Minimizing spurious diapycnal mixing induced by horizontal tracer advection

F. Lemarié¹, S. Shchepetkin¹, L. Debreu², J. Molemaker¹ and J.C. McWilliams¹

 1 Institute of Geophysics and Planetary Physics, University of California, Los Angeles

² INRIA, Laboratoire Jean Kuntzmann, Grenoble, France

Spurious diapycnal mixing, why?

• Strong horizontal mixing along iso-sigma surfaces can lead to spurious diapycnal fluxes of heat and salt (and hence density) when it is applied in regions with sloping isopycnals.

Vertical section in the southern Pacific

- 2 Neutral diffusion in ocean models
- 3 Advection and rotated diffusion coupling
- Preliminary numerical test
- 5 Conclusion and perspectives

1 Introduction and motivations

- Neutral diffusion in ocean models
- 3 Advection and rotated diffusion coupling
- Preliminary numerical test
- 5 Conclusion and perspectives

Identification of the problem

- The implicit diffusion associated to *odd-order* advection schemes may be large enough to produce excessive diapycnal mixing.
- → South West Pacific Region (Marchesiello et. al, 2009; Couvelard et. al, 2008)
- \rightarrow Gulf of Mexico

Courtesy of Lorena Guerrero and Julio Sheinbaum

Why do we like the third order upstream advection scheme (U3H / UP3)?

• odd-ordered scheme = next higher ordered scheme plus a dissipation term

$$\widetilde{q}_{i+\frac{1}{2}} = \underbrace{\frac{7(q_i+q_{i+1}) - (q_{i-1}+q_{i+2})}{12}}_{4^{\text{th order advection}}} + \operatorname{Sign}(\mathbf{u}_{i+\frac{1}{2}}) \underbrace{\frac{3(q_{i+1}-q_i) - (q_{i+2}-q_{i-1})}{12}}_{\text{implicit diffusion}}$$

• Vertical advection not considered in this talk (small inherent diffusion)

3rd upstream-biased, parabolic interpolation

- Good compromise between accuracy, stability, simplicity and computational efficiency
- Provides a resolution dependent and scale-selective parameterization of dissipation

 \Rightarrow However the adiabatic property of advection is broken

Diapycnal component of the implicit diffusion

 $\rightarrow~$ Online computation :

$$\Phi_{\perp} = \left((\vec{F}_{C4} - \vec{F}_{UP3}) \cdot \hat{\rho} \right) \rho_3 \text{ with } \hat{\rho} = (\rho_1, \rho_2, \rho_3)^t = \frac{\vec{\nabla} \rho^{(ad)}}{\|\vec{\nabla} \rho^{(ad)}\|}$$

Longitude [km]

A first remedy : tuning of the vertical grid (and bathymetry smoothing)

→ Take advantage of the absence of restriction $h_c < h_{\min}$ with the new (" $z - \sigma$ ") coordinates \Rightarrow flattening of the near surface σ -levels

Shchepetkin's law : $h_c \approx 1.5 \times H_{\rm cline}$

 \rightarrow Bathymetry smoothing : see scaling of diapycnal mixing in Marchesiello et. al, 2009

Putting the Pieces of the Puzzle Together

 \rightarrow The aim is not to suppress diffusion but to keep it "under control"

3 Advection and rotated diffusion coupling

Neutral diffusion in ocean models

 \rightarrow Isopycnal mixing via Coordinate Rotation (Redi, 1982)

$$\mathcal{D} = \nabla \cdot (K_h \mathbf{K} \cdot \nabla q)$$

 $\mathbf{K} = diffusion (Redi) tensor$

$$\rightarrow$$
 Example in 2D ($\xi - z$)

$$\begin{split} \mathcal{D} &= K_h \partial_{\xi}^2 q \quad \to \quad \frac{K_h}{1 + \left[\frac{\partial_{\xi} \rho}{\partial_z \rho}\right]^2} \left(\partial_{\xi} - \left[\frac{\partial_{\xi} \rho}{\partial_z \rho}\right] \partial_z\right)^2 q \\ \text{In the following } \vartheta &= -\left[\frac{\partial_{\xi} \rho}{\partial_z \rho}\right] = const \end{split}$$

