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The purpose of this presentation is two-fold

• Overview of components of ROMS kernel as a collection of algo-

rithms

• Focus on algorithm interference, conflicts, and reconciliation follow-

ing ground-up design of ROMS

Why?



Computational kernel features

• kernel is part of the model which is present in any application and is not replaceable

• vertical coordinate. ROMS belongs to σ-class models, but code stores z(x, y, σ)
as an array ⇒ can be used as a general vertical coordinate code.

• time stepping engine barotropic-baroclinic mode splitting and coupling

• built around new time-stepping algorithms for hyperbolic system equations

• advection, pressure-gradient schemes, etc...

• higher than second-order accuracy spatial discretization for critical terms

• ground-up design philosophy, focusing on multi-component interplay of normally
remotely-related features and algorithms

• code architecture decisions involve optimization in multidimensional space, includ-
ing model physics, numerical algorithms, computational performance and cost

• code infrastructure is distinct from modular design

• multiple computer architecture support: dual Open MP/MPI parallelization capa-
bility via 2D domain decomposition

• mounting points to interact with sub-models (biology, sediment transport, etc...)



Examples of algorithm interference

• Barotropic–baroclinic time splitting motivated by linear stability analysis interferes
with finite-volume mass conservation in slow mode. This leads to the loss of
constancy preservation property for tracer advection.

• Linear stability analysis favors Forward-Backward time step for momentum and
tracers over predictor-corrector by the stability vs. computational cost criterion
for internal waves alone. Yet, most suitable advection algorithms exist as two-stage
procedures, which more naturally incorporate into predictor-corrector.

• In its turn, barotropic–baroclinic mode splitting makes it impossible to satisfy
finite-volume continuity equation on slow baroclinic time during predictor sub-step,
hence loss of the constancy preservation property of finite-volume conservative
form of tracer advection.

• High-order polynomial interpolation requires monotonicity constraints to prevent
spurious oscillations, if interpolated field is not smooth on grid scale. In context
of pressure gradient it translates into the constraint of monotonicity of stratifica-
tion, which eventually leads to complete redesign of Equation of State (EOS) of
seawater to allow such constraint.

• In a time-split procedure barotropic mode requires knowledge of bottom stress
before barotropic mode stepping begins within each main time step. This occurs
naturally in time-explicit bottom stress formulation, but it also imposes unphysical
limitation on bottom stress (remove no more that amount momentum within the
bottom-most grid box per baroclinic time step).



Time stepping algorithms

Single hyperbolic equation [advection]:

∂q

∂t
+ c

∂q

∂x
= 0

wave system:

∂ζ

∂t
= −c∂u

∂x

∂u

∂t
= −c∂ζ

∂x

Time stepping in oceanic modeling, Griffies, et al, 2002:

• Synchronous (compute r.h.s. for all equations at once and apply it)

LF + Asselin Filter (mostly; POM, MOM/POP, SPEM)

LF-TR, LF-AM3, AB2-TR

AB3 (Durran, 1991; SPEM/SCRUM family only)

same stability limit as for single advection equation, Canuto et al, 1988.

stability is limited by αmax = c∆t · kmax ≤ 1, typically 0.7 per computation of r.h.s.

• Forward-Backward (systems only)

ζn+1 = ζn − c∆t · ∂u
n

∂x
; un+1 = un − c∆t · ∂ζ

n+1

∂x

twice as efficient, αmax ≤ 2 only in the simplest, classical version ever been used in
oceanic modeling, and only for barotropic mode, Griffies, et al, 2002



Explicit time stepping for single equation
∂q

∂t
= −iω · q has general form

qn+1 = F(qn, qn−1, ...)− iα · G(qn, qn−1, ...)

where α = ω∆t , F(qn, qn−1, ...) =
r∑

i=0

βiq
n−i ; G(qn, qn−1, ...) =

r∑

i=0

γiq
n−i

and characteristic equation P(λ) = λr+1 −
r∑

i=0

(βi − iα · γi)λr−i = 0 .

The same, but applied to system reads
∂ζ

∂t
= −iω · u ;

∂u

∂t
= −iω · ζ

(
ζ
u

)n+1

= F
[(
ζ
u

)n
,

(
ζ
u

)n−1

, ...

]
+

(
0 −iα
−iα 0

)
· G
[(
ζ
u

)n
,

(
ζ
u

)n−1

, ...

]
,

hence

∣∣∣∣∣∣

F(1, λ−1, ...)− λ −iα · G(1, λ−1, ...)

−iα · G(1, λ−1, ...) F(1, λ−1, ...)− λ

∣∣∣∣∣∣
=

(
λ−

r∑

i=0

(βi − iα · γi)λ−i
)

×
(
λ−

r∑

i=0

(βi+iα · γi)λ−i
)

= 0

same set of roots λ and λ∗ in complex-conjugate pairs ⇒ same stability limit



Synchronous time stepping ...

AB2
0*

AB3
0.7230.7236

AB4
0.430.4299

AM3
0*

AB2-AM3
0.606/5

AB3-AM3
*0.581.1642*

AB3-AM4
0.591.17847

AB4-AM4+mod

*0.460.93627*
RK3

0.5771.73205
RK4

0.7052.82842

RK5
*0.6783.3957*

LF-TR
0.707

√
2

1
5
LF+4

5
(LF-TR)

0.753/2
LF-AM3

0.7931.5874
LF-γ = 0.0804

0.7941.5876



Comparison of time stepping algorithms

Synchronous
• Well studied;
• Available to high orders of accuracy;
• efficiency ≤ 1 = efficiency(LF).
• less than optimal because the fastest

processes occur as interplay between
momenta and tracers

Forward-Backward
• approximately twice as efficient;
• purely dispersive;
• only first-order accurate for each

equation, unless interpreted as u and
ζ are staggered in time;

• What to do about advection?
Coriolis terms?

Design Goals:

⇒We seek to generalize best known synchronous algorithms, such as RK2, LF-
TR, LF-AM3, AB3, by introducing FB-like feedback, so that newly computed field
immediately used for the update of the partner equation, rather at the next time
step (or sub-step in predictor-corrector algorithm).

