
Lecture 5: 
Array Modes
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Maximum Likelihood Estimate & 4D-Var
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The cost function (a combination of the prior and data distributions):

Maximize P(z|y) by
minimizing J using
variational calculus



Prior Observations Posterior

Sea Surface Temperature, Jan. 2010



4-dimensional variational (4D-Var) data assimilation
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Notation & Nomenclature
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h(t)=0 : Strong constraint
h(t)≠0 : Weak constraint

h(t) = Correction for model error
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Array Modes: Assessing the Efficacy of the 
Observing System

• We have explored how the observations impact different aspects of the 
4D-var circulation estimates and ensuing forecasts.

• However, we have not yet established how effective the observing 
system is at “observing” the circulation given our prior hypotheses 
about the system.

• Recall the analysis equation:

• So the increment xa- xb lies entirely in the space spanned by B.

xa = xb +BG
T(GBGT +R)-1(y − H (xb))

   = xb +Bw w



The Importance of the Background Error 
Covariance Matrix
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The analysis increment “lives” in the space spanned by B  !!!

Therefore, to reduce errors in xb, the observing system must 
effectively observe (directly via G or indirectly via GT) the 
dominant EOFs of B.



Satellite
Swath

An Illustrative Example

EOF of B
(localized region of
high background
error variance)

The satellite swath does not directly (G) or indirectly  (GT) observe the region 
of elevated background error variance associated with the EOF of B, so errors 
in this regions will not be corrected during data assimilation by the satellite 
observations.



Satellite
Swath

An Illustrative Example

EOF of B
(localized region of
high background
error variance)

The glider path does directly observe the region of high error background 
error variance associated with the EOF of B, so errors in this regions will be 
corrected during data assimilation by the glider observations.

Glider path



Eigenvectors
We will be concerned with two different sets of eigenvectors:

1. The EOFs of B:
These tell us about the space in which the increments live.

2. The eigenvectors of the inverse stabilized representer matrix:

If this is poorly conditioned, then the increment will be 
dominated by the eigenvectors of (GBGT+R) with the 
smallest eigenvalues.

In some sense, it is the juxtaposition of these two sets of 
eigenvectors that determines the efficacy of the observing system.

B = EΛET

(GBGT +R)-1

(More specifically the EOFs of
where                     )  B = ΣCΣT

C = ΦΠΦT



Array Modes

xa = xb +BG
TVmTm

-1Vm
TGBGTR -1(y − H (xb))

Recall that the analysis equation is solved using the Lanczos vectors:

This can be rewritten as:

Ψ i = BG
TVmuiwhere are the “array modes”

(Bennett, 1985)

(λi ,ui ) are the eigenpairs of Tm

NOTE: The array modes  
depend ONLY on the obs
locations, and NOT the 
obs values

xa = xb + α iΨ i
i=1

m

∑
α i = λ −1ui

TVm
TGBGTR -1(y − H (xb))



Array Modes
• The array modes are a set of generally non-orthogonal basis 

functions that depend only on the obs locations.
• The contribution of each 𝛹i to the increment xa-xb (i.e. the 

amplitude 𝛼i) depends on the obs values.
• Each 𝛹i is associated with an eigenpair (𝜆i,ui).
• The number of arrays modes equals the number of inner-loops
• Bennett (1985) refers to the array modes as “interpolation 

patterns.” 
• The amplitude 𝛼i depends on (𝜆i)-1, so 𝛹1 represents the most 

“stable” interpolation pattern wrt changes in the obs values.
• 𝛹m is the least stable, and may represent a significant source 

of unphysical noise.



(Reduced Rank) Array Modes (RAMs)

xa = xb +BG
TVmTm

-1Vm
TGBGTR -1(y − H (xb))

In ROMS 4D-Var the analysis equation is solved using the Lanczos algorithm:

This can be rewritten as:

Ψ i = BG
TVmuiwhere are the “RAMs”

(λi ,ui ) are the eigenpairs of Tm

NOTE: The array modes  
depend ONLY on the obs
locations, and NOT the 
obs values

xa = xb + α iΨ i
i=1

m

∑
α i = λ −1ui

TVm
TGBGTR -1(y − H (xb))

EOFs of  (R-1GBGT+I) 

Array mode 
amplitudes depend 
on the obs values, y

≣(R-1GBGT+I)-1 m=# of inner-loops

Vm
TGBGTVm = Im



Array Modes: Assessing the Efficiency of the 
California Current Observing System

• How well does the California Current observing system “observe” the 
circulation given our prior hypotheses about the errors?

