
Using Python for
Model Analysis

and more...

Rob Hetland, Texas A&M

Why is MATLABTM so cool?

• High level language

• Simple, fast numerics

• Interactive or scriptable

• Flexible

• NetCDF support

• Geospatial plotting

Basic MATLABTM

User contributed

All of these things are also true for Python...

What is Python?
•Python (core language) - High level object

oriented scripting language.

•numpy - Numerical array objects and standard
mathematical tools (e.g., eig & fft)

•scipy - Expanded math libraries (e.g.,
optimization & interpolation)

•matplotlib - 2D plotting based on MATLABTM

One stop shoppping at scipy.org

Free/Open source

Powerfull

Obj. oriented language

Linking to other languages

Existing code

Existing knowledge

Rapid development

Non-trivial installation

$$$/Licensing

Inflexibility

Python MATLABTM

A
dv

an
ta
ge
s

D
is
ad

va
nt
ag
es

Comparing Python and MATLABTM

The Matplotlib Hacking Points Memo by John D. Hunter

matplotlib is a library for making 2D plots of arrays in python.1 Although it has its origins in emulating the matlabTM graphics
commands, it does not require matlab, and has a pure, object oriented API. Although matplotlib is written primarily in pure
python, it makes heavy use of Numeric/numarray and other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a few commands, or
just one! If you want to see a histogram of your data, you shouldn’t need to instantiate objects, call methods, set properties,
and so on; it should just work.

The matplotlib code is divided into three parts: the matlab interface is the set of functions provided by matplotlib.matlab
which allow the user to create plots with code quite similar to matlab figure generating code. The matplotlib frontend or
matplotlib API is the set of classes that do the heavy lifting, creating and managing figures, text, lines, plots and so on. This
is an abstract interface that knowns nothing about output formats. The backends are device dependent drawing devices, aka
renderers, that transform the frontend representation to hardcopy or a display device. Example backends: PS creates postscript
hardcopy, SVG creates scalar vector graphics hardcopy, Agg creates PNG output using the high quality antigrain library that
ships with matplotlib - http://antigrain.com, GTK embeds matplotlib in a GTK application, GTKAgg uses the antigrain
renderer to create a figure and embed it a GTK application, and so on for WX, Tkinter, FLTK. . . .

Migrating from matlabTM

Using matplotlib should come naturally if you have ever plotted with matlab, and should be fairly straightforward if you haven’t.
Like all interpreted languages used for serious number crunching, python has an extension module for processing numeric arrays.
Numerical python has been around since the early days, and already comes with many matlab compatible analysis functions,
which matplotlib extends. The example code below shows two complete scripts: on the left hand side is python with matplotlib,
and on the right is matlab.

Both scripts do the same thing: generate a white noise vector, convolve it with an exponential function, add it to a sine
wave, plot the signal in one subplot and plot the power spectrum in another.

python
from matp lo t l ib . matlab import ∗

dt = 0.01
t = arange (0 ,10 , dt)
nse = randn (l en (t))
r = exp(−t /0 . 05)

cnse = conv (nse , r)∗dt
cnse = cnse [: l en (t)]
s = 0.1∗ s i n (2∗ pi ∗ t) + cnse

subplot (211)
p l o t (t , s)
subplot (212)
psd (s , 512 , 1/dt)

% matlab
% no import nece s sa ry

dt = 0 . 0 1 ;
t = [0 : dt : 1 0] ;
nse = randn (s i z e (t)) ;
r = exp(−t /0 . 05) ;

cnse = conv (nse , r)∗dt ;
cnse = cnse (1 : l ength (t)) ;
s = 0.1∗ s i n (2∗ pi ∗ t) + cnse ;

subplot (211)
p l o t (t , s)
subplot (212)
psd (s , 512 , 1/dt)

The major differences are 1) Numeric has functions for creating arrays (arange above) whereas matlab has the handy
notation [0:dt:10], 2) python uses square brackets rather than parentheses for array indexing, and there are some small
differences in how do array lengths, sizes, and indexing. But the differences are minute compared to the similarities: 1)
matlab and Numeric both do array processing and have a variety of functions that efficiently operate on arrays and scalars,
2) moderately sophisticated signal processing (white noise, convolution, power spectra) is achieved in only a few lines of clear
code and 3) plots are simple, intuitive and attractive.

Numerix

Currently, Numeric and numarray have different strengths. Performance-wise, Numeric is faster for smallish arrays and numarray
for largish arrays. Thus for the near-term, members of the python community will utilize both. Several numarray/Numeric
developers are co-developers of matplotlib, giving matplotlib full Numeric and numarray compatibility, thanks in large part to
Todd Miller’s matplotlib.numerix module and the numarray compatibility layer for extension code.

One difficulty confronting users who need to work with both Numeric and numarray is the different organizations of the
two packages

Numeric # numarray
from Numeric import array , where from numarray import array , where
from MLab import mean , std from numarray . l i n e a r a l g e b r a . mlab import mean , std
from Numeric import convolve from numarray . convolve import convolve

1This short guide is not meant as a complete guide or tutorial, but rather introduces a few features of matplotlib. Please
see the examples directory of the matplotlib source distribution for many more examples, the tutorial on the web page, and the
soon to be released user’s guide, which aims to be comprehensive!

1

(from the matplotlib users guide)

0 2 4 6 8 10
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 10 20 30 40 50
Frequency

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r

S
p
e
ct

ru
m

 (
d
B

)

from numpy import *
import pylab as pl
from matplotlib.toolkits.basemap \
 import Basemap
import netCDF4

nc = netCDF4.Dataset('mrp_grd4.nc')
lon = nc.variables['lon_rho'][:]
lat = nc.variables['lat_rho'][:]
h = nc.variables['h'][:]
mask = nc.variables['mask_rho'][:]

h = ma.masked_where(mask==0, h)

m = Basemap(projection='merc', \
 lat_ts=0.0, lon_0=lon[0].mean(), \
 resolution='h', \
 urcrnrlon=-87.5, urcrnrlat=31.3, \
 llcrnrlon=-95.5, llcrnrlat=27.5)

fig = pl.figure(figsize=(8, 4))
ax = fig.add_axes([0.1, 0.05, 0.9, 0.9])

m.drawcoastlines()
m.fillcontinents(color=(0.2, 0.8, 0.2))
m.drawrivers(color='b')
m.drawparallels(arange(27.0, 32.0), labels=[1,0,0,0])
m.drawmeridians(arange(-95.0, -87.0, 2.0), labels=[0,0,0,1])

x, y = m(lon, lat)
pch = ax.pcolor(x, y, h, cmap=pl.cm.gist_ncar, shading='flat')
cbh = pl.colorbar(pch)
cbh.set_label('Depth (m)')
ax.set_title('Mechanisms Controlling Hypoxia model grid')
ax.axis([m.xmin, m.xmax, m.ymin, m.ymax])
pl.show()

• NetCDF I/O
• Geospatial plotting
• MATLABTMish syntax
• Object oriented

0 2 4 6 8 10

0

2

4

6

8

10

Sample grid made with gridgen

http://www.marine.csiro.au/~sakov/

http://www.marine.csiro.au/~sakov/
http://www.marine.csiro.au/~sakov/

70°54.0' W 70°52.0' W 70°50.0' W 70°48.0' W 70°46.0' W 70°44.0' W
42°46.0' E

42°48.0' E

42°50.0' E

70°54.0' W 70°52.0' W 70°50.0' W 70°48.0' W 70°46.0' W 70°44.0' W
42°46.0' E

42°48.0' E

42°50.0' E