⇒ We also seek to generalize FB to higher orders of accuracy.

Time stepping algorithm must be accurate and robust, even if run close to the limits
of numerical stability. To do so in must have small numerical dumping of resolved
time scales, but at the same time dissipate (not disperse) unresolved ones (hence
prevent temporal aliasing in nonlinear terms), and also provide strong dumping of
computational modes.

Although our primary focus is to find optimum algorithm for gravity waves, it should
be also compatible with other terms, such as advection (both centered and upstream-
biased) and Coriolis.

Inverse stability analysis method: use arbitrary coefficients and derive algorithms
with desired eigen values for characteristic equations for discretized coupled system.



Generalized RK2

Predictor sub-step

ζn+1,∗ = ζn − iα · un
un+1,∗ = un − iα ·

[
βζn+1,∗ + (1− β)ζn

]

corrector

ζn+1 = ζn − iα

2
·
(
un+1,∗ + un

)

un+1 = un − iα

2
·
[
εζn+1 + (1− ε)ζn+1,∗ + ζn

]

β = ε = 0 ⇒ standard RK2.

single-step matrix form:


ζ

u



n+1

=




1− α2

2
−iα

(
1− α2β

2

)

−iα
(
1− α2ε

4

)
1− α2

2
+ α4βε

4






ζ

u



n

characteristic equation

λ2 −
(

2− α2 +
α4βε

4

)
λ+ 1 +

α4

4
(1− 2β − ε+ βε) = 0

substitute λ = eiα and expand in Taylor series:

α4

(
1

3
− β

2
− ε

4

)
+ iα5

(
1

12
− βε

4

)
+O

(
α6
)

= 0

setting ε = 4
3
− 2β eliminates O

(
α4
)
-term, hence

+iα5

[
1

36
+

1

2

(
β − 1

3

)2
]

+O(α6) = 0 ⇒ optimum at





β = 1/3

ε = 2/3



Generalized RK2 continued ...

Characteristic roots for modified RK2

with β = 1/3, ε = 2/3

third-order accurate step multiplier

stable αmax =
√

6
(
3−
√

5
)

= 2.14093

all analysis carried out analytically

two-time-level scheme, compara-
ble/exceeding that of Higdon 2002,
attractive for isopycnic modeling, but
less so for sigma/z.

dissipation-dominant leading-order trun-
cation term

order of accuracy of representing phase
speed exceeds that of individual terms in
equations

stability is limited by one of the modes
leaving unit circle through λ = −1, sub-
stituting this and ε = 4

3
− 2β into charac-

teristic Eqn. yields

4− α2 +

[
1

36
−
(
β − 1

3

)2
]
α4 = 0

⇒ settings for minimum truncation error
coincide with maximum stability range

efficiency exceeds that of any syn-
chronous scheme, yet is well below the
classical FB



Generalized LF-TR/LF-AM3
Predictor sub-step

ζn+1,∗ = ζn−1 − 2iα · un
un+1,∗ = un−1 − 2iα ·

[
(1− 2β) ζn + β

(
ζn+1,∗ + ζn−1

)]

corrector

ζn+1 = ζn − iα
{(

1

2
− γ

)
un+1,∗ +

(
1

2
+ 2γ

)
un − γun−1

}

un+1 = un − iα
{(

1

2
− γ

)[
εζn+1 + (1− ε)ζn+1,∗]

+

(
1

2
+ 2γ

)
ζn − γζn−1

}

Standard (no FB-feedback) versions are identified as

β = ε = 0 ⇒





γ = 0 ⇒ LF-TR αmax =
√

2

γ = 1/12 ⇒ LF-AM3 αmax = 1.5874

γ = 0.0804 ⇒ max stability αmax = 1.5876

these are known as the most robust among synchronous algorithms.



Generalized LF-TR/LF-AM3 continued...
single-step matrix form

(
ζ
u

)n+1

=

(
A −iB

−iC D

)(
ζ
u

)n
+

(
E −iF
−iG H

)(
ζ
u

)n−1

characteristic equation

λ2 − (A+D)λ+AD +BC −H − E + (AH + ED +BG+ FC)λ−1

+(EH + FG)λ−2 = 0

where

A = 1− 2α2

(
1

2
− γ

)
(1− 2β) B = α

{
1

2
+ 2γ − 4α2

(
1

2
− γ

)
β

}

C = α

{
1

2
+ 2γ + ε

(
1

2
− γ

)[
1− 2α2

(
1

2
− γ

)
(1− 2β)

]}

D = 1− 2α2

(
1

2
− γ

){
1− ε

[
3

4
− γ + 2α2

(
1

2
− γ

)
β

]}

G = α

{
1

2
− 2γ − ε

(
1

2
− γ

)[
1 + 4α2

(
1

2
− γ

)
β

]}

E = −4α2

(
1

2
− γ

)
β F = α

(
1

2
− 2γ

)
H = −α2

(
1

2
− γ

)(
1

2
− 2γ

)
ε



Generalized LF-TR/LF-AM3 continued...
Substitute λ = eiα and expand in Taylor series:

−α4

(
1

6
− 2γ

)
+ iα5

{
1

12
+

(
1

2
− 2γ

)2

−
(

1

2
− γ

)[
2β + ε

(
1

2
− 2γ

)]}

+α6

{
133

720
− γ

2
+

7

3
γ2 −

(
1

2
− γ

)[
4

3
β + ε

(
5

12
− 4

3
γ

)

−4βε

(
1

2
− γ

)]}
+O

(
α7
)

= 0

third-order accuracy condition

γ =
1

12
∀β, ε

fourth-order

above and β =
7

30
− ε

6

fifth-order (no solution)

both above and − 5

6

(
ε− 11

20

)2

− 1603

2400
= 0

minimal possible truncation error

ε =
11

20
β =

17

120
γ =

1

12
⇒ αmax = 1.851640



Generalized LF-AM3 continued...