→ Local computation of neutral directions (cf Sasha's talk)

Discretization of the Redi tensor $\mathcal{D} = \frac{1}{\epsilon} \left[F_{i+\frac{1}{2},k}^{(\xi)} - F_{i-\frac{1}{2},k}^{(\xi)} \right]$

• **TRIADS Scheme** (Griffies *et al.*, 1998)
$$\Rightarrow$$
 Self-adjoint property
 $F_{i+\frac{1}{2},k}^{(\xi)} = K_h \left[\frac{q_{i+1,k} - q_{i,k}}{\Delta \xi} - \frac{1}{4} \frac{\rho_{i+1,k} - \rho_{i,k}}{\Delta \xi} \left\{ \frac{q_{i,k} - q_{i,k-1}}{\rho_{i,k} - \rho_{i,k-1}} + \frac{q_{i+1,k+1} - q_{i+1,k}}{\rho_{i+1,k+1} - \rho_{i+1,k}} + \frac{q_{i,k+1} - q_{i,k}}{\rho_{i,k+1} - \rho_{i,k}} + \frac{q_{i+1,k} - q_{i+1,k-1}}{\rho_{i+1,k} - \rho_{i+1,k-1}} \right\} \right]$

 SWITCH Scheme (Beckers et al., 2000, Shchepetkin, 1998 (unpublished)) $F_{i+\frac{1}{2},k}^{\left(\xi\right)} = K_h \left[\frac{q_{i+1,k} - q_{i,k}}{\Delta \xi} - \frac{1}{2} \frac{\max(\rho_{i+1,k} - \rho_{i,k}, 0)}{\Delta \xi} \left\{ \frac{q_{i,k} - q_{i,k-1}}{\rho_{i,k} - \rho_{i,k-1}} + \frac{q_{i+1,k+1} - q_{i+1,k}}{\rho_{i+1,k+1} - \rho_{i+1,k}} \right\}$ $-\frac{1}{2}\frac{\min(\rho_{i+1,k}-\rho_{i,k},0)}{\Delta\xi}\left\{\frac{q_{i,k+1}-q_{i,k}}{\rho_{i,k+1}-\rho_{i,k}}+\frac{q_{i+1,k}-q_{i+1,k-1}}{\rho_{i+1,k}-\rho_{i+1,k-1}}\right\}\right]$

Florian Lemarié (UCLA)

Stability and accuracy of the isopycnal-mixing equation

• Truncation error

$$\begin{split} \varepsilon &= \mathcal{N}(\mathcal{D}) - \mathcal{D} = \frac{\Delta \xi^2}{12} \partial_{\xi}^4 q + \vartheta^2 \frac{\Delta z_{k+\frac{1}{2}}^3 + \Delta z_{k-\frac{1}{2}}^3}{24\Delta z_k} \partial_{z}^4 q + \vartheta \frac{(\Delta z_{k+\frac{1}{2}} + \Delta z_{k-\frac{1}{2}})\Delta \xi}{4} \partial_{\xi}^2 \partial_{z}^2 q \\ &+ 2\vartheta \left[\frac{\Delta z_{k+\frac{1}{2}}^2 + \Delta z_{k-\frac{1}{2}}^2}{12} \partial_{\xi} \partial_{z}^3 q + \frac{\Delta \xi^2}{6} \partial_{\xi}^3 \partial_{z} q \right] + \mathcal{O}(\Delta z^3, \Delta \xi^3, \Delta \xi^2 \Delta z, \Delta \xi \Delta z^2) \end{split}$$

 \Rightarrow the rotation adds terms of dispersive nature (SWITH-TRIADS \Rightarrow green diffusive term)

• Stability

with Euler time stepping :

$$q^{n+1} - q^n = \Delta t K_h \left(\partial_{\xi}^2 q^n + 2\vartheta \partial_{\xi} \partial_z q^n + \vartheta^2 \left[(1-\alpha) \partial_z^2 q^n + \alpha \partial_z^2 q^{n+1} \right] \right)$$

