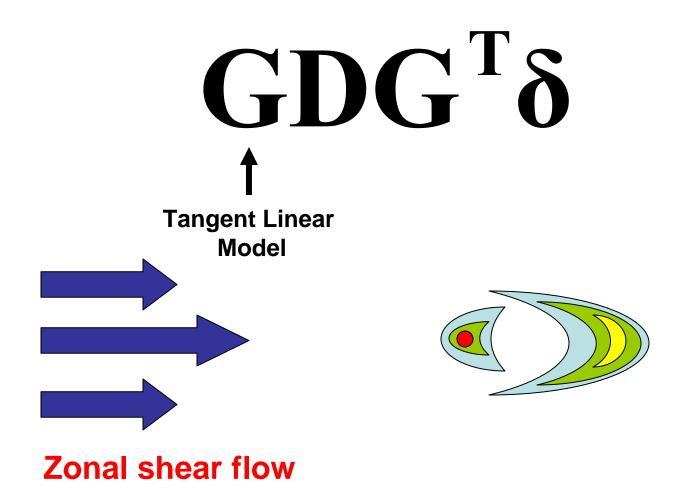
Zonal shear flow



There are no matrix multiplications!

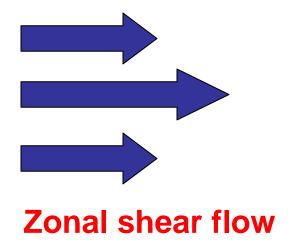


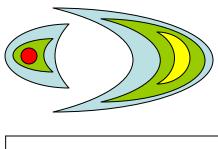
Zonal shear flow



There are no matrix multiplications!

$$\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{\delta}$$

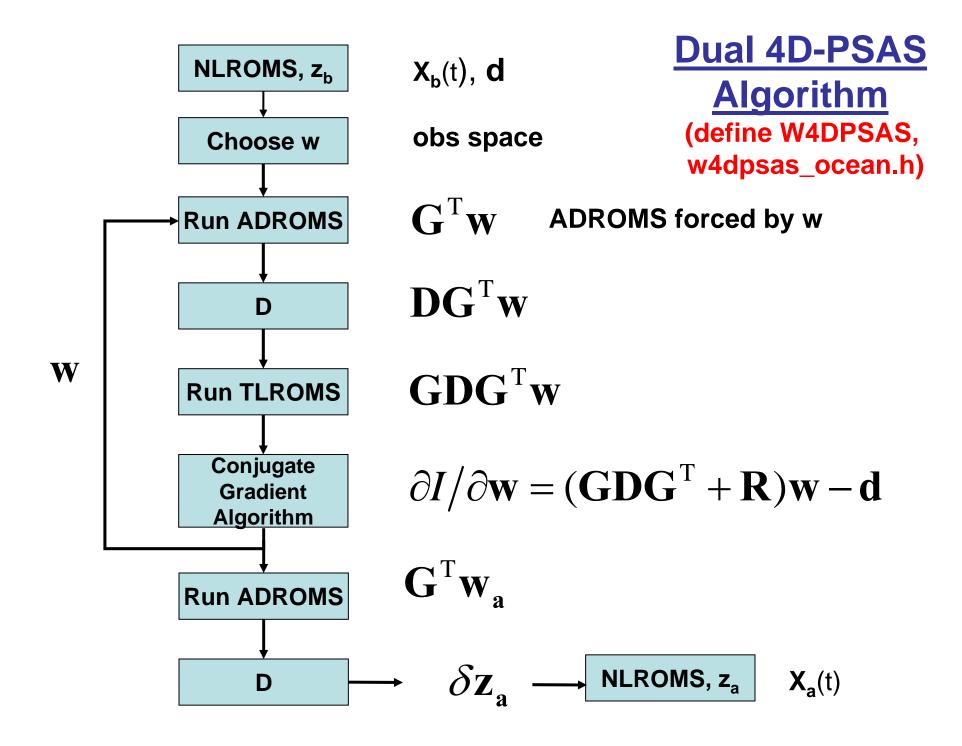


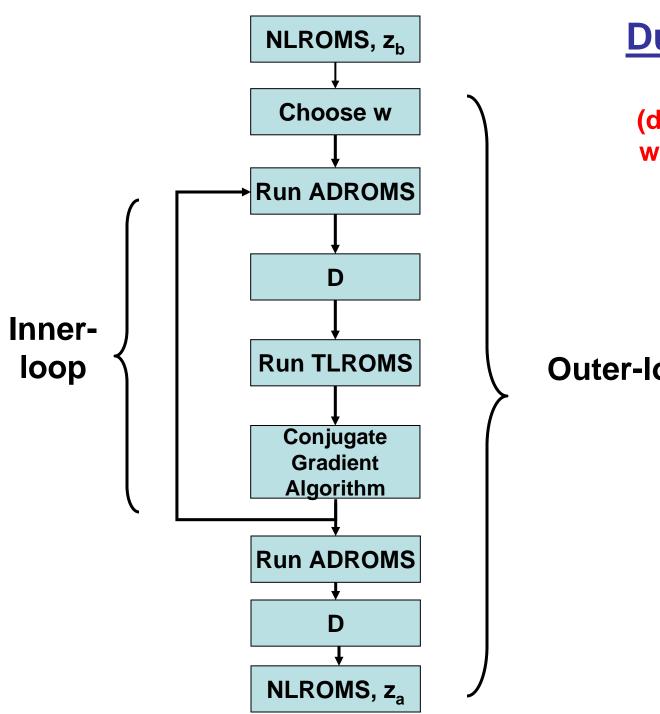


A covariance



Physical-space Statistical Analysis System (PSAS) – Da Silva *et al.* (1995)





