Deviatoric Stress Tensor

The horizontal components of the divergence of the stress tensor (Wajsowicz, 1993)

in nondimesional, orthogonal curvilinear coordinates (¢, n, s) with dimensional, spatially-

varying metric factors (X, 1, H.) and velocity components (u, v, wH.) are given by
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and the strain field is
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Here, Ay (¢,m) and Ky (€,n,s) are the spatially varying horizontal and vertical viscosity
coefficients, respectively, and v is another (very small, often neglected) horizontal viscosity
coefficient. Notice that because of the generalized terrain-following vertical coordinates of
SCRUM/ROMS, we need to transform the horizontal partial derivatives from constant z
to constant s surfaces. And the vertical metric or level thickness is the Jacobian of the
transformation, H, = 9z Also in these models, the vertical velocity is computed as “fg{

and has units of m3/s.




Transverse Stress Tensor

Assuming transverse isotropy, as in Sadourny and Maynard (1997) and Griffies and
Hallberg (2000), the deviatoric stress tensor can be split into vertical and horizontal sub-
tensors. The horizontal (or transverse) sub-tensor is symmetric, it has a null trace, and
it possesses axial symmetry in the local vertical direction. Then, transverse stress tensor
can be derived from (1) and (2) yielding
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Notice the flux form of (5) and the symmetry between the F“¢ and F*7 terms which are
defined at density points on a C-grid. Similarly, the F*7 and F*¢ terms are symmetric and
defined at vorticity points. These staggering positions are optimal for the discretization of
the tensor; it has no computational modes and satisfy first-moment conservation.

The biharmonic friction operator can be computed by applying twice the tensor op-
erator (5), but with the squared root of the biharmonic viscosity coefficient (Griffies and
Hallberg, 2000). For simplicity and momentum balance, the thickness H, appears only
when computing the second harmonic operator as in Griffies and Hallberg (2000).

Rotated Transverse Stress Tensor

In some applications with tall and steep topography, it will be advantageous to reduce
substantially the contribution of the stress tensor (5) to the vertical mixing when oper-
ating along constant s-surfaces. The transverse stress tensor rotated along geopotentials
(constant depth) is, then, given by
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Notice that transverse stress tensor remains invariant under coordinate transformation.
The rotated tensor (7) retains the same properties as the unrotated tensor (5). The
additional terms that arise from the slopes of s-surfaces along geopotentials are discretized
using a modified version of the triad approach of Griffies et al. (1998).

References

Griffies, S.M. and R.W. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscos-
ity for use in large-scale eddy-permitting ocean models, Monthly Weather Rewv.,
128, 8, 2935-2946.

Griffies, S.M., A. Gnanadesikan, R.C. Pacanowski, V. Larichev, J.K. Dukowicz, and R.D.
Smith, 1998: Isoneutral diffusion in a z-coordinate ocean model, J. Phys. Oceanogr.,
28, 805-830.

Sadourny, R. and K. Maynard, 1997: Formulations of lateral diffusion in geophysical fluid
dynamics models, In Numerical Methods of Atmospheric and Oceanic Modelling,
C.A. Lin, R. Laprise, and H. Ritchie, Eds., NRC Research Press, 547-556.

Wajsowicz, R.C, 1993: A consistent formulation of the anisotropic stress tensor for use in
models of the large-scale ocean circulation, J. Comput. Phys., 105, 333—-338.