Stability constraint :

$$\alpha = 0 \qquad \rightarrow \frac{K_h \Delta t}{\Delta \xi^2} \left(1 + \frac{\Delta z^2}{\Delta \xi^2} \vartheta^2 \right) \le \frac{1}{2} \qquad ; \qquad \alpha = 1 \qquad \rightarrow \frac{K_h \Delta t}{\Delta \xi^2} \le 1$$

For the full tensor and $\alpha = 0 \qquad \rightarrow \frac{K_h \Delta t}{\Delta \xi^2} \leq \frac{1}{2}.$

 $\frac{1}{2}$

Testcase

Isopycnal diffusion should not affect a tracer homogeneous along isopycnals

- Diffusion equation discretized in (x,z)
- The diffusion is rotated along isopycnals

Two stratifications :

- 1 Large slope $s_{\rm max} = 2 \ (\approx 48^{\circ})$
- 2 Moderate slope $s_{\rm max} = 0.5 \ (\approx 25^o)$

Two discretizations of the tensor :

- Small slope approximation
- 9 Full tensor

Numerical stability, overshots and cross-isopycnal flux

3 Advection and rotated diffusion coupling

Preliminary numerical test

5 Conclusion and perspectives

A first solution (Marchesiello et. al, 2009)

RSUP3

$$\begin{cases} q^{n+1,\star} = q^{n-1} - 2\Delta t \left[u\partial_x q^n \right]_{C4} \\ q^{n+1/2} = \frac{5}{12}q^{n+1,\star} + \frac{2}{3}q^n - \frac{1}{12}q^{n-1} \\ q^{n+1} = q^n - \Delta t \left[u\partial_x q^{n+1/2} \right]_{C4} + \Delta t \mu(\Delta x, u) \Delta^2(\alpha_1 q^{n+1/2} + \alpha_2 q^n) \\ & \text{ with } \quad \Delta = (\partial_x + \vartheta \partial_z)^2 \end{cases}$$

However let's look if we can find

- $\rightarrow~$ either a simpler alternative
- $\rightarrow\,$ or an alternative with a wider stability range

 Idea : take advantage of the form of the truncation error of the first-order upstream scheme (i.e. an anisotropic Laplacian in 2D)

Scheme 1

$$\begin{cases} q^{n+1,\star} &= q^{n-1} - 2\Delta t \left[u\partial_x q^n \right]_{C4} \\ q^{n+1/2} &= \frac{5}{12}q^{n+1,\star} + \frac{2}{3}q^n - \frac{1}{12}q^{n-1} \\ q^{n+1} &= q^n - \Delta t \left[u\partial_x q^{n+1/2} \right]_{C4} \\ q^{\star} &= q^n - \Delta t \left[u\partial_x q^n \right]_{UP1} \\ q^{n+1} &= q^{n+1} - \mu(\Delta x)\Delta(q^{\star} - q^{n+1}) \qquad \Delta = \partial_x^2 \end{cases}$$

Scheme 1 rotated anisotropic "implicit" laplacian

$$\begin{cases} q^{n+1,\star} = q^{n-1} - 2\Delta t \left[u\partial_x q^n \right]_{C4} \\ q^{n+1/2} = \frac{5}{12} q^{n+1,\star} + \frac{2}{3} q^n - \frac{1}{12} q^{n-1} \\ q^{n+1} = q^n - \Delta t \left[u\partial_x q^{n+1/2} \right]_{C4} \\ q^{\star} = q^n - \Delta t \left[u\partial_x q^n \right]_{UP1} \\ q^{n+1} = q^{n+1} - \mu(\Delta x)\Delta(q^{\star} - q^{n+1}) \qquad \Delta = (\partial_x + \vartheta \partial_z)^2 \end{cases}$$

- · extremely simple to implement and computationally efficient
- does not correspond exactly to a rotated biharmonic

Rotated biharmonic = Rotation of a non-rotated Laplacian+ $\mathcal{O}(\vartheta^3, \vartheta^4)$

Perfectly valid for small slopes and thus for rotation along geopotentials

• aims at reducing spurious mixing to an acceptable level but not at suppressing it

Scheme 2

• We split the biharmonic in a first laplacian during the predictor and a second in the corrector