αmax as function of ε, β with γ = 1/12.

Contours below α = 1.75 are shown in

dashed lines.

Stability properties of third- and fourth-
order subsets among Generalized LF-
TR/LF-AM3 family schemes

The empty area in the upper-right corner
corresponds to schemes with an asymp-
totic instability of the physical modes.

Note the appearance of two maxima of
stability, at (ε, β)=(0.83,0.126) just on
the edge of asymptotic instability, and
(0.39,0.044).

The straight dashed line β = 7/30 − ε/6
approximately parallel to the edge corre-
sponds to a zero O

(
α5
)

truncation term.

The asterisk * and cross + on this line de-
note locations of the minimal truncation
error and maximum stability limit among
the forth-order algorithms, which are not
far away from each other.



Generalized LF-AM3 continued... γ=1/12

β = 17/120, ε = 11/20,
αmax=1.851640

minimal truncation error

among all fourth-order

accuracy schemes

β=0.126, ε=0.83,
αmax=1.958537

maximum stability range

among γ = 1/12

β=0.044, ε=0.39,
αmax=1.908525

secondary stability

maximum

At best 24% gain in stability range relatively to LF-AM3 with β = ε = 0.

Unprecedentally small numerical dissipation and dispersion, if desired.



Generalized LF-TR/LF-AM3 continued...

Search for maximum stability range among all γ, β, ε, while maintaining second-order

accuracy. Treat γ, β, ε as free parameters. Sweep (β, ε)-plane for each γ.

Left: Map of αmax = αmax(ε, β) for γ=0.

Right: αmax and the corresponding ε, β

as functions of γ



Generalized LF-TR/LF-AM3 continued...

γ = 0, β = 0.166, ε = 0.84

αmax=2.4114

γ = −0.025, β = 0.130,

ε = 0.84 αmax=2.6078

γ = −0.05, β = 0.105,

ε=0.84, αmax=2.8010

Dissipative algorithms optimized for stability range. Stability increases with decrease
of γ, but accuracy degrades. Suitable for barotropic mode.

LF-TR(γ = 0): 70% gain in stability range relatively to β = ε = 0

Going beyond γ < 0 is not desirable because of accuracy loss. Still much less efficient
than FB.



Generalized Forward–Backward algorithm for system

Starting with logically AB2-like step for ζ followed by logically AM3-like for u

ζn+1 = ζn − iα
[
(1 + β)un − βun−1

]

un+1 = un − iα
[
(1− γ − ε)ζn+1 + γζn + εζn−1

]

reverts to Classical FB if β = γ = ε = 0
characteristic equation

λ2 −
[
2− α2 (1− γ − ε) (1 + β)

]
λ+ 1− α2 (β − γ − 2βγ − βε)

+α2 (ε+ βε− βγ)λ−1 − α2βελ−2 = 0

substitute λ = eiα and expand in Taylor series

(β − γ − 2ε) iα3 +

(
1

12
− β

2
+
γ

2
+ βγ + 2βε

)
α4 +

(
1

12
− β

6
+
γ

6
+
ε

3
− βε

)
iα5

+O
(
α6
)

= 0

Always respect β − γ − 2ε = 0 to ensure second-order accuracy. Time-centering
balance: once r.h.s. for ζ is placed at tn +

(
1
2
− δ
)

∆t, then r.h.s. for u is centered at

tn +
(

1
2

+ δ
)

∆t with the same offset δ ≡ 1
2
− β. Classical FB respects this rule.

Setting γ = β − 2β2 − 1

6
and ε = β2 +

1

12
eliminates both O

(
α3
)

and O
(
α4
)

terms, resulting in third-order accuracy for any β.

Above and
1

12
− β

12
− β3 = 0 ⇒ β = 0.3737076 eliminates O

(
α5
)



Generalized FB continued... AB2-AM3

β = 0, γ = −1
6
, ε = 1

12

αmax =
√

3

β = 0.3737076,

fourth-order accurate

αmax =
√

2

β = 1
2
, γ = −1

6
, ε = 1

3

α∗max =
√

3/2 ≈1.2247

Strong instability occurs when one of the computational modes leaves unit circle

at λ = −1 ,hence αmax =
√

3
/√

1 +
β

2
+ 6β3 decreases with β . In addition to

that, physical modes become asymptotically unstable if β > 0.3737076.

Logically-AB2 time step is asymptotically unstable for single hyperbolic equation

when β ≤ 1/2. Although attractive, this algorithm does not combine well with the

other hyperbolic SWE terms (advection, Coriolis) because of no overlap in β.



Generalized FB AB3—AM4

Logically-AB3 — logically-AM4 like step:

ζn+1 = ζn − iα
[(

3

2
+ β

)
un −

(
1

2
+ 2β

)
un−1 + βun−2

]

un+1 = un − iα
[(

1

2
+ γ + 2ε

)
ζn+1 +

(
1

2
− 2γ − 3ε

)
ζn + γζn−1 + εζn−2

]

where r.h.s. for both equations are already centered around tn + ∆t/2, regardless of
settings of β, γ, ε ⇒ Second-order accuracy is always guaranteed.

Logically-AB3 step for single advection equation becomes stable if β > 1/6
(asymptotic instability of AB2, if below), and gets third-order accuracy if β = 5/12;
β = 0.281105 yields the largest stability range. ⇒ Naturally combines with compu-
tation of Coriolis and advection terms.

characteristic equation

λ2 −
[
2− α2

(
3

2
+ β

)(
1

2
+ γ + 2ε

)]
λ+ 1− α2

[
7

2
γ +

11

2
ε− 1

2
+ β

(
1

2
+ 4γ + 7ε

)]

−α2

[
1

4
− 5

2
γ − 3

2
ε+ β

(
1

2
− 6γ − 4ε

)]
λ−1 + α2

[
β

(
1

2
− 4γ − 2ε

)
− γ

2
+

3

2
ε

]
λ−2

+α2
[
β (γ − 2ε)− ε

2

]
λ−3 + α2βελ−4 = 0

Requires finding roots of sixth-order polynomials: ⇒ trace physical modes by con-
tinuation (using Newton’s iterations), then reduce power to fourth.