Dual 4D-PSAS Algorithm

(define W4DPSAS, w4dpsas_ocean.h)

Outer-loop

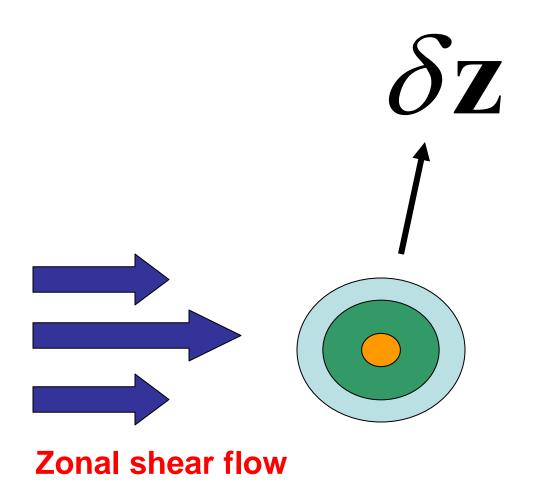
The method of representers (R4D-Var) Bennett (2002)

ROMS state-vector increments:
$$\delta \mathbf{x}(t) = \begin{bmatrix} \delta \mathbf{T}(t) \\ \delta \mathbf{S}(t) \\ \delta \mathbf{\zeta}(t) \\ \delta \mathbf{u}(t) \\ \delta \mathbf{v}(t) \end{bmatrix}$$

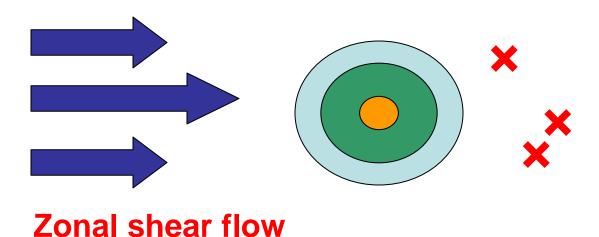
The set of all continuous, linear functionals of $\delta x(t)$ is called the *dual* of δx

For example, $y_m = G \delta z$ belongs to the *dual* of δx

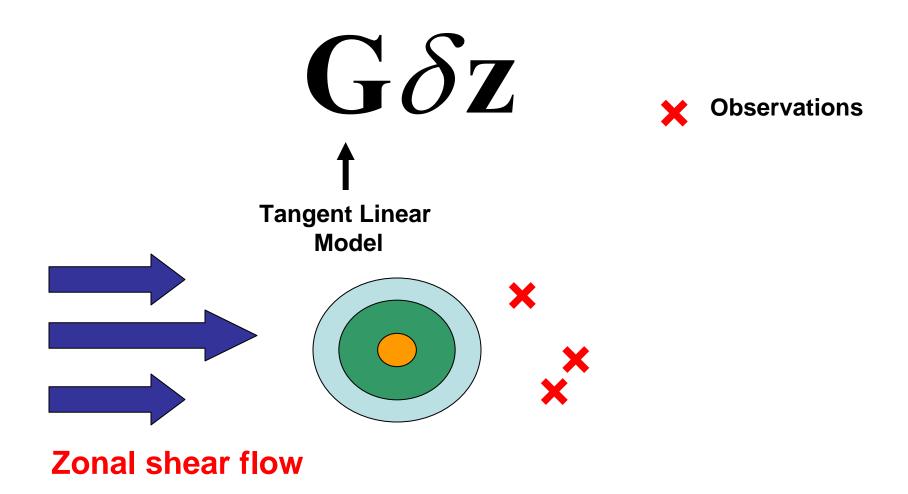
Consider the assimilation window t=[0,T] for the zonal shear flow...

