
 1

EXERCISE 9: Forecast Cycle Observation Sensitivities

Like the forecast cycle observation impacts of Exercise 8, computation of the observation
sensitivities for the forecast cycle involves multiple steps. The initial set-up steps are the same as
those in Exercise 8, and the only difference is in steps 5 and 8.

Case 1: Measuring observation sensitivities using a verifying analysis

Steps 1 through 4 and step 7 are the same as in Exercise 8, so if you have done these already there
is no need to do them again. You will need to copy the NetCDF files from the
WC13/RBL4DVAR_forecast_impact subdirectories FCSTAT, FCSTA and FCSTB into the
corresponding subdirectories of WC13/RBL4DVAR_forecast_sensitivity though.

The difference between the forecast cycle observation impact calculations of Exercise 8 and the
forecast cycle observation sensitivity calculation considered here is the way that 𝛿𝑒 is computed.
As described in Lecture 5, we can also express 𝛿𝑒 to 3rd-order as:

 𝛿𝑒 = 𝒅!(𝜕𝓚 𝜕𝒚⁄)!𝑴"
!,𝑴#

!𝑪.𝒙# − 𝒙$1 +𝑴%
!𝑪(𝒙% − 𝒙$)3 (1)

where (𝜕𝓚 𝜕𝒚⁄)! represents the adjoint of the entire ROMS 4D-Var algorithm.

Step 5:
Go to the subdirectory WC13/RBL4DVAR_forecast_sensitivity and compile the forecast
observation sensitivity driver using build_roms.csh using the following cpp options:

 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR_FCT_SENSITIVITY"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DAD_IMPULSE"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_IMPACT"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_SPACE"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG"

The adjoint 4D-Var algorithm (𝜕𝓚 𝜕𝒚⁄)! is selected by undefining OBS_IMPACT.

Now run the job romsM.

Create a new subdirectory, Case1, and save the solution in it for analysis and plotting to avoid
overwriting solutions when playing with difference CPP options and rerunning and recompiling:

mkdir Case1
mv Build_roms rbl4dvar.in *.nc log Case1
cp -p romsM roms_wc13.in Case1

where log is the ROMS standard output specified.

 2

Step 6:
To plot the output from step 5, go to the subdirectory WC13/plotting and run the Matlab script
plot_rbl4dvar_forecast_sensitivity.m. Compare with the corresponding figure from the impact
calculation of Exercise 8.

Case 2: Measuring observation sensitivities using independent observations

In this case, the 3rd-order approximation for 𝛿𝑒 becomes:

 𝛿𝑒 = 𝒅!(𝜕𝓚 𝜕𝒚⁄)!𝑴"
!,𝑮#!𝑪.𝒚# − 𝒚1 + 𝑮%!𝑪(𝒚% − 𝒚)3. (2)

where 𝑮#! and 𝑮%! denote the adjoint model forced at the observation points and linearized about
green and red forecast (Fig. 1) respectively. Steps 1-3 are identical to Case 1, so there is no need
to repeat these. However, we now need to create the forcing functions for the adjoint since they
will be different for this case.

Step 8:
Go back to the subdirectory WC13/RBL4DVAR_forecast_sensitivity and compile the forecast
observation sensitivity driver using build_roms.csh using the following cpp options:

 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR_FCT_SENSITIVITY"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DAD_IMPULSE"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_IMPACT"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DOBS_SPACE"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG"

Now run the job romsM.

Create a new subdirectory, Case2, and save the solution in it for analysis and plotting to avoid
overwriting solutions when playing with difference CPP options and rerunning and recompiling:

mkdir Case2
mv Build_roms rbl4dvar.in *.nc log Case2
cp -p romsM roms_wc13_2hours.in Case2

where log is the ROMS standard output specified.

Step 9:
To plot the output from step 8, go to the subdirectory WC13/plotting and run the Matlab script
plot_rbl4dvar_forecast_sensitivity_obs_space.m. Compare with the corresponding figure from
the impact calculation of Exercise 8.