Generalized FB continued... AB3—AM4

set λ = eiα and expand in Taylor series

α4

[
1

3
− β − γ − 3ε

]
+

1

2
iα5

[
1

6
+ β − γ − ε

]
+ α6

[
− 47

720
− 1

6
γ − 1

2
ε+ β

(
1

3
+ γ + 3ε

)]

+O(α7) = 0

third-order accuracy condition γ =
1

3
− β − 3ε ∀β, ε

fourth-order β =
1

12
− ε and γ =

1

4
− 2ε ∀ε

fifth-order
7

120
+

2

3
ε+ ε2 = 0 ⇒ ε = −1

3
±
√

190

60

• Fifth-order algorithm is asymptotically unstable and has αmax = 1.01 limited by
computational mode.

• Fourth-order algorithms are asymptotically stable for ε > −0.03655 and has widest
stability range αmax = 1.727 if ε = 0.083.

• Third-order 2-parametric (β,ε) family can reach up to αmax = 1.96 and can be
made with desirable dissipation.

• Compromise second-order choice β = 0.281105, γ = 0.088 and ε = 0.013 for
barotropic mode.



Generalized FB continued... AB3—AM4

AB3–TR: β=5/12,
γ=ε=0

αmax=1.1441551

AB3–AM3: β=5/12,
γ = −1/12, ε=0
αmax=1.003859

β, γ, ε set to achieve
fifth-order accuracy
αmax=1.0145*

not a viable choice

AB3–TR is historically the first Generalized FB step in ROMS family codes (1998):
Rutgers versions 1.8, 1.9, 2.0/TOMS, 2.1 still use it for main 3D step. Approx 50%
more efficient than AB3 of SCRUM model, but is below of what is coming.

Setting β, γ, ε to achieve the largest possible order of accuracy (fifth) results in
asymptotic instability, |λ| = 1.014 at α ≈ ±1; (above value of αmax=1.0145* is
limited by computational mode at λ = −1).

The most crucial step to expand stability limit beyond shown above is to

reduce AB3-curvature by setting β <5/12. Note that β <1/6 leads to asymptotic

instability for AB3 for centered advection and Coriolis terms.



Generalized FB continued... AB3—AM4
Search for maximum stability limit, while maintaining at least third-order accuracy,
hence γ = 1/3− β − 3ε in all cases shown here. Parameter(s) ε or β, ε are treated as
adjustable.

ε = 0.083, β = 1/12− ε
fourth-order accuracy

αmax = 1.727 maximum ∀ε

β=0.232, ε=0.00525
αmax=1.939

maximum ∀β, ε

β=0.21, ε=0.0115
αmax = 1.874

monotonic dissipation

Maintaining fourth-order accuracy leads to β ≈ 0 ⇒ Coriolis and advection terms
needs to be dealt with separately.

β=0.232 of maximum stability range falls into the favorable range of 1/6 < β < 5/12,

and is close to the maximum stability for AB3 alone, β=0.281105. It naturally

combines with computation of Coriolis and advection terms. However it weekly

dissipates under-resolved time scales (similarly to classical FB). β=0.21, ε=0.0115

deviates from maximum stability to achieve proper dissipation.



Conclusions (time stepping)

β=0.281105, ε=0.013, γ=0.0880

αmax=1.7802

Predictor–Corrector

• LF-TR stability range ≈ 2.4 ⇒ 70%
gain relatively to its prototype

Forward-Backward AB3-AM4

• stability range up to ≈ 1.8 while
maintaining third-order accuracy

• nearly twice as efficient relatively to
LF, AB3, LF-TR, LF-AM3

• both r.h.s-des are time-centered at
n+ 1/2 Coriolis and advection terms
are computed naturally using the
same AB3-extrapolation

• third-order accurate, if γ = 1
3
−β−3ε

• fourth-order γ = 1
4
− 2ε , β = 1

12
− ε

• small numerical dispersion

• dissipative leading-order truncation
term



Time stepping of nonlinear

equations LF-TR/LF-AM3

Predictor

ζn+1,∗ = ζn−1 − 2iα · un
un+1,∗ = un−1 − 2iα · [(1− 2β) ζn

+β
(
ζn+1,∗ + ζn−1

)]

corrector

ζn+1 = ζn − iα
{(

1

2
− γ

)
un+1,∗

+

(
1

2
+ 2γ

)
un − γun−1

}

un+1 = un − iα
{(

1

2
− γ

)[
εζn+1

+(1− ε)ζn+1,∗]

+

(
1

2
+ 2γ

)
ζn − γζn−1

}

Original form: iα{...} translate into

computationally expensive nonlinear

terms stored from one step to another.

Predictor

ζn+1

2 =

(
1

2
− 2γ

)
ζn−1 +

(
1

2
+ 2γ

)
ζn

−iα (1− 2γ)un

un+1

2 =

(
1

2
− 2γ

)
un−1 +

(
1

2
+ 2γ

)
un

−iα
[
(1− 2γ) ζn + β

(
2ζn+1

2 − 3ζn + ζn−1
)]

corrector

ζn+1 = ζn − iα · un+1

2

un+1 = un − iα
{

(1− ε) ζn+1

2 + ε

[(
1

2
− γ

)

×ζn+1 +

(
1

2
+ 2γ

)
ζn − γζn−1

]}

Alternative form: Eliminates the need

to store r.h.s. between time steps



Time stepping of nonlinear equations AB3–AM4

forward AB3-extrapolation


ζ

u



m+1

2

=

(
3

2
+ β

)

ζ

u



m

−
(

1

2
+ 2β

)

ζ

u



m−1

+ β



ζ

u



m−2

finite-volume fluxes

Dm+1

2 = h+ ζm+1

2 U
m+1

2 = Dm+1

2um+1

2 ∆η V
m+1

2 = Dm+1

2vm+1

2 ∆ξ

free-surface step

ζm+1 = ζm −∆t∗divU
m+1

2

half-step-back interpolation

ζ ′ =

(
1

2
+ γ + 2ε

)
ζm+1 +

(
1

2
− 2γ − 3ε

)
ζm + γζm−1 + εζm−2

momentum step

um+1 =
1

Dm+1

{
Dmum + ∆t∗

[
F
(
ζ ′
)
−Dm+1

2fk× um+1

2 + ...
]}

• pressure gradient term F (ζ ′) is nonlinear function of its argument; (...) denotes
other terms: advection, viscous, etc.