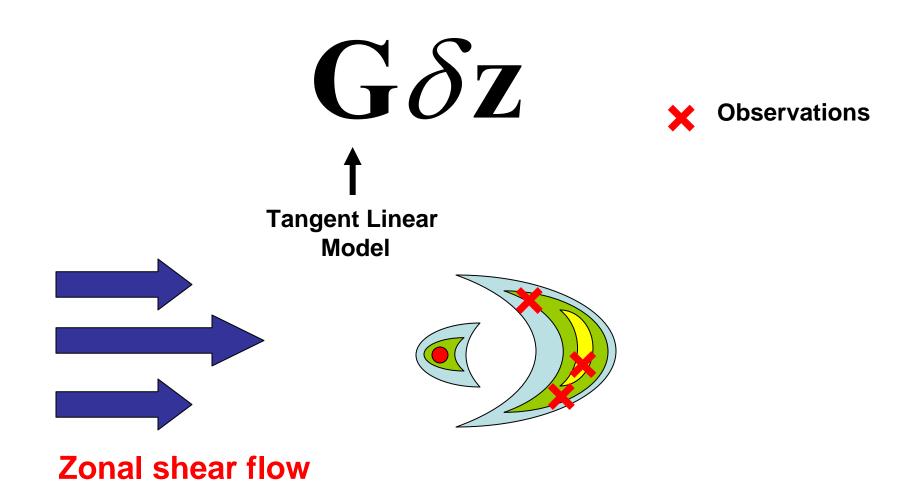


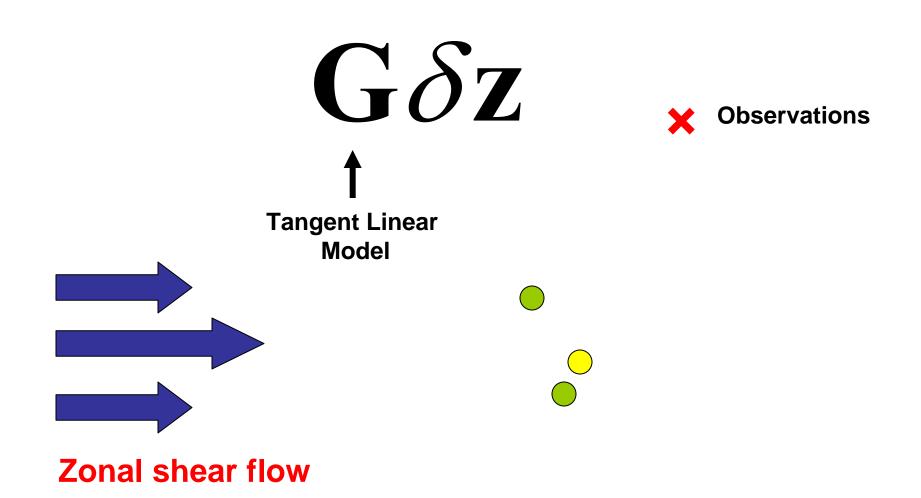
Consider the assimilation window t=[0,T] for the zonal shear flow with 3 observations.

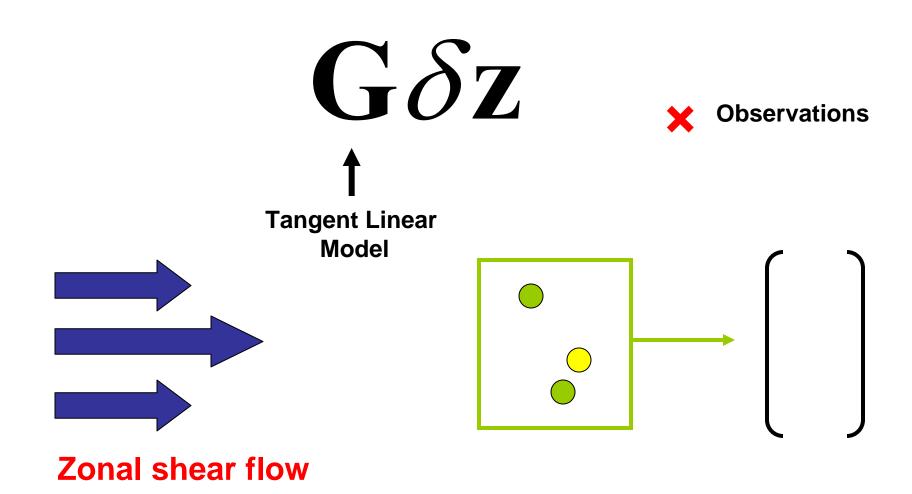


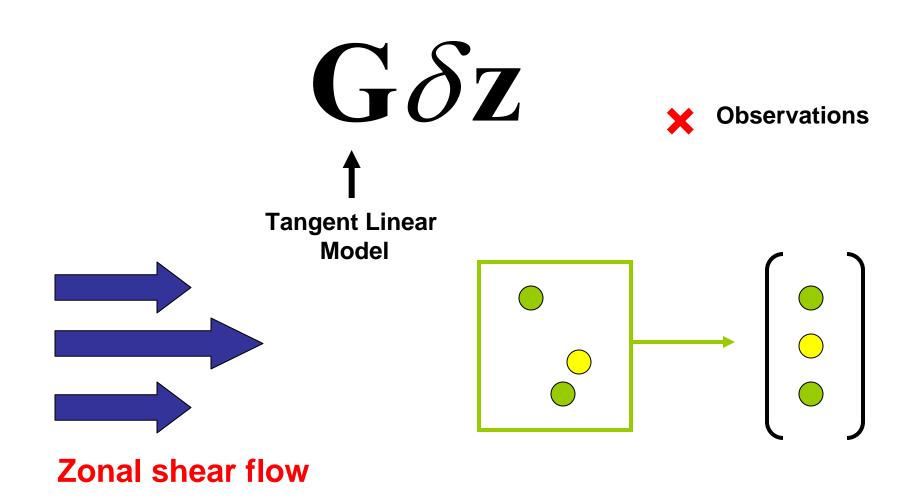
Consider the assimilation window t=[0,T] for the zonal shear flow with 3 observations.