CCS observing system:
• Satellite SST – daily

(AVHRR, AMSR, MODIS)
• Aviso gridded SSH - daily
• In situ T & S profiles

4 Jan – 18 
April 2003

ROMS CCS 
domain



RAM amplitudes of the California Current system

31 year sequence of 4D-Var analyses (1980-2010)
8 day overlapping windows
Obs assimilated: SST, SSH, in situ T and S
1 outer-loop, 14 inner-loops

~4 orders of magnitude



RAM 𝚿1

14 March, 2001 The sub-space activated by the obs & d.f.s



RAM #1

Ψ i(t) =MΨ i

Time evolution:

Eigenspectrum

Array mode amp

15-23 March, 2001



RAM #1 15-23 March, 2001



SST observations: 15-23 March, 2001



Ψ1 = BG
TVmu1

GT maps these fields into state space



RAM #3

Ψ i(t) =MΨ i

Eigenspectrum

Array mode amp

15-23 March, 2001



Ψ3 = BG
TVmu3

GT maps these fields into state space



Array Modes

Ψ i = BG
TVmuiRecall the definition of an array mode:

B can be expressed in terms of its EOFS: B = EΛET

So the array modes are linear combinations of the EOFs of B

In which case, if GTVmui does not project onto a particular EOF 
of B, then that EOF will not be resolved by the array modes.



Satellite
Swath

Recall the Illustrative Example

EOF of B
(localized region of
high background
error variance)

Do the array modes ”overlap” the EOFs?



Log10 of error



Example EOFs
of B

• Flat spectrum
• Very small % variance 

explained by each



Projection of RAM 2 on B EOFs

Pronounced seasonal cycle



Projection of RAM 2 on B EOFs



Projection of RAMs on the EOFs of B

B is O(106×106)
Number of EOFs required to recover RAMs << dim(B)
Þ the degrees of freedom span a small sub-space of B
Þ the observing system poorly constrains much of the space spanned by B



• B spectrum is very flat
• Each EOF explains a small % of background error 

variance
• Relatively few EOFs needed to recover array modes 

and increments (~0.002-0.02%)
• This suggests that the observations provide 

information about a very small part of the space 
occupied by B

• Therefore most of the background error is 
unchanged by the obs



Contribution of 
each array mode to 
the SST increment 
on 14 March 2001:
recall m=14 inner-

loops.

The Bennett and 
McIntosh (1984) 
“1% rule”:
Discard array modes 
with eigenvalues 1% or 
less of the max value -
more conservative. Reject based on 1% ruleSST

Overfitting of the Model to the Observations

(GBGT+R)



Mean and std of  SST 
associated with array 
mode 1 and array 
mode 15 computed 
from ALL 4D-Var 
cycles, 1980-2010



The “1% Rule” to avoid overfitting to the Observations

Average eigenvalue ratio for all cycles vs number of inner-loops employed:
(suggests we should use no more than 10 inner-loops to prevent over-
fitting of the observations)

100lm/l1 vs m
(m=# of inner-loops)

100lm/l1=1

Terminate 4D-Var
inner-loops here



RMS SST difference (14 inner-loops minus 10 inner-loops) for 2001



Eigenvalues of the preconditioned stabilized representer matrix

Computed from random
innovations



Degrees of Freedom of the Observing Array
4X4

8X2 C 8X2 N

R−1GBGT + I( )e = λe

log10 λ

log10 λ



Array Modes

cpp options:
• ARRAY_MODES
• FORWARD_READ
• FORWARD_MIXING

Input files:
• FWDname – background circulation for ADROMS (ocean.in)
• Nvct - parameter to select required array mode (s4dvar.in)

Output files:
• TLMname - time evolution of the selected array mode (ocean.in)
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