• Stable without need for viscosity or upstream-bias of ζ in U-terms; Naturally
combines with advection (centered and/or upstream-biased), and Coriolis terms

• There is no need to store r.h.s. terms between time steps



Time splitting: Constancy preservation for tracers

Tracer equation

advective form
∂q

∂t
+ (u · ∇)q = 0 ⇒ Lagrangian conservation

conservation form
∂q

∂t
+∇ (uq) = 0 ⇒ integral content conservation

nondivergence (∇ · u) = 0 ⇒ coexistence of the above

• If tracer field q is initially uniform in space, it remains so at all times later: con-
stancy preservation property

• For numerical reasons oceanic models always use conservation form as prototype
for discrete tracer equations

• in a time-split free-surface model nondivergence is linked with free-surface equa-
tions in fast time, hence, strictly speaking

〈ζ〉n+1 6= 〈ζ〉n −∆t · div <Du>

where n and n + 1 correspond to baroclinic slow time step, 〈...〉 means fast-time
averaging; u means vertical averaging.

• In a hydrostatic free-surface model vertical velocity is computed from 3D continuity
equation and it must be consistent with changes in control volumes to ensure
integral volume conservation.



How constancy preservation is lost
discrete tracer advection

∆Vn+1
i,j,k q

n+1
i,j,k = ∆Vni,j,kqni,j,k −∆t

[
q̃i+1

2
,j,kUi+1

2
,j,k − q̃i−1

2
,j,kUi−1

2
,j,k + q̃i,j+1

2
,kVi,j+1

2
,k

−q̃i,j−1

2
,kVi,j−1

2
,k + q̃i,j,k+1

2
Wi,j,k+1

2
− q̃i,j,k−1

2
Wi,j,k−1

2

]

where ∆Vi,j,k = Hi,j,k∆Ai,j,k is control volume, and

qi,j,k =
1

∆Vni,j,k

∫

∆Vni,j,k

q(x, y, z) d3V

discrete continuity: formally set qi,j,k ≡ 1 in the above

∆Vn+1
i,j,k = ∆Vni,j,k −∆t ·

[
Ui+1

2
,j,k − Ui−1

2
,j,k + Vi,j+1

2
,k − Vi,j−1

2
,k +Wi,j,k+1

2
−Wi,j,k−1

2

]

...however, because of time splitting, ∆Vn+1
i,j,k does not come from here, but is con-

trolled by free-surface ζ via

Hn+1
i,j,k = H(0)

i,j,k ·
(

1 +
〈ζ〉n+1

i,j

hi,j

)
⇒ ∆Vn+1

i,j,k = Hn+1
i,j,k ∆Ai,j,k

which uses different time stepping algorithm, different time step, and furthermore,
is subject to fast-time averaging ζ → 〈ζ〉 to prevent aliasing of barotropic frequencies

unresolved in slow time. Above H(0)
i,j,k is unperturbed (ζ ≡ 0) vertical grid spacing.

⇒ unless the finite-volume fluxes Ui+1

2
,j,k and Vi,j+1

2
,k are computed in a very special

way, it is not automatically guaranteed that ∆Vn+1
i,j,k and ∆Vni,j,k are related via discrete

continuity equation above.



How constancy preservation is lost, continued...

Equivalently

Wi,j,1

2
≡ 0 at the sea floor, and

Wi,j,k+1

2
= −

k∑

k′=1

{
∆Vn+1

i,j,k′ −∆Vni,j,k′
∆t

+ Ui+1

2
,j,k′ − Ui−1

2
,j,k′ + Vi,j+1

2
,k′ − Vi,j−1

2
,k′

}

for all k = 1,2, ..., N

defines Wi,j,k+1

2
as finite-time-interval finite-volume flux across moving interface be-

tween vertically adjacent grid boxes ∆Vi,j,k and ∆Vi,j,k+1.

What guarantees that surface kinematic boundary condition

Wi,j,N+1

2
≡ 0

is respected, if ∆Vn+1
i,j,k come from the barotropic mode with different time

stepping?

Solution: enforce
N∑

k=1

Ui+1

2
,j,k = 〈〈U〉〉n+1

2

i+1

2
,j

and
N∑

k=1

Vi,j+1

2
,k = 〈〈V 〉〉n+1

2

i,j+1

2

where

∆Ai,j〈ζ〉n+1
i,j = ∆Ai,j〈ζ〉ni,j −∆t

[
〈〈U〉〉n+1

2

i+1

2
,j
− 〈〈U〉〉n+1

2

i−1

2
,j

+ 〈〈V 〉〉n+1

2

i,j+1

2

− 〈〈V 〉〉n+1

2

i,j−1

2

]

consistently with change in fast-time-averaged free surface 〈ζ〉 between two consec-
utive baroclinic time steps. How to define 〈〈...〉〉?