Scheme 2 rotated

$$\begin{cases} q^{n+1,\star} &= q^{n-1} - 2\Delta t \left[u\partial_x q^n \right]_{C4} \\ q^{n+1,\star\star} &= q^{n+1,\star} + 2\Delta t \Delta (q^n) & \Delta = (\partial_x + \vartheta \partial_z)^2 \\ q^{n+1/2} &= \frac{5}{12}q^{n+1,\star} + \frac{2}{3}q^n - \frac{1}{12}q^{n-1} \\ q^{n+1} &= q^n - \Delta t \left[u\partial_x q^{n+1/2} \right]_{C4} \\ q^{n+1} &= q^{n+1} - \mu(\Delta x, u)\Delta (q^{n+1,\star\star} - q^{n+1}) & \Delta = (\partial_x + \vartheta \partial_z)^2 \end{cases}$$

- Two rotated laplacians are simpler than a rotated biharmonic
- · makes it possible to derive an unconditionally stable scheme

Scheme 2^* (for the vertical component of the tensor)

$$\begin{cases} q^{n+1,\star} = q^{n-1} - 2\Delta t [w\partial_z q^n] \\ q^{n+1,\star\star} = q^{n+1,\star} + 2\Delta t \Delta (q^{n+1,\star\star}) & \Delta = \partial_z^2 \\ q^{n+1/2} = \frac{5}{12} q^{n+1,\star} + \frac{2}{3} q^n - \frac{1}{12} q^{n-1} \\ q^{n+1} = q^n - \Delta t \left[w\partial_z q^{n+1/2} \right] + \mu \Delta (q^{n+1} - q^{n+1,\star\star}) & \Delta = \partial_z^2 \end{cases}$$

- resolution of one (possibly two) tridiagonal systems at each time steps
- this results into an implicit-in-time biharmonic in the vertical direction
- however no need to decrease the time step
- but increase of the complexity of the code

Comments on stability

• **Scheme** 1

$$\mathcal{R}(q) = \partial_{\xi}^4 q + \vartheta^2 \partial_z^2 \partial_{\xi}^2 q + 2\vartheta \partial_{\xi}^3 \partial_z q$$

 \Rightarrow Should not require any additional limiters for stability.

• **Scheme** 2

$$\mathcal{R}(q) = \partial_{\xi}^{4}q + 6\vartheta^{2}\partial_{z}^{2}\partial_{\xi}^{2}q + 4\vartheta\partial_{\xi}^{3}\partial_{z}q + 4\vartheta^{3}\partial_{\xi}\partial_{z}^{3}q + \vartheta^{4}\partial_{z}^{4}q$$

 \Rightarrow Need to incorparate *ad-hoc* prescriptions in order to keep stability for steep slopes.

• Scheme 2^{*} : unconditionally stable

3 Advection and rotated diffusion coupling

South West Pacific

ROMS-UCLA : Southwest Pacific Region

 $\Delta x=20 {\rm km}$

1 Scheme 1 (no rotation)

2 Scheme 1 rotated along geopotentials

For this particular testcase no need to decrease the time step

$$\Delta t = \Delta t_{\text{rotated}} = 2160s$$

(N=40 vertical levels)

 \Rightarrow reduction of the error by 60%

3 Advection and rotated diffusion coupling

en route to a physical parameterization of diapycnal mixing for the ocean interior

By restoring (part of) the adiabaticity in the ocean interior we open the door to a closure scheme for diapycnal mixing

$$\mathbf{K}^{\text{small}} = K_h \begin{pmatrix} 1 & 0 & \vartheta_x \\ 0 & 1 & \vartheta_y \\ \vartheta_x & \vartheta_y & \varepsilon + \vartheta_y^2 + \vartheta_x^2 \end{pmatrix}$$

$$\varepsilon = \frac{\mathbf{K}_{\mathbf{D}}}{K_h}$$

- The formalism of the tensor allows for the definition of a diapycnal diffusivity ${\cal K}_D$
- e.g. connection between internal waves and diapycnal mixing

Putting the Pieces of the Puzzle Together : the missing piece !

