
 1

EXERCISE 3: Dual Formulation RBL4D-Var - R4D-Var

Introduction

As discussed in Lecture 3, 4D-Var can be cast in a dual form in which the search for the
best ocean circulation estimate proceeds in the subspace spanned only by the observations,
as opposed to the full space spanned by the model (i.e. the primal form and I4D-Var of
Exercises 1 and 2). Formally, the primal and dual formulations yield identical estimates of
the ocean circulation so one might wonder if there is any advantage of one form over the
other? In this exercise and Exercise 4, we will explore this question, and discover that there
are indeed practical advantages to both approaches.

Running RBL4D-Var

The physical-space statistical analysis approach to the dual form is run in the directory
WC13/RBL4DVAR. Follow the instructions in the appropriate Readme file and run the
model.

Notice that the nonlinear trajectory can be written either daily (NHIS=48 if using
roms_wc13_daily.in) or every two-hours (NHIS=4 if using roms_wc13_2hours.in). It
the basic state trajectory used to linearize the tangent linear and adjoint models. It turns out
that the daily sampling is over the limit where the tangent linear approximation is valid.
The results are much better when using the two-hours snapshots. The two set-ups are
provided to make the user aware of the validity of the tangent linear approximation in
highly nonlinear circulations. The differences will be noticeable when computing
observation impacts and observation sensitivities.

As in Exercise 1, roms_wc13_2hours.in is configured to perform one outer-loop and 25
inner-loops.

You will be running dual 4D-Var algorithm three times: first using the standard R-1/2

preconditioning with a conjugate gradient (CG) method, second using the R-1/2

preconditioning and a minimum residual algorithm (MINRES), and finally using a
restricted B-preconditioned conjugate gradient (RPCG) approach.

Case 1: R-1/2 preconditioning with CG

First edit the file build_roms.csh or build_roms.sh and choose the following cpp options

 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DMINRES"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG"

Recompile the model and then run it.

 2

Create a new subdirectory EX3_CONGRAD, and save the solution in it for analysis and
plotting to avoid overwriting solutions when playing with different CPP options and
rerunning and recompiling:

mkdir EX3_CONGRAD
mv Build_roms rbl4dvar.in *.nc log EX3_CONGRAD
cp -p romsM roms_wc13_2hours.in EX3_CONGRAD

where log is the ROMS standard output specified

Case 2: R-1/2 preconditioning with MINRES

First edit the file build_roms.csh or build_roms.sh and choose the following cpp options

 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DMINRES"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG"

Recompile the model. Before running it again, be sure to execute job_rbl4dvar.sh. Then
run the model.

Create a new subdirectory EX3_MINRES, and save the solution in it for analysis and
plotting to avoid overwriting solutions when playing with different CPP options and
rerunning and recompiling:

mkdir EX3_MINRES
mv Build_roms rbl4dvar.in *.nc log EX3_MINRES
cp -p romsM roms_wc13_2hours.in EX3_MINRES

where log is the ROMS standard output specified

Case 3: Restricted B-preconditioned conjugate gradient (RPCG)

First edit the file build_roms.csh or build_roms.sh and choose the following cpp options

 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRBL4DVAR"
 #setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DMINRES"
 setenv MY_CPP_FLAGS "${MY_CPP_FLAGS} -DRPCG"

Recompile the model. NOTE: The RPCG algorithm works differently than the other two
previous cases, and to run 25 inner-loops you need to choose Ninner=26 in
roms_wc13_2hours.in. Before running the model again, be sure to execute
job_rb4dvar.sh. Then run the model.

 3

Create a new subdirectory EX3_RPCG, and save the solution in it for analysis and plotting
to avoid overwriting solutions when playing with different CPP options and rerunning and
recompiling:

mkdir EX3_RPCG
mv Build_roms rbl4dvar.in *.nc log EX3_RPCG
cp -p romsM roms_wc13_2hours.in EX3_RPCG

where log is the ROMS standard output specified. EX3_RPCG are the files you will need
in future exercises.

Plotting your results

1. Plot the 4D-Var cost function J for the three cases using the script
plot_rbl4dvar_cost_compare.m which can be found in WC13/plotting. The cost
function of the primal case is also plotted for comparison.

2. Using plot_rbl4dvar_increments.m plot next a selection of the increments from
the RPCG case which should be the last case that you ran.