Time splitting continued...

barotropic time stepping

ζm+1 = ζm −∆t

M
· divU

m+1

2 ∀m = 1, ...,M∗

yields ζm = ζ0 −∆t

M

m−1∑

m′=0

divU
m′+1

2

where ζ0 (meaning m = 0) corresponds to baro-
clinic step n. Apply operation 〈...〉 to both sides:

M ∗∑

m=1

amζ
m = ζ0 −∆t

M
· div

M ∗∑

m=1

[
am

m∑

m′=1

U
m′−1

2

]

which translates into

〈ζ〉n+1 = 〈ζ〉n −∆t · div
M ∗∑

m′=1

bm′U
m′−1

2

where bm′ =
1

M

M ∗∑

m=m′

am , ∀m = 1, ...,M ∗

NOTE: barotropic mode restarts at every

baroclinic time step, 〈ζ, U, V 〉n+1 → ζ0, U
0
, V

0

〈ζ〉n+1 ≡
M ∗∑

m=1

amζ
m

M ∗∑

m=1

am ≡ 1
M ∗∑

m=1

m

M
am ≡ 1

⇒ 〈〈U〉〉n+1

2 ≡
M ∗∑

m=1

bmU
m−1

2 exact

slow-time volume conservation



Time splitting continued...
Fluxes Ui+1

2
,j,k, Vi,j+1

2
,k, Wi,j,k+1

2
are consistent with barotropic mode only at n+ 1/2,

after barotropic stepping is finished for current 3D step. What to do during predictor
step for 3D?

Nonconservative (pseudo-compressible) step via artificial continuity equation
”continuity” step(s)

∆Vn±
1

2

i,j,k = ∆Vni,j,k∓
1

2
∆t ·

[
Un
i+1

2
,j,k − Un

i−1

2
,j,k + V n

i,j+1

2
,k − V n

i,j−1

2
,k +W n

i,j,k+1

2

−W n
i,j,k−1

2

]

pseudo-compressible tracer step

∆Vn+1

2

i,j,k q
n+1

2

i,j,k = ∆Vn−
1

2

i,j,k

qni,j,k + qn−1
i,j,k

2
−∆t

[
q̃ni+1

2
,j,kU

n
i+1

2
,j,k − q̃ni−1

2
,j,kU

n
i−1

2
,j,k + q̃ni,j+1

2
,kV

n
i,j+1

2
,k

−q̃ni,j−1

2
,kV

n
i,j−1

2
,k + q̃ni,j,k+1

2

W n
i,j,k+1

2

− q̃ni,j,k−1

2

W n
i,j,k−1

2

]

discard ∆Vn±
1

2

i,j,k after computing q
n+1

2

i,j,k .

[alternative LF-TR version is shown for simplicity. The actual code uses LF-AM3.]

• this is constancy preserving for q
n+1

2

i,j,k

• content conservation property for q
n+1

2

i,j,k is lost because ∆Vn+1

2

i,j,k has nothing to

do with the actual ∆Vn+1
i,j,k set by the barotropic mode

• this is OK because q
n+1

2

i,j,k is used exclusively to compute fluxes at n+ 1/2. Subse-
quent corrector step from n to n+1 is both conservative and constancy preserving



Time splitting continued... Fast-time averaging shape

Purpose: to prevent temporal aliasing of barotropic signals unresolved by baroclinic
time step.

Assuming A(τ) being continuous analog of {am|m = 1, ...,M∗} with τ ∼ m/M , and
τ∗ ∼M∗/M , response function R(α), α ≡ ω∆t is defined as

λ(α) =

τ∗∫

0

e−iα·τA(τ) dτ = R(α)e−iα

where A(τ) is assumed to satisfy appropriate normalization and centroid conditions.

Ideally R(α) ≈ 1 for α ≤ α0 ∼ 1, and R(α) → 0 as fast as possible once α > α0,
α → ∞. In the vicinity of α → 0, 1 − R(α) = O (αr) with r identified as order of
accuracy.

• It is desirable that λ(α) be similar to step multiplier of time stepping algorithm for
pressure-gradient terms in baroclinic mode

• Any positive-definite shape function A(τ) yields at most first order of accuracy

• S-shaped A(τ) (with some negative weights) can achieve second-order accuracy

• Split-explicit model in inherently more accurate in representing barotropic motions
resolved by baroclinic time step (cf., tides, topographic Rossby waves) than implicit
free-surface model (usually constraint to BE or weighted CN step for free-surface
pressure-divergence terms). Even if A(τ) is positive definite.



Time splitting continued... Fast-time averaging shape

λ(α) for four different shapes



Barotropic mode splitting for a stratified ocean

Baroclinic–barotropic mode splitting by Blumberg & Mellor, 1987, Bleck & Smith,
1990, Killworth, et. al., 1991, and Nadiga et. al., 1997

∂

∂t
(Du) + ... = −gD∇xζ+

{
gD∇xζ + F

}

where −gD∇xζ is ”fast” and
{
....
}

are ”slow” terms, and

F = F [∇xζ, ζ, ∇xρ(z), ρ(z)] = − 1

ρ0

ζ∫

−h

∂P

∂x
dz with

∂2F
∂ζ ∂ρ

6= 0 due to nonlinearity

Mode splitting error: after ζ → ζ ′ is updated by barotropic mode stepping,

−gD∇xζ ′ +
{
gD∇xζ + F [∇xζ, ζ, ∇xρ(z), ρ(z)]

}
6= F

[
∇xζ ′, ζ ′, ∇xρ(z), ρ(z)

]

i.e., split-add term no longer matches vertical integral of full (barotropic+baroclinic)
PGF computed from new free surface and the same density. Usual arguments ζ � D
and ρ(x, y, z) = ρ0 + ρ′(x, y, z) where ρ′(x, y, z)� ρ0, so that the error is small,

O
(

max

{
ρ′∇xζ
ρ0

,
ζ∇xρ′
ρ0

})
vs. O (∇xζ)

...but what about stability?
POM, MICOM, SCRUM, ROMS are working for so many years, what is your prob-
lem?



Stratified barotropic mode continued...

Higdon & Bennett, 1996; Higdon & de Szoeke, 1997; Hallberg, 1997: (all in isopyc-
nic coordinate framework) found instability of linearized split-coupled system in the
case of nondissipative time stepping (FB, LF) and proposed remedies.