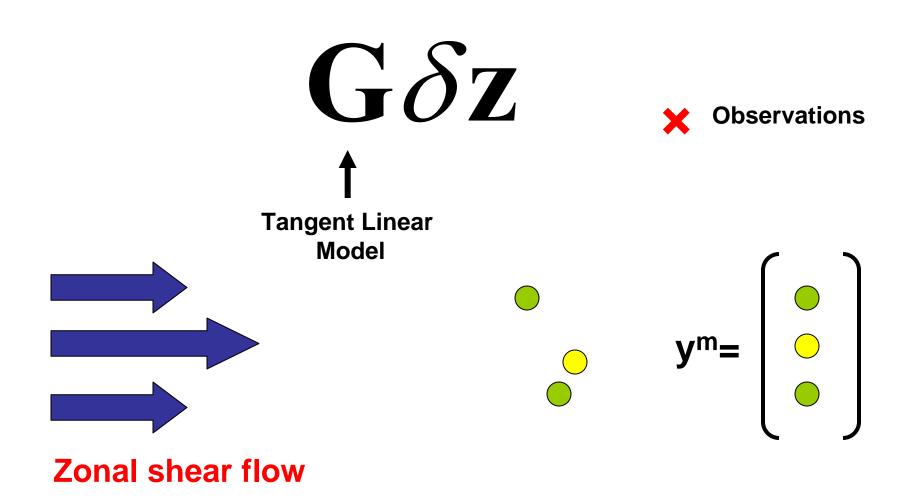


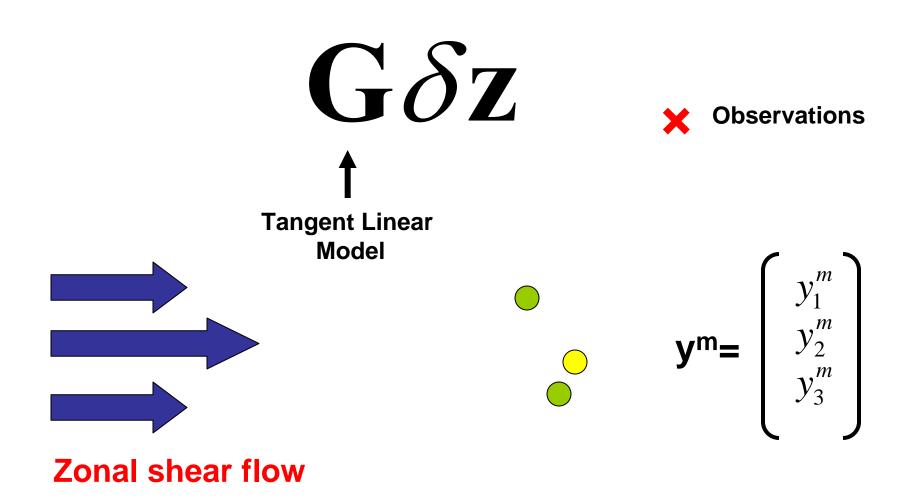




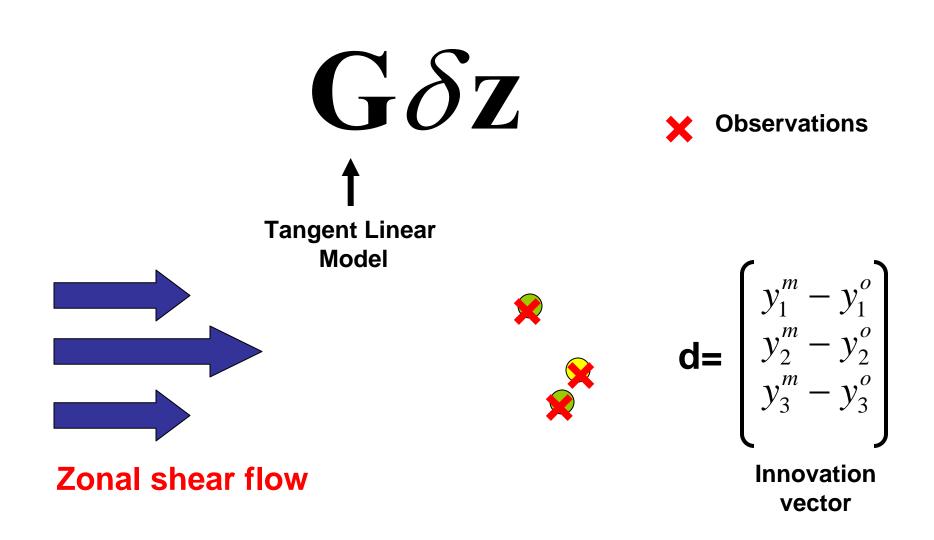








The Dual of State-Space



The Dual of State-Space

The innovation vector belongs to the *dual* of $\delta x(t)$.

The innovation vector belongs to
$$\mathbf{u} = \begin{bmatrix} \delta \mathbf{x}(0) \\ \delta \mathbf{x}(t_1) \\ \delta \mathbf{x}(t_2) \\ \vdots \\ \delta \mathbf{x}(T) \end{bmatrix} \quad \text{for } t = [0,T]$$

According to Riesz representation theorem:

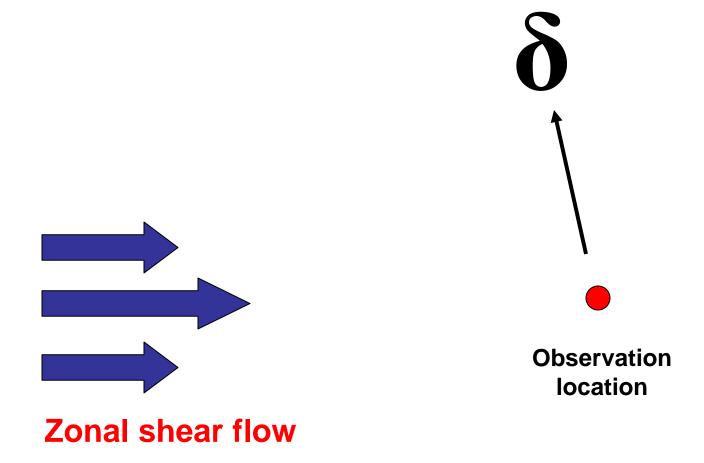
$$y_1^m - y_1^o = \mathbf{\rho}_1^T \mathbf{u}; \quad y_2^m - y_2^o = \mathbf{\rho}_2^T \mathbf{u}; \quad y_3^m - y_3^o = \mathbf{\rho}_3^T \mathbf{u};$$

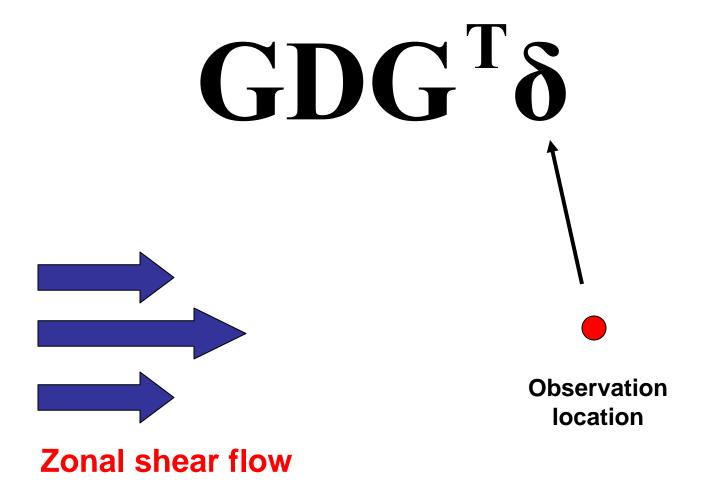
where ρ_i are referred to as "representer functions."