Their findings:

• the instability is of resonant nature due to aliasing of barotropic mode sub-sampled
in at baroclinic steps, when barotropic step multipliers aliased in baroclinic ∆t

• ideally barotropic-baroclinic modes are coupled via. nonlinear terms only (linearize
⇒ uncouple); mode splitting error brings additional artificial coupling even in lin-
earized version;

• perturbation analysis of weakly couples system;

• ⇒ redefine barotropic mode pressure gradient term (make it to be exactly the
vertical integral of 3D term and showed that it can be achieved in isopycnic
coordinates);

• ⇒ dissipative algorithms (via time filters to suppress barotropic mode aliasing, or
dissipative predictor–corrector, Hallberg, 1997) for time stepping as an alternative.

Do we have similar problems in ROMS?

Can we do better than we usually do?



Stratified barotropic mode continued...

General guideline to replace SWE-like pressure gradient term −gD∇xζ

∂F
∂ (∇xζ)

∇xζ +
∂F
∂ζ
ζ

hence

F [∇xζ, ζ, ...] +
∂F

∂ (∇xζ)
∇x
(
ζ ′ − ζ

)
+
∂F
∂ζ

(
ζ ′ − ζ

)
≈ F

[
∇xζ ′, ζ ′, ...

]

⇒ cancellation of the dominant part of mode splitting error.

Fi+1

2
=

ζi∫

−hi

P (xi, z) dz −
ζi+1∫

−hi+1

P (xi+1, z) dz +

xi+1∫

xi

P (x,−h(x))
∂h(x)

∂x
dx

= Ii − Ii+1 + Ii+1

2

Pi(z) = g

ζi∫

z′i

ρi(z
′) dz′

Ii+1

ρ∗i =
1

1
2
D2
i

ζi∫

−hi





ζi∫

zi

ρi(z
′)dz′



 dz

Ii

ρ∗i ≤ ρiIi+1

2

ρ(x) =
1

Di

ζi∫

−hi

ρi(z
′)dz′

⇒ Fi+1

2
= g




ρ∗iD

2
i

2
−
ρ∗i+1D

2
i+1

2
+

xi+1∫

xi

ρD
∂h

∂x
dx







Stratified barotropic mode continued... discrete version

Continuous pressure gradient term

∂

∂t
(Du) + ... = − 1

ρ0
g

{
∂

∂x

(
ρ∗D2

2

)
− ρD∂h

∂x

}
= − 1

ρ0
gD

{
ρ∗
∂ζ

∂x
+
D

2

∂ρ∗

∂x
+ (ρ∗ − ρ)

∂h

∂x

}

Separate F into zero-free-surface ζ = 0 and perturbation

Fi+1

2
= F(0)

i+1

2

+ F ′i+1

2

,

where

F(0)
i+1

2

= g (ρ∗i − ρi)
h2
i

2
− g

(
ρ∗i+1 − ρi+1

) h2
i+1

2
+ g

(
ρi − ρi+1

) h2
i + hihi+1 + h2

i+1

6
is purely baroclinic, and

F ′i+1

2

= −g
{
hi+1 + hi

2

(
ρ∗i+1ζi+1 − ρ∗i ζi

)
+
ρ∗i+1ζ

2
i+1

2
− ρ∗i ζ

2
i

2

+ (hi+1 − hi)
[(
ρ∗i+1 − ρi+1

)
ζi+1 +

(
ρ∗i − ρi

)
ζi

2

+
1

6

(
ρi+1 − ρi

)
(ζi+1 − ζi)

]}

consists of modified SWE term and baroclinic topographic response term.

splitting: ρ∗ and ρ do not depend on free surface, hence are kept constant during
time stepping of barotropic mode.



Pressure Gradient Scheme

x-z plane view onto ROMS PG stencil:

J (ρ, z) is approximated as a contour

integral
∮
ρdz around the shaded area

Shchepetkin & McWilliams, 2003

Pressure-Jacobian formulation: general-
ization of POM Jacobian to higher order
of accuracy using pseudo-flux form based
on 4-point polynomial fits for density and
geopotential field

−∆x∆z · J (ρ, z) = FXi,k − FXi+1,k

+FCi,k+1 − FCi,k

where FX,FC =

∫
ρdz =

∫
ρ
∂z

∂s
ds

along the four segments

fourth-order accurate cancellation of hy-
drostatic σ-errors in PG

exact symmetry J (ρ, z) = −J (z, ρ)

formalism of adiabatic differences for
compressible EOS ⇒ guarantees positive
stratification of cubic interpolant as long
as discrete data is positively stratified

improved tolerance to ”hydrostatically in-
consistent” (Haney, 1991) grids

harmonic averaging ⇒ does not lose ac-

curacy on vertically non-uniform grids



Pressure Gradient continued...

High-order accurate pressure gradient schemes were constructed in the past (Beck-
mann & Haidvogel, 1993; Chu & Fan, 1997; 1998; 2003), they were shown to be
very successful in idealized test cases, and ... earned reputation of being non-robust
and practically useless in real-world oceanic modeling (e.g., Kliem & Pietrzak, 1999).
In fact, even today most σ-modelers stick with POM Jacobian. Why?

• oscillation of high-order polynomial interpolants, when density is not smooth on
grid scale

• mathematical criterion for field smoothness on grid scale is always based on ratio
of consecutive differences

ρi+1,k − ρi,k
ρi,k − ρi−1,k

< 3 ,
ρi,k+1 − ρi,k
ρi,k − ρi,k−1

< 3 , etc...

• the fact that field is ”physically smooth” does not guarantee smoothness on grid
scale: it is just a matter of grid spacing. One can easily get non-smooth data
from Levitus. In fact, most trouble occurs in abyss, where stratification is weak
and vertical grid spacing [either ∆z or via projected ∆x · ∂z/∂x|σ] is too large.

• model ”feels” polynomial oscillations within the discretization of stiff hydrostatic
balance as spurious negative stratification, which leads to computational blowup

• In the case of Compressible EOS most of vertical gradient (⇒ also projected
along-sigma horizontal gradient) occurs due to passive compressibility, effect i.e.,
∂ρin situ/∂z 6= 0 even if Θ, S=cost spatially uniform. Furthermore, maintaining
non-oscillatory behavior of ρin situ does not guarantee monotonic positive strati-
fication, even if discrete density is positively stratified.