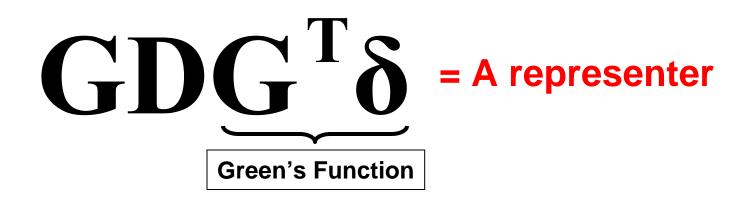
The Dual of State-Space

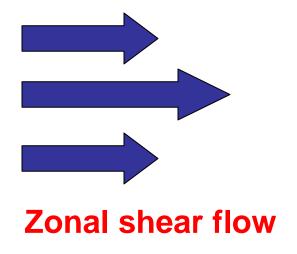
Let
$$\mathbf{\rho}_i = \begin{bmatrix} \mathbf{r}_i(0) \\ \mathbf{r}_i(t_1) \\ \mathbf{r}_i(t_2) \\ \vdots \\ \mathbf{r}_i(\mathrm{T}) \end{bmatrix}$$
 for t =[0,T]

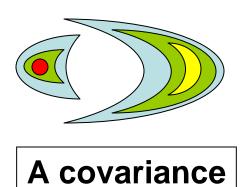
and
$$\mathcal{R}(t) = (\mathbf{r}_i(t))$$





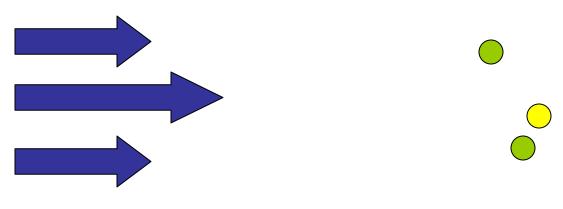






The analysis increments can be written as the weighted sum of the representers

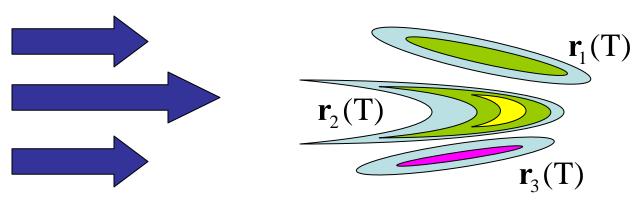
$$\mathbf{x_a}(t) = \mathbf{x_b}(t) + \sum_{i=1}^{3} w_i \mathbf{r_i}(t) = \mathbf{x_b}(t) + \mathcal{R}(t) \mathbf{w}$$
$$\mathcal{R}(t) = (\mathbf{r_i}(t))$$



Zonal shear flow

The analysis increments can be written as the weighted sum of the representers

$$\mathbf{x_a}(t) = \mathbf{x_b}(t) + \sum_{i=1}^{3} w_i \mathbf{r_i}(t) = \mathbf{x_b}(t) + \mathcal{R}(t) \mathbf{w}$$
$$\mathcal{R}(t) = (\mathbf{r_i}(t))$$



Zonal shear flow

Indirect Representer Algorithm

(Egbert *et al*, 1994)

Analysis:
$$\mathbf{Z}_{\mathbf{a}} = \mathbf{Z}_{\mathbf{b}} + \mathbf{K}\mathbf{d}$$

Goal of 4D-Var is to identify:

$$\delta \mathbf{z} = \mathbf{K} \mathbf{d} = \mathbf{D} \mathbf{G}^{\mathrm{T}} (\mathbf{G} \mathbf{D} \mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1} \mathbf{d}$$

Solve the equivalent linear system:

$$(\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{w} = \mathbf{d}; \quad \delta \mathbf{z} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{w} \equiv \mathcal{R}(0)\mathbf{w}$$

$$\delta \mathbf{z} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{w} \equiv \mathcal{R}(0)\mathbf{w}$$

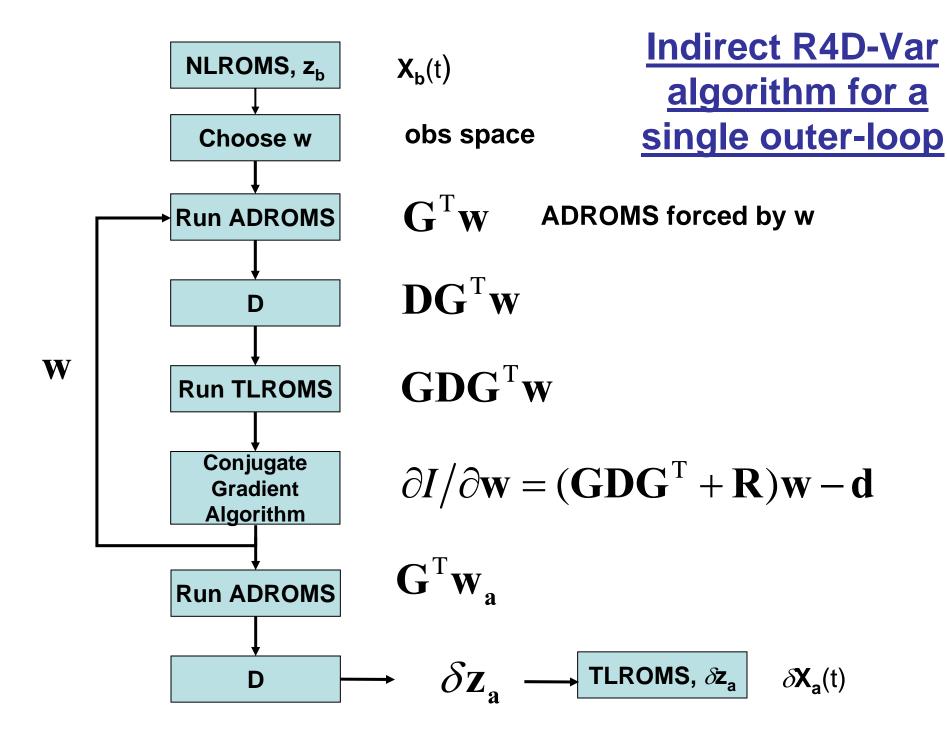
by minimizing:

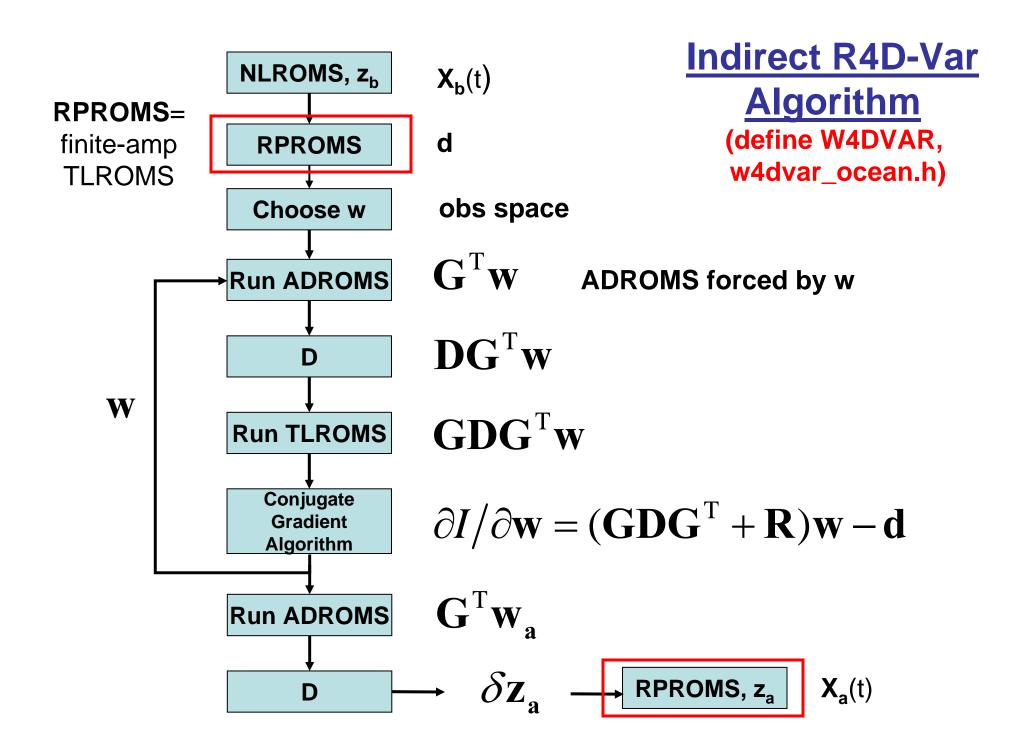
The elements of w are the weighting coefs for the r_i(t)

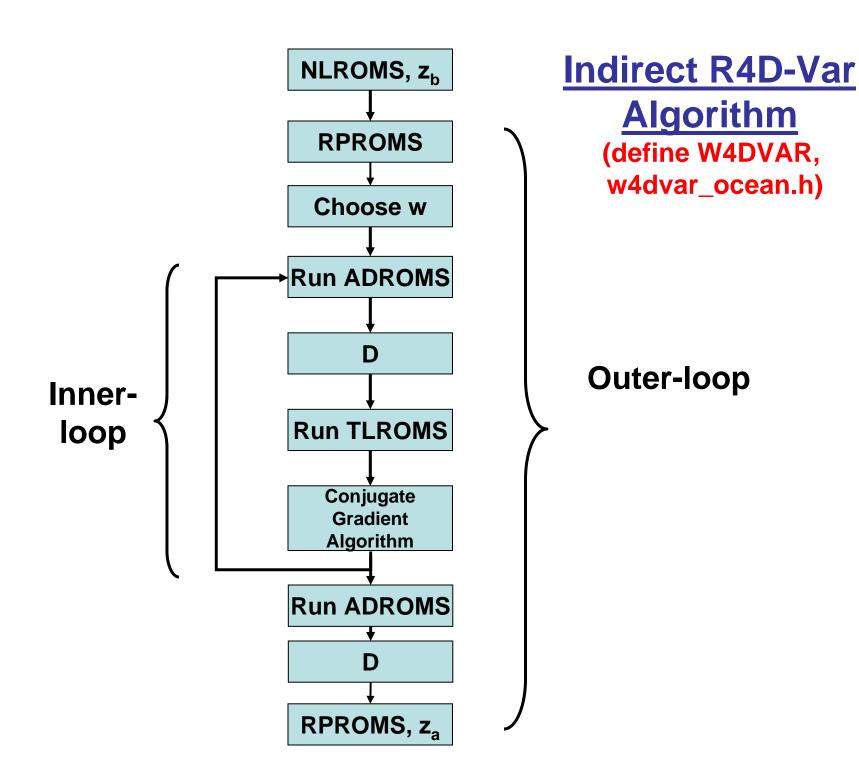
$$I(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}(\mathbf{G}\mathbf{D}\mathbf{G}^{T} + \mathbf{R})\mathbf{w} - \mathbf{w}^{T}\mathbf{d}$$
TLROMS

then compute:

$$\delta \mathbf{z} = \mathbf{D} \mathbf{G}^{\mathrm{T}} \mathbf{w} \equiv \mathcal{R}(0) \mathbf{w}; \quad \delta \mathbf{x}(t) = \mathcal{M} \delta \mathbf{z} = \mathcal{R}(t) \mathbf{w}$$







Weak Constraint 4D-Var

Nonlinear ROMS (NLROMS):

$$\mathbf{x}(t_i) = M(t_i, t_{i-1})(\mathbf{x}(t_{i-1}), \mathbf{f}(t_i), \mathbf{b}(t_i))$$

Nonlinear ROMS (NLROMS) with model error:

$$\mathbf{x}(t_i) = M(t_i, t_{i-1})(\mathbf{x}(t_{i-1}), \mathbf{f}(t_i), \mathbf{b}(t_i), \mathbf{\varepsilon}(t_i))$$

Model error prior: 0

Model error *prior* covariance: Q

(no explicit time correlation in Q, but there is some in practice)

4D-Var control vector:
$$\mathbf{z} = \begin{bmatrix} \mathbf{f}(t) \\ \mathbf{b}(t) \end{bmatrix}$$

Correction for model error

Weak Constraint 4D-Var

Tangent linear ROMS (TLROMS):

$$\delta \mathbf{x}(t_i) = \mathbf{M}(t_i, t_{i-1}) \delta \mathbf{u}(t_{i-1})$$

$$\delta \mathbf{u}(t_i) = \begin{bmatrix} \delta \mathbf{x}(t_i) \\ \delta \mathbf{f}(t_i) \\ \delta \mathbf{b}(t_i) \end{bmatrix}$$

$$\delta \mathbf{\eta}(t_i)$$
4D forcing for TLROMS

Strong constraint: $\delta \mathbf{\eta}(t_i) = \mathbf{0}$

Two Spaces

Gain (dual):

$$\mathbf{K} = \mathbf{DG}^{\mathrm{T}} (\mathbf{GDG}^{\mathrm{T}} + \mathbf{R})^{-1}$$

$$N_{\mathrm{obs}} \times N_{\mathrm{obs}}$$

Gain (primal):

$$\mathbf{K} = (\mathbf{D}^{-1} + \mathbf{G}^T \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{R}^{-1}$$

$$N_{\text{model}} \times N_{\text{model}}$$

$$N_{\rm obs} \ll N_{\rm model}$$

Two Spaces

Strong constraint:

$$N_{\text{model}} = N_x + N_{times} \left(N_f + N_b \right)$$

Weak constraint:

$$N_{\text{model}} = N_x + N_{times} \left(N_f + N_b + N_x \right)$$

Weak constraint is only practical in dual formulation of 4D-Var since N_{obs} is unaffected:

$$\mathbf{K} = \mathbf{DG}^{\mathrm{T}} (\mathbf{GDG}^{\mathrm{T}} + \mathbf{R})^{-1}$$

$$N_{\mathrm{obs}} \times N_{\mathrm{obs}}$$

Mechanics of Dual 4D-Var: Preconditioning

Analysis: $\mathbf{z}_{\mathbf{a}} = \mathbf{z}_{\mathbf{b}} + \mathbf{K}\mathbf{d}$

Goal of 4D-Var is to identify:

$$\delta \mathbf{z} = \mathbf{K} \mathbf{d} = \mathbf{D} \mathbf{G}^{\mathrm{T}} (\mathbf{G} \mathbf{D} \mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1} \mathbf{d}$$

Solve the equivalent linear system:

$$(\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{w} = \mathbf{d}; \quad \delta \mathbf{z} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{w}$$

by minimizing:

$$I(\mathbf{w}) = \frac{1}{2}\mathbf{w}^{T}(\mathbf{G}\mathbf{D}\mathbf{G}^{T} + \mathbf{R})\mathbf{w} - \mathbf{w}^{T}\mathbf{d}$$

Preconditioning via the change of variable

$$\mathbf{v} = \mathbf{R}^{-1/2}\mathbf{w}$$

Mechanics of Dual 4D-Var: Lanczos vectors

Lanczos formulation of conjugate gradient algorithm in observation space is used (congrad.F).

Dual formulation of gain matrix:

$$\mathbf{K} = \mathbf{D}\mathbf{G}^{\mathrm{T}}(\mathbf{G}\mathbf{D}\mathbf{G}^{\mathrm{T}} + \mathbf{R})^{-1}$$

Dual formulation of practical gain matrix:

$$\tilde{\mathbf{K}}_{k} = \mathbf{D}\mathbf{G}^{\mathrm{T}}\mathbf{R}^{-1/2}\mathbf{V}_{k}\mathbf{T}_{k}^{-1}\mathbf{V}_{k}^{\mathrm{T}}\mathbf{R}^{-1/2}$$

Many practical diagnostic applications using this formulation (Lectures 4 & 5).