Pressure Gradient continued... What to do about oscillations?

Cubic polynomial fit

ρ(ξ) = ρk+1

(
ξ +

1

2

)
+ ρk

(
ξ − 1

2

)
+
(
ξ2 +

1

4

){
[dk+1 + dk − 2 (ρk+1 − ρk)] ξ +

dk+1 − dk
2

}

defined for −1/2 ≤ ξ ≤ +1/2 and

ρ (ξ)
∣∣∣
ξ=−1

2

≡ ρk ρ (ξ)
∣∣∣
ξ=+1

2

≡ ρk+1
∂ρ

∂ξ

∣∣∣∣
ξ=−1

2

≡ dk
∂ρ

∂ξ

∣∣∣∣
ξ=+1

2

≡ dk+1

How to estimate dk and dk+1 from discrete data ρk?

algebraically averaged slope:

dk =
δρk+1

2
+ δρk−1

2

2
where δρk+1

2
= ρk+1 − ρk ∀k

harmonic average

dk = 1

/[
1

2

(
1

δρk+1

2

+
1

δρk−1

2

)]
=

2δρk+1

2
· δρk−1

2

δρk+1

2
+ δρk−1

2

as long as δρk+1

2
· δρk−1

2
> 0

and dk = 0 if δρk+1

2
· δρk−1

2
≤ 0.

As long as δρk+1

2
and δρk−1

2
have the same sign, dk is no greater than twice the

smaller of the two by magnitude,

|dk| < 2
∣∣∣minmod

(
δρk+1

2
, δρk−1

2

)∣∣∣
which guarantees that ρ(ξ) is monotonic as a continuous function of its argument

within the whole area of its definition.



Pressure Gradient continued... Compressible EOS case

• It is dangerous to compare and apply harmonic averaging to consecutive
differences of in situ density. ROMS PGF scheme is not compatible with
subtraction of horizontally uniform ρ(z)-profile.

• adiabatic differencing instead

• EOS

ρ (Θ, S, z) = ρ′1 (Θ, S) + q1 (Θ, S) · z + q1 (Θ, S) · z2 + ...

• adiabatic derivative

∂ρ (θ, S, z)

∂s

∣∣∣∣
ad

=
∂ρ′1 (θ, S)

∂s
+

nmax∑

n=1

zn
∂qn (θ, S)

∂s

• elementary adiabatic difference

δρ(ad)
i,k+1

2

= ρ′1i,k+1 − ρ′1i,k +
zi,k+1 + zi,k

2

(
q1i,k+1 − q1i,k

)

• averaged slope

di,k ≡
∂ρ

∂s

∣∣∣∣
i,k

=
2δρ(ad)

i,k+1

2

· δρ(ad)
i,k−1

2

δρ(ad)
i,k+1

2

+ δρ(ad)
i,k−1

2

+ q1i,k
∂z

∂s

∣∣∣∣
i,k



Pressure Gradient continued...

• Jackett & McDougall, 1995 introduced in situ adiabatic derivatives of in situ
density.

• They noticed that potential density — i.e., a scalar 3D field, spatial derivatives
of which are equivalent in situ adiabatic differences of in situ density — can
not be defined for realistic EOS. Isopycnic-coordinate modelers already faced this
problem. In z-coordinate world Griffies, et al, 1998 had to reformulate isopycnic
→ isoneutral diffusion.

• Baroclinic pressure gradient can be expressed entirely in terms of in situ adiabatic
differences of in situ density. This is independent of type of vertical coordinate.

• Besides pressure gradient, density and EOS participates in computation of vertical
mixing parameterization (via BVF stability frequency and buoyancy fluxes) and
in definition of isosurfaces of diffusion. It all cases density participates only via
adiabatic derivatives. Unified treatment of EOS throuhout the whole code?

• Traditionally EOS is formulated as computation of in situ density via T, S, but
in fact in situ density is irrelevant for anything in ocean modeling, except, per-
haps recovering O

(
10−3

)
differences between Boussinesque and non-Boussinesque

models.

• Examination of EOS + Levitus data reveals that Taylor expansion in powers of z
is sufficiently accurate, even if truncated after (q1 ·z)-term. This is due to the fact
that nonlinearity is extremely small in upper 1000 m, while below that World-wide
variations in T, S are small.

• McDougall, et al, 2003 came up with new EOS using thermodynamic approach.



Conclusion

Barotropic-baroclinic mode

exchange in ROMS time step

Generalized FB step for
barotropic mode

Predictor–corrector LF-AM3
(with FB-feedback → 70% gain
on stability range vs. standard
LF-AM3) for baroclinic mode

Split-explicit barotropic mode,
with 2-way temporal averaging
via S-shaped filter → at least
second-order temporal accuracy
for resolved barotropic motions

Nonconservative (pseudo-
compressible) predictor sub-step
(via artificial continuity
equation); Conservative and
constancy preserving corrector
sub-step.

Accounting for nonuniform den-
sity in barotropic mode via ρ∗,
ρ: accurate convergent split of
pressure-gradient terms



Permissible time steps for ROMS applications

Configuration Grid Size Resolution Time Step Mode Splitting Primary Time
deg or km sec Ratio Step Limitation

Atlantic DAMEE 128× 128× 20 0.750 8640 60 (Gen. FB) Coriolis force
Atlantic DAMEE 256× 256× 20 0.3750 5760 92 (Gen. FB) Coriolis/internal
Pacific 384× 224× 30 0.50 7200 78 (Gen. FB) Coriolis force
US West Coast 83× 168× 20 15 km 2880 50 (LF-TR) internal waves
US West Coast 126× 254× 20 10 km 2160 60 (LF-TR) internal waves
Monterey Bay 93× 189× 20 5 km 960 60 (LF-TR) internal waves

“(Gen. FB)” and “(LF-TR)” in the Mode Splitting Ratio column indicates time stepping algorithm
for barotropic mode.