An Example: ROMS CCS

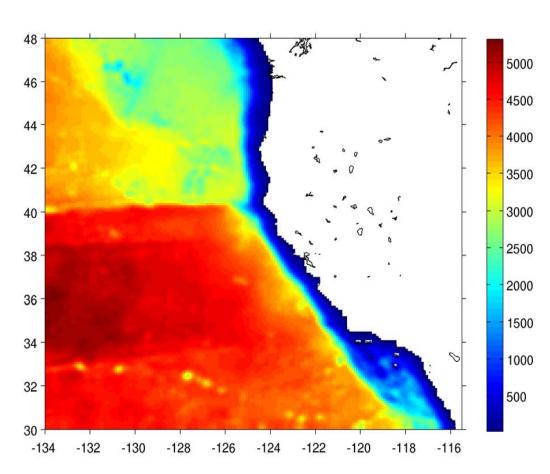
COAMPS forcing

$$f_b(t), B_f$$

ECCO open boundary b_b(t), B_b

x_b(0), B_x

Previous
assimilation
cycle



30km, 10 km & 3 km grids, 30- 42 levels

Veneziani et al (2009)

Broquet et al (2009)

Moore et al (2010)

Observations (y)

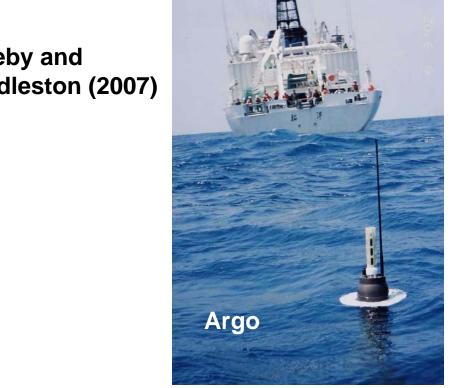
CalCOFI & **GLOBEC**

Ingleby and **Huddleston (2007)**

40°N

36°N

32ºN



4D-Var Configuration

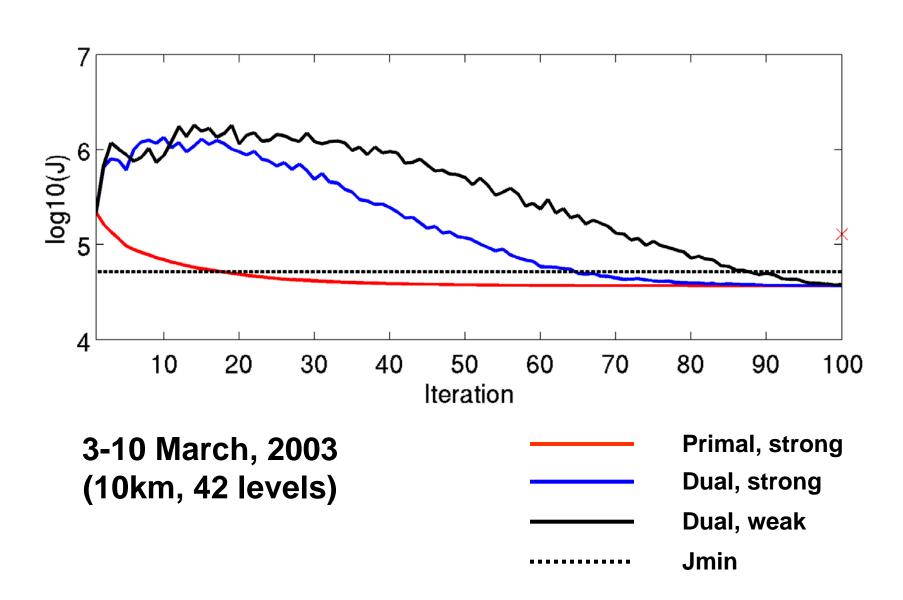
- Case studies for a representative case 3-10 March, 2003.
- 1 outer-loop, 100 inner-loops
- 7 day assimilation window
- Prior **D**: **x** L_h =50 km, L_v =30m, σ from clim **f** L_τ =300km, L_Q =100km, σ from COAMPS **b** L_h =100 km, L_v =30m, σ from clim
- Super observations formed
- Obs error R (diagonal):

SSH 2 cm

SST 0.4 C

hydrographic 0.1 C, 0.01psu

4D-Var Performance



Issues, Things to do, & Coming Soon

- Slow convergence of dual 4D-Var compared to primal formulation:
 - w has no physical significance, so $\delta z = DG^Tw$ need not be physically realizable
 - minimum residual method may be the answer (El Akkraoui and Gauthier, 2010)

Summary

 Strong and weak constraint 4D-Var, dual formulation:

define W4DPSAS

Drivers/w4dpsas_ocean.h

define W4DVAR

Drivers/w4dvar_ocean.h

 Matrix-less iterations to identify cost function minimum using TLROMS and ADROMS

References

- Bennett, A.F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234pp.
- Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449-2461.
- Da Silva, A., J. Pfaendtner, J. Guo, M. Sienkiewicz and S. Cohn, 1995: Assessing the effects of data selection with DAO's physicalspace statistical analysis system. Proceedings of the second international WMO symposium on assimilation of observations in meteorology and oceanography, Tokyo 13-17 March, 1995. WMO.TD 651, 273-278.
- Di Lorenzo, E., A.M. Moore, H.G. Arango, B.D. Cornuelle, A.J. Miller, B. Powell, B.S. Chua and A.F. Bennett, 2007: Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): development and application for baroclinic coastal upwelling system. *Ocean Modeling*, 16, 160-187.
- Egbert, G.D., A.F. Bennett and M.C.G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse method. J. Geophys. Res., 99, 24,821-24,852.
- El Akkraoui, A. and P. Gauthier, 2010: Convergence properties of the primal and dual forms of variational data assimilation. Q. J. R. Meteorol. Soc., 136, 107-115.

References

 Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, J. Zavala-Garay and A.T. Weaver, 2010: The Regional Ocean Modeling System (ROMS) 4-dimensional data assimilation systems: Part I. Ocean Modelling, Submitted